EXISTENCE OF ONE WEAK SOLUTION FOR p(x)-BIHARMONIC EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY
Küçük Resim Yok
Tarih
2017
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Math Soc Serbia-Drustvo Matematicara Srbije
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In the present paper, using variational approach and the theory of the variable exponent Lebesgue spaces, the existence of nontrivial weak solutions to a fourth order elliptic equation involvinga p(x)-biharmonic operator and a concave-convex nonlinearity the Navier boundary conditionsis obtained.
Açıklama
Anahtar Kelimeler
Critical points, p(x)-biharmoni coperator, Navier boundary conditions, concave-convex nonlinearities, Mountain Pass Theorem, Ekeland's variational principle
Kaynak
Matematicki Vesnik
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
69
Sayı
4