Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Stikonas, Arturas" seçeneğine göre listele

Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Asymptotic Analysis of Sturm-Liouville Problem with Dirichlet and Nonlocal Two-Point Boundary Conditions
    (Vilnius Gediminas Tech Univ, 2023) Stikonas, Arturas; Şen, Erdoğan
    In this study, we obtain asymptotic expansions for eigenvalues and eigen-functions of the one-dimensional Sturm-Liouville equation with one classical Dirich-let type boundary condition and two-point nonlocal boundary condition. We analyze the characteristic equation of the boundary value problem for eigenvalues and de-rive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Asymptotic analysis of Sturm-Liouville problem with Neumann and nonlocal two-point boundary conditions
    (Springer, 2022) Stikonas, Arturas; Şen, Erdoğan
    In this study, we obtain asymptotic expansions for eigenvalues and eigenfunctions of the one-dimensional Sturm-Liouville equation with one classical Neumann-type boundary condition and a two-point nonlocal boundary condition. We investigate solutions of special initial value problem and find their asymptotic expansions of any order. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic expansions of arbitrary order. We apply the obtained results to the problem with two-point nonlocal boundary condition.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Asymptotic analysis of sturm-liouville problem with nonlocal integral-type boundary condition
    (Vilnius University Press, 2021) Stikonas, Arturas; Şen, Erdoğan
    In this study, we obtain asymptotic formulas for eigenvalues and eigenfunctions of the one-dimensional Sturm–Liouville equation with one classical-type Dirichlet boundary condition and integral-type nonlocal boundary condition. We investigate solutions of special initial value problem and find asymptotic formulas of arbitrary order. We analyze the characteristic equation of the boundary value problem for eigenvalues and derive asymptotic formulas of arbitrary order. We apply the obtained results to the problem with integral-type nonlocal boundary condition. © 2021 Authors. Published by Vilnius University Press.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Asymptotic distribution of eigenvalues and eigenfunctions of a nonlocal boundary value problem
    (VGTU, 2021) Şen, Erdoğan; Stikonas, Arturas
    In this work, we obtain asymptotic formulas for eigenvalues and eigenfunctions of the second order boundary-value problem with a Bitsadze–Samarskii type nonlocal boundary condition. © 2021 The Author(s). Published by Vilnius Gediminas Technical University.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Computation of eigenvalues and eigenfunctions of a non-local boundary value problem with retarded argument
    (Taylor and Francis Ltd., 2021) Şen, Erdoğan; Stikonas, Arturas
    In this study, we proved the simplicity of eigenvalues and obtained asymptotic formulas for eigenvalues and eigenfunctions of second order non-local boundary-value problems with retarded argument. © 2021 Informa UK Limited, trading as Taylor & Francis Group.

| Tekirdağ Namık KemalÜniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Namık Kemal Üniversitesi, Tekirdağ, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim