Yazar "Serdaroglu, Goncaguel" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A novel series of tetrahydrothieno[2,3-c]pyridin-2-yl derivatives: fluorescence spectroscopy and BSA binding, ADMET properties, molecular docking, and DFT studies(Royal Soc Chemistry, 2023) Serdaroglu, Goncaguel; Uludag, Nesimi; Ustun, Elvan; Colak, NakiIn this study, a series of substituted tetrahydrothieno[2,3-c]pyridin-2-yl (THTP) derivatives, i.e., C1-C3 and N1-N3, was synthesized in one step using 2-amino-5,5,7,7-tetramethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carbonitrile with two different adjacent chloro- and nitro-substituted groups. Specifically, with a nitrile group on the thiophene structure, six new THTP (C1-C3 and N1-N3)-bearing electron-donating-electron-withdrawing moieties were designed with various pharmacological properties. For the first time in the literature, the synthesis of these target pharmaceutical products was carried out in less steps with high efficiency. Specifically, the notable features of this protocol are its simplicity and high reaction yields. Furthermore, spectroscopic methods were used to verify the structures of all the synthesized compounds (FT-IR, UV, H-1 NMR, and C-13 NMR). Additionally, the binding properties of the molecules with serum albumin were analyzed as a function of concentration and temperature and in the presence of Mg2+, Zn2+, and Ca2+. Moreover, molecular docking calculations were performed against bovine serum albumin, human leukemia inhibitory factor, and DNA. Also, DFT and TD-DFT computational studies were performed at the B3LYP/6-311G** level for structural and spectroscopic confirmation of compounds C1-C3 and N1-N3, and their possible reactivity features were evaluated via FMO frontier molecular orbital and NBO natural bond orbital analyses. Further, their physicochemical properties such as lipophilicity and water solubility, in addition to ADMET properties were estimated and evaluated. Considering the results obtained from the experiments and computations, it is hoped that this work will be a useful guide for future research on drug design.Öğe Advancing Pyrrole Synthesis through DDQ Catalysis: A Comprehensive Research Incorporating DFT, ADMT, and Molecular Docking Analysis(Wiley-V C H Verlag Gmbh, 2024) Serdaroglu, Goncaguel; Uludag, Nesimi; Uestuen, ElvanThe construction of pyrroles is an important heterocyclic group comprising many compounds with interesting properties that have led to numerous applications in various fields. We delineate a new synthetic method for the rapid construction of tree-substituted pyrroles from readily available ketoximes as starting materials and also a new mechanism and method has been proposed. It is presented that substituted pyrroles were efficiently synthesized in high yields (up to 81 % yield) through the cyclization reaction of starting ketoximes mediated by 2,3-dichlor-5,6-dicyanobenzoquinone (DDQ). Utilizing this protocol various pyrrole derivatives were synthesized from diethyl acetylene dicarboxylate (DEAD). We then developed the dehydrogenation reaction mechanism of this formation, also studied in detail, also all synthesized compounds were analyzed in detail by spectroscopic techniques (FT-IR, 1H NMR, 13CNMR) which were compared with the computational data estimated at B3LYP/6-311G** level. The thermochemical and electronic properties of the pyrroles were evaluated after optimizing and then confirming the equilibrium structures. ADMT scores were also considered to estimate/elucidate the possible bioavailability tendencies as well as the toxicity. In addition, the interactions of the optimized molecules were evaluated by molecular docking methods against BSA Bovine Serum Albumin and LIF Leukemia Inhibitory Factor. The results obtained from this study will ideally provide a fundamental source in contemporary drug design in terms of both the key electronic properties underlying the possible reactivity features and toxicity. The pyrrole compounds were synthesized and characterized by spectroscopic tools (FT-IR, NMR). The DFT computations were performed to predict possible reactivity directions and sites. The ADMT (Absorption distribution, metabolism, and toxicity) features were calculated to evaluate the possible pharmacokinetics and bioavailability as well as the harmful effect in both medicinal and environmental respects. The molecular Docking studies were applied to compounds.image