Yazar "Seyidoglu, Nilay" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1(Mdpi, 2024) Seyidoglu, Nilay; Karakci, Deniz; Egritag, Hale Ergin; Yikmis, Seydi(1) Background: There is a balance between nutrition, glycemic control, and immune response. Their roles in physiological mechanisms are essential for maintaining life quality. This study aimed to evaluate hawthorn vinegar's metabolic effects, and describe its possible mechanism. We also pointed out several vinegar production methods to clarify the antioxidant features. (2) Methods: In the study, three vinegar techniques were applied to vinegar: traditional production of hawthorn vinegar (N), thermal pasteurization (P), and ultrasound method (U). Thirty-two female adult Wistar albino rats were randomly separated into four groups: Control, N1 (regular vinegar; 1 mL/kg bw), P1 (pasteurized vinegar; 1 mL/kg bw), and U1(ultrasound treated vinegar; 1 mL/kg bw). Vinegar was administered by oral gavage daily for 45 days. Initial and final weights, the percentage changes of body weight gains, and Gamma-Glutamyl Transferase (GGT) values of plasma and liver were measured. The total protein, globulin, and albumin values of plasma, liver, and intestinal tissue were determined. In addition, plasma glucagon-like peptide-1 (GLP-1) and glucose concentrations were evaluated. (3) Results: There was a statistical increase in total intestinal protein value and an increasing tendency in total protein in plasma and liver in group U1 compared to group Control. However, the GGT concentrations in plasma and liver were slightly lower in group U1 than in group Control. In addition, there were significant increases in plasma GLP-1 values in all experimental groups compared to the Control group (p: 0.015; 576.80 +/- 56.06, 773.10 +/- 28.92, 700.70 +/- 17.05 and 735.00 +/- 40.70; respectively groups control, N1, P1, and U1). Also, liver GLP-1 concentrations in groups P1 and U1 were higher than in group Control (p: 0.005; 968.00 +/- 25.54, 1176 +/- 17.54 and 1174.00 +/- 44.06, respectively groups control, P1 and U1). On the other hand, significant decreases were found in plasma glucose concentrations in groups N1 and U1 as to the Control group (p: 0.02; Control: 189.90 +/- 15.22, N1: 133.10 +/- 7.32 and U1: 142.30 +/- 4.14). Besides, liver glucose levels were lower in all experimental groups than in group Control statistically (p: 0.010; 53.47 +/- 0.97, 37.99 +/- 1.46, 44.52 +/- 4.05 and 44.57 +/- 2.39, respectively groups control, N1, P1, and U1). (4) Conclusions: The findings suggest that hawthorn vinegar can balance normal physiological conditions via intestinal health, protein profiles, and glycemic control. Additionally, ultrasound application of vinegar may improve the ability of hawthorn vinegar, and have positive effects on general health.Öğe Hawthorn Vinegar in Health with a Focus on Immune Responses(Mdpi, 2024) Seyidoglu, Nilay; Karakci, Deniz; Bakir, Buket; Yikmis, SeydiBackground: The hawthorn fruit is an interesting medicinal plant that has several biological features, especially related to anti-inflammatory, antioxidant and immune-modulating actions, and boosting general health. In this study, we aimed to clarify the immunological effects of hawthorn vinegar on immunity and general health. We also focused on three different production processes to improve the antioxidant activity of hawthorn vinegar (2) Methods: In the study, besides the traditional production of hawthorn vinegar (N), thermal pasteurization (P) and ultrasound (U) techniques were applied to vinegars. A total of 56 female adult Wistar albino rats were randomly allocated into seven groups; Control, N0.5 (regular vinegar; 0.5 mL/kgbw), N1 (regular vinegar; 1 mL/kgbw), P0.5 (pasteurized vinegar; 0.5 mL/kgbw), P1 (pasteurized vinegar; 1 mL/kgbw), U0.5 (ultrasound treated vinegar; 0.5 mL/kgbw), and U1 (ultrasound treated vinegar; 1 mL/kgbw). Vinegars were administered by oral gavage daily. The average weight gains, body mass index, and blood hematological parameters were measured, and the Neutrophil Lymphocyte ratio was calculated. The plasma IL-1 beta and TNF-alpha values, and MDA, IL-1 beta and TNF-alpha values of intestinal tissue, were determined. Also, the streptavidin-biotin-peroxidase complex method was applied to determine the expressions of TNF-alpha and IL-1 beta in duodenum. (3) Results: There was a decreasing tendency in the average weight gains in all vinegar groups compared to the control group. In addition, there was an increase in NL ratio in all vinegar groups, although not significant. There were no statistical differences among all vinegar groups, although decreases were observed in plasma IL-1 beta. Also, the plasma TNF-alpha values showed slight increases in high-dose-of-vinegar groups (N1, P1 and U1), although not significant. In addition, the intestinal tissue IL-1 beta value tended to increase in groups N0.5, N1 and P0.5, while it tended to decrease in P1, U0.5 and U1. On the other hand, there were slight increases in the TNF-alpha values of intestinal tissue in all groups compared to control, although these were not significant. Furthermore, the intensive expressions of TNF-alpha and IL-1 beta were determined in groups U0.5 and U1. (4) Conclusions: The results suggest that either high doses or ultrasound applications of hawthorn vinegar have positive effects on intestinal health, boosting immunity and general health.Öğe Ultrasound-Treated and Thermal-Pasteurized Hawthorn Vinegar: Antioxidant and Lipid Profiles in Rats(Mdpi, 2023) Karakci, Deniz; Bakir, Buket; Seyidoglu, Nilay; Yikmis, SeydiThe hawthorn fruit, a member of the Rosaceae family, is a medicinal plant with numerous therapeutic properties. It has a wide range of variants, with Crataegus tanacetifolia being the most widely recognized species in the world. The hawthorn fruit has various biological activities, including anti-inflammatory, antibacterial, antioxidant, immune-modulating, and anti-carcinogenic properties. This study focused on improving the antioxidant activity of hawthorn vinegar via different methods. We also aimed to investigate the influence of its hepatic antioxidant abilities on health and extend the shelf life of the vinegar. In the study, the vinegar was produced from the hawthorn fruit, and thermal pasteurization and ultrasound techniques were applied. A total of 56 female adult Wistar-Albino rats were allocated into seven groups and administered hawthorn fruit vinegar via oral gavage on a daily basis. The experimental groups included rats treated with pasteurized vinegar (HVP), ultrasound-treated rats (HVU), and an untreated group that received regular vinegar (HVN) at two different dosage levels (0.5 and 1 mL/kg). The SOD, MDA, and CAT antioxidant levels were measured using the ELISA method in plasma and liver tissue samples. The total plasma cholesterol, triglyceride, HDL, LDL, AST, and ALT values were quantified using commercially available kits. The levels of SOD and CAT in the plasma and liver were found to be significantly higher in the HVU1 group compared to all other groups. Furthermore, the HVU1 cohort exhibited the highest HDL value in plasma. The plasma LDL levels were comparably low in both the thermal-pasteurized and ultrasound-treated groups. There were significant expressions of both CAT and SOD in the liver tissues of the HVU groups (analyzed immunohistochemically). These results indicated that hawthorn vinegar administration with 1 mL/kg in group HVU1 could significantly enhance antioxidant capacity in the liver and, consequently, overall health. It can be suggested that the possible therapeutic effects of hawthorn vinegar may boost its antioxidant capabilities and contribute to an overall improvement in quality of life.