Yazar "Mutlu, Tuba" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe DNA repair and apoptosis: Roles in radiotherapy-related acute reactions in breast cancer patients(C M B Assoc, 2018) Batar, Bahadır; Mutlu, Tuba; Bostanci, Merve; Akın, Mustafa; Tuncdemir, Matem; Bese, Nuran; Güven, MehmetNormal tissue reactions are therapy limiting factor for the effectiveness of the radiotherapy in cancer patients. DNA repair and apoptosis are estimated to be critical players of adverse effects in response to radiotherapy. Our aim was to define the association of DNA repair (ERCC1 and XPC) and apoptotic (BCL2, CASP3 and NFKB1) gene expression, DNA damage levels, apoptosis changes and DNA repair gene variations with the risk of acute side effects in breast cancer patients. The study included 100 women with newly diagnosed breast cancer; an experimental case group (n=50) with acute side effects and the control group (n=50) without side effects. Gene expression was analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR). Micronucleus (MN) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) assays were performed to compare the DNA damage levels. Apoptosis was examined by TDT-mediated dUTP-biotin nick end-labeling (TUNEL) staining. ERCC1 rs3212986 and XPC rs3731055 polymorphisms were genotyped by real-time PCR technique. No significantly correlation of DNA repair and apoptosis gene expression and DNA damage levels with acute side effects in response to radiotherapy. Also, there was no association between apoptosis levels and acute effects. ERCC1 rs3212986 CC genotype showed a protective effect against radiotherapy-induced acute reactions (p<0.001; OR: 0.21; 95% CI=0.08-0.52). Our results suggest that apoptosis and DNA damage levels are not associated with acute radiosensitivity. DNA repair may affect the risk of acute reactions. Further studies are needed to validate the current findings.Öğe The role of TMPRSS6 gene variants in iron-related hematological parameters in Turkish patients with iron deficiency anemia(Elsevier Science Bv, 2018) Batar, Bahadır; Bavunoglu, Isil; Hacioglu, Yalçın; Cengiz, Mahir; Mutlu, Tuba; Yavuzer, Serap; Güven, MehmetTMPRSS6 gene mutations can result in iron deficiency anemia (IDA) and cause an increased iron-regulatory hormone, hepcidin, levels. TMPRSS6 encodes a serine protease, matriptase-2, which functions as negative regulatory protein of hepcidin transcription. Thus, TMPRSS6 variations might be risk factors for IDA. The aim of the study was to investigate the association of rs855791, rs4820268, rs5756506, rs2235324, rs2413450, rs2111833, rs228919, and rs733655 SNPs in TMPRSS6 gene with IDA susceptibility and iron-related clinical parameters. The study consisted of 150 IDA patients and 100 healthy controls. We analyzed the genotype distributions by using Real-Time polymerase chain reaction (Real-Time PCR) technique. We did not find any statistically differences for all SNPs between patients and controls (P > 0.05). In IDA patients, variations rs855791 and rs2413450 were associated with increased RBC (P = 0.03) and TIBC (P = 0.04), respectively. Also, increased of TIBC for rs4820268 (P < 0.05). On the other hand, in control group, rs5756506 was associated with two parameters, Hb (P = 0.02) and Hct (P = 0.03). We did not find markedly hepcidin levels in IDA patients compared to controls (P = 0.32). Our findings suggest that TMPRSS6 variations may not be risk factors for IDA. However, TMPRSS6 polymorphisms are associated with increased many iron-related hematological parameters.