Yazar "Palangi, Valiollah" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters(Mdpi, 2023) Sezmis, Gurkan; Kaya, Adem; Kaya, Hatice; Macit, Muhlis; Erten, Kadir; Palangi, Valiollah; Lackner, MaximilianThe chemical composition, in vitro total gas and CH4 production and performance of cattle fed on factory black tea waste (Camellia sinensis) (BTW), alfalfa (Medicago Sativa), sainfoin (Onobrychis sativa) and white clover (Trifolium repens) was investigated. The gas production was quantified at the 24th hour of the incubation process. BTW was found to vary from roughages in chemical composition (p < 0.05). In addition, the roughages differed in terms of nutrient composition and gas production (p < 0.05). In legume roughages, acetic acid (AA), propionic acid (PA), butyric acid (BA), and total volatile fatty acids (TVFA) values ranged from 52.36-57.00 mmol/L, 13.46-17.20 mmol/L, 9.79-12.43 mmol/L, and 79.71-89.05 mmol/L, respectively. In comparison with black tea waste, legume roughages had higher values of AA, PA, BA, and TVFA. Black tea waste contained a higher acetic acid ratio than legume roughages when compared as a percentage. There was a similar ratio of propionic acid to the rate calculated for sainfoin (Onobrychis sativa) and clover (Trifolium repens), and a similar ratio of butyric acid to the ratio determined for alfalfa (Medicago Sativa). The current study shows that the 5.7-6.3% tannin content of black tea waste can be used in ruminant rations with high-quality roughages. Due to the fact that BTW reduces methane emissions from ruminants and eliminates energy waste from them, the environment can be improved. To obtain more reliable results, further animal feeding experiments on legume roughages and BTW are required.Öğe Greenhouse Gas Emission Reduction Potential of Lavender Meal and Essential Oil for Dairy Cows(Mdpi, 2023) Coşkuntuna, Levend; Lackner, Maximilian; Erten, Kadir; Gül, Sevilay; Palangi, Valiollah; Koç, Fisun; Esen, SelimThis research aims to evaluate the potential of lavender meal (LM) and lavender essential oil (LEO) to mitigate methane emissions by dairy cows. Locally grown lavender was collected fresh for this purpose, and its oil was extracted using the cold-press method. The resultant LEO and LM and whole lavender (WL) were added to dairy cow concentrate feed at 0%, 0.05%, and 0.10%, and their effects on vitro gas production values and gas concentrations were subsequently assessed. Out of the 30 bioactive compounds isolated from LEO, linalool and linalyl acetate were the most common-accounting for 70.4% of the total. The lavender dose had a significant influence on gas production for up to 12 h. No significant variations were found across the lavender forms when gas kinetics, in vitro degradability, and predicted energy values were compared. The addition of WL to the concentrate feed of dairy cows produced the greatest quantities of methane, carbon dioxide, and hydrogen sulfide, whereas LEO resulted in the lowest values. In contrast, no significant difference in ammonia content was found across the various lavender forms added into dairy cow concentrate feed. The results of this research suggest that adding 0.05-0.10% LM and LEO to concentrate feed may decrease greenhouse gas emissions from dairy cows.Öğe Infrared Thermography Assessment of Aerobic Stability of a Total Mixed Ration: An Innovative Approach to Evaluating Dairy Cow Feed(Mdpi, 2023) Turkgeldi, Burak; Koc, Fisun; Lackner, Maximilian; Okuyucu, Berrin; Okur, Ersen; Palangi, Valiollah; Esen, SelimSimple Summary An investigation of poor aerobic stability in high-moisture total mixed rations (TMRs) for livestock feed was conducted in this study. TMR quality factors were discovered, and prospective approaches to increase its fermentation properties and overall stability were investigated. Using infrared thermography (IRT) measurements, it was suggested that dairy cow feeding methods can be optimized in the field by identifying portions with a higher center temperature and maximum temperature difference values. According to the findings, there is a significant potential for IRT to be used in feed management and preservation processes in the future, resulting in higher levels of productivity for livestock. A major objective of this study is to identify factors influencing the quality of high-moisture total mixed rations (TMRs) for livestock feed and explore possible manipulations that can enhance their fermentation characteristics and stability in order to address the problem of poor aerobic stability. Therefore, the current study utilized infrared thermography (IRT) to assess the aerobic stability of water-added TMRs in the feed bunker. By manipulating the moisture content of freshly prepared TMRs at four different levels through water addition and subjecting it to storage at two consistent temperatures, significant correlations between IRT values (center temperature (CT) and maximum temperature difference (MTD)) and key parameters such as lactic acid bacteria, water-soluble carbohydrates, and TMR pH were established. The first and second principal components together accounted for 44.3% of the variation, with the first component's load influenced by IRT parameters, fermentation characteristics, and air exposure times, while the second component's load was influenced by dry matter content and lactic acid concentration. The results of these studies indicate the possibility that feeding methods can be optimized by identifying portions with higher CT or MTD data using IRT measurements just before feeding dairy cows in the field. As a result, increasing the use of IRT in feed management and preservation processes is projected to have a positive impact on animal productivity in the future.Öğe Lentilactobacillus buchneri Preactivation Affects the Mitigation of Methane Emission in Corn Silage Treated with or without Urea(Mdpi, 2022) Bağcık, Caner; Koç, Fisun; Erten, Kadir; Esen, Selim; Palangi, Valiollah; Lackner, MaximilianThe aim of this study was to investigate the effect of different forms of Lentilactobacillus buchneri on the in vitro methane production, fermentation characteristics, nutritional quality, and aerobic stability of corn silage treated with or without urea. The following treatments were applied prior to ensiling: (1) no urea treatment and LB; (2) no urea treatment+freeze dried LB; (3) no urea treatment+preactivated LB; (4) with urea treatment+no LB; (5) with urea treatment+freeze dried LB; (6) with urea treatment+preactivated. LB was applied at a rate of 3 x 10(8) cfu/kg on a fresh basis, while urea was applied at a rate of 1% on the basis of dry matter. Data measured at different time points were analyzed according to a completely randomized design, with a 2 x 3 x 5 factorial arrangement of treatments, while the others were analyzed with a 2 x 3 factorial arrangement. Preactivated LB was more effective than freeze-dried LB in reducing silage pH, ammonia nitrogen, cell-wall components, yeast count, and carbon dioxide production, as well as increasing lactic acid and residual water-soluble carbohydrate and aerobic stability (p < 0.0001). A significant reduction in the methane ratio was observed after 24 h and 48 h incubation with preactivated forms of LB (p < 0.001). The results indicated that preactivated LB combined with urea improved fermentation characteristics, nutritional quality, and aerobic stability and reduced the methane ratio of corn silages.