EXISTENCE OF ONE WEAK SOLUTION FOR p(x)-BIHARMONIC EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Math Soc Serbia-Drustvo Matematicara Srbije

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In the present paper, using variational approach and the theory of the variable exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order elliptic equation involvinga p(x)-biharmonic operator and a concave-convex nonlinearity the Navier boundary conditionsis obtained.

Açıklama

Anahtar Kelimeler

Critical points, p(x)-biharmoni coperator, Navier boundary conditions, concave-convex nonlinearities, Mountain Pass Theorem, Ekeland's variational principle

Kaynak

Matematicki Vesnik

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

69

Sayı

4

Künye