Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Rizzo, Luigi" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Antibiotic resistance genes in treated wastewater and in the receiving water bodies: A pan-European survey of urban settings
    (Pergamon-Elsevier Science Ltd, 2019) Cacace, Damiano; Fatta-Kassinos, Despo; Manaia, Celia M.; Cytryn, Eddie; Kreuzinger, Norbert; Rizzo, Luigi; Berendonk, Thomas U.; Meriç, Süreyya; Özkal, Can Burak
    There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified bla(OXA-58) as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water. (C) 2019 The Authors. Published by Elsevier Ltd.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment
    (Elsevier Science Sa, 2017) Ata, Reyhan; Sacco, Olga; Vaiano, Vincenzo; Rizzo, Luigi; Töre, Günay Yıldız; Sannino, Diana
    The photocatalytic activity of N-doped TiO2 particles supported on polystyrene (PS) surface by using a solvent-cast method at ambient temperature was evaluated on methylene blue (MB) dye decolourization. Subsequently, the effect of the new photocatalyst was evaluated in the inactivation of an antibiotic resistant (AR) Escherichia coli (E. coli) strain selected from the effluent of the biological process of an urban wastewater treatment plant. N-doped TiO2 particles supported on PS were characterized by UV vis DRS reflectance and Laser Raman spectra measurements. The results of photocatalytic tests with MB water solutions showed that MB can be successfully degraded (83-100%) under visible light after 180 min of irradiation. The system was also effective in the phenol photocatalytic degradation. Moreover, photocatalytic process effectively inactivated AR E. coil strain which was reduced by 97% after 30 min treatment. The developed preparation method could be a promising simple and low cost procedure for preparing immobilized photocatalysts for large scale commercial applications to wastewater treatment under direct solar light. (C) 2017 Elsevier B.V. All rights reserved.

| Tekirdağ Namık KemalÜniversitesi | Kütüphane | Açık Bilim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Namık Kemal Üniversitesi, Tekirdağ, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim