A Research on Heterosis in Cultivated (*Triticum* spp.) × Semi-Wild Wheat Hybridization

H. Ulukan

University of Ankara, Faculty of Agriculture, Department of Field Crops, Ankara, Turkey

Direction and magnitude of mid-parent (MP) and high-parent (HP) heterosis were detected and estimated in 18 combinations, 180 F₁s and 150 F₂s for plant height (PH); spike length (SL); number of spike per plant (NS), number of spikelet per spike (NSP) and number of grain per spikelet (NG). For this, 9 females (7 commons *Triticum aestivum* (L.) Em. (Thell), P₅ = Aköz 867, P₇ = Köse 220/39, P₉ = Penjamo 62, P₁₀ = Sivas 111/33, P₁₁ = Sürak 1593/51, P₁₂ = Sertak 52 and P₁₃ = Yektay 406 and 2 durums (*Triticum durum* Desf., P₁ = Kunduru 414/44 and P₄ = Kunduru 1149) and 4 semi wild males (P₂ = *T. dicoccum.*, 2n = 28; P₃ = *T. carthlicum*; P₆ = *T. vavilovi* and P₈ = *T. spelta.*, 2n = 42) were hybridized. The MP was varied between – 33.1% (P₁₃×P₈) at the F₁ for the NG and 152.6% P₇ x P₈ at the F₂ for the NS; the HP was ranged between – 71.2% (P₇×P₈) at the F2 for the NG and 135.3% (P₇×P₈) at the F₁ for the NS. Heterosis effect was appeared mostly on the SL and PH; but fixed the highest on the NS and NSP in the each generation. The semi wilds were ordered as to be P₈>P₆>P₃>P₂. Statistically significant correlations were fixed between (MP-F₁) and traits; SL and PH traits were found have been impressed as to be more adventageous and stable.

Keywords: mid-parent heterosis, high-parent heterosis, genotypic diversity, parental selection

Kültür Buğdayı (*Triticum* spp.) × Yarı Yabani Buğday Melezlemesinde Heterosis Üzerine Bir Araştırma

Bitki boyu (PH), başak uzunluğu (SL), bitkide başak sayısı (NS), başakta başakçık sayısı (NSP) ve başakçıkta tane sayısı (NG) bakımından anaç ortalaması (MP) ile üstün anaç (HP) heterosisinin şiddeti ve yönü 18 kombinasyon, 180 F₁ ve 150 F₂ bitkisinde saptanmıştır. Bunun için, 9 ana (7 ekmeklik *Triticum aestivum* (L.) Em. (Thell), P₅ = Aköz 867, P₇ = Köse 220/39, P₉ = Penjamo 62, P₁₀ = Sivas 111/33, P₁₁ = Sürak 1593/51, P₁₂ = Sertak 52 and P₁₃ = Yektay 406 ve 2 makarnalık *Triticum durum* Desf., P₁ = Kunduru 414/44, P₄ = Kunduru 1149) ile 4 yarı yabani baba (P₂ = *T. dicoccum.*, 2n = 28; P₃ = *T. carthlicum*; P₆ = *T. vavilovi* and P₈ = *T. spelta.*, 2n = 42) anaç melezlenmiştir. MP; % –94.1 [F₂ de NS için P₅×P₃] ile % 87.3 [F₁'de NG için (P₁₃×P₆]; HP ise % –85.6 [F₂'de NG için P₁₀×P₈] ile % 185.6 [F₁'de NS için P₇×P₈] arasında; çoğunlukla SL ve PH'de ortaya çıkmış; ancak, en yüksek değerler NS ile NSP'nin F₁ ve F₂'nde saptanmış; yarı yabaniler ise P₈>P₆>P₃>P₂ şeklinde sıralanmışlardır. NG dışındaki diğer özelliklerle (MP-F₁) arasında istatistiksel olarak önemli korelasyonlar saptanmış; SL ve PH'nın daha avantajlı ve kararlı olduğu izlenimi edinilmiştir.

Anahtar kelimeler: anaç ortalaması heterosis, üstün anaç heteosisi, genotipik farklılık, anaç seçimi.

Introduction

"Wheat heterosis" has long been recognized and it was first time used by Briggle, (1963). The utilization of heterosis depends mainly upon the direction and magnitude of heterosis (Agnus, 1977). Estimation of the MP and HP may be useful in identifying true heterotic crosses (Singh et al. 2004). These parameters may be a useful indicator in predicting the breeding value in any wheat breeding program. It also provides information about combining ability of the parents and their usefulness in breeding programs (Sharma et al. 1986). The use of MP as a predictor mean F_1 was suggested earlier owing to its simple assessment and because of reliable information about the line breeding programs. Thus, estimates of MP and HP as well as mean of the F_1 relative to the control can be considered encouraging for large-scale development and global acceptance of hybrid wheats. The choice of parental combinations yielding superior hybrids is the most important aspect in hybrid wheat breeding. So, analysis of the relative importance of general combination ability (GCA) and special combination ability (SCA) provides knowledge of the type of gene action involved in the expression of traits and it allows about optimum allocation inferences of resources in hybrid breeding. Combining abilities (GCA and SCA) need to be tested to select the best parents for the process of hybrid wheat seed production. They are connected both with extension of breeding programmes and high costs. Commercially exploitable yield advantages of hybrids will also depend on the HP and on advances in line development, where considerable progress can be expected in the future. To select potential parents for hybrid production, testcrosses in various environments are required because SCA variance is one of the component (Oettler et al. 2003). main Additionaly, the tight correlations of GCA suggest that the probability of obtaining superior hybrids is greater when crossing the highest yielding parents. Thus, hybrid wheat breeding should be respectively efficient based only on selection for parental performance and a respectively small number of testcrosses involving outstanding parental lines. However, despite useful predictions of the combinations abilities, it is not possible to find out when used the semi wilds or/and wild wheats as parents (Walton, 1971) due to their responses of unstabilities and changabilities. In spite of numerous and different heterosis findings were reported for heading date, plant height and weight, 1000-kernel weight, number of spike and spikelet and grain yield (Briggle, 1963; Knott, 1965; Fonseca and Patterson, 1968; Shamsuddin, 1985; Sharma and Gill, 1986; Cox and Murphy, 1990; Cregan and Bush, 1992; Picket, 1993; Larik et al. 1995; Khan and Khan, 1996; Picket and Galway, 1997; Morgan, 1998; Prasad et al. 1998; Rajaram, 2000; Bashir, 2002; Singh et al. 2004; Dreisigacker et al. 2005). There are no scientific information or literature findings on the cultivated × semi wild wheats. On the other hand, hybridization among the parents at the different ploidy level always gave interesting results in plant breeding. Especially, using or applicate these results can be bring new possibilites to the plant production, especially in wheat breeding. Aims of this paper are i) to provide and observe of the heterotic information in the combinations and progenies, *ii*) to detect and estimate of its

direction and magnitude, *iii*) to assessment of the heterotic effect in terms of the male parents.

Material and Methods

9 females (7 common Triticum aestivum (L.) Em. Thell), 2n = 42; $P_5 = Ak\ddot{o}z \ 867$; $P_7 = K\ddot{o}se$ 220/39; P_9 = Penjamo 62; P_{10} = Sivas 111/33; $P_{11} = S \ddot{u} rak 1593/51; P_{12} = Sertak 52; and P_{13} =$ Yektay 406 and 2 durum Triticum durum Desf., $2n = 28; P_1 = Kunduru 414/44$ and $P_4 =$ Kunduru 1149) and 4 semi wild males ($P_2 = T$. dicoccum, 2n = 28; $P_3 = T$. carthlicum; $P_6 = T$. vavilovii and $P_8 = T$. spelta, 2n = 42) were hybridized in all possible combinations without reciprocals and derived 18 combinations, 180 F_1s and (due to the non-seed setting) 150 F_2s . They were grown in a randomized completely block design (RCBD) with four replications under field conditions at the University of Ankara, Faculty of Agriculture, Department of Field Crops, Experimental field during 1992/1995 in Ankara, Turkey. Males were chosen according to their differences in origin, adaptability and some dominance agromorphological characteristics such as long spike, spikelet number (Zencirci and Kün, 1996). All parents were provided from the Prof. Dr. Osman Tosun Germplasm Maintaining Bank, University of Ankara, Faculty of Agriculture, Department of Field Crops, Ankara, Turkey. Soil characteristics of the experimental site are clay structure, dark brown, pH = 5.7, lime 23.7%, organic matter 1.33% and changeable potassium level is 0.028% (Anonymous, 1999). Average temperature, rainfall and relative humidity parameters during the growing seasons are presented in Table 1. The experimental plots were designed as to be five rows of 2 m in length with the distance between rows was 20 cm and on rows was 1-2 cm. Sowing procedure was done at the density of 250 seeds/ m^2 in the beginning of October 10 competetive plants from the parents, F_1s and F_2s randomly selected for the observations on five agronomic characters on the basis of mean each plots as follows: PH-in cm: (measuring between the soil surface and tip of the terminal spikelet, excluding awns, on the main culm); SL-in cm (from the base of ear to the tip of terminal spikelet, excluding awns, on the main culm); NS-no (counting of the total spike number for each plant); NSP-no (fixed by the manually counting of the total spikelet number on five randomly chosen spikes-no) and NG (mechanically harvested and balanced). The mean of the each plot was subjected to the analysis of statistical analysis, variance (ANOVA) with the MSTAT-C Statistical Software (1998) and new multiple range tests which were performed among the means as described by (Duncan, 1955). In addition, increasing (+) and decreasing (-) percentages of the MP and HP percentages were calculated as the deviation of F_1 's value according to given formulae (Matzinger et al. 1962; Fonseca and Patterson, 1968):

[1] MP (%) = $100 \times (F_1 - MP) / MP$

[2] HP (%) = $100 \times (F_1 - HP) / HP$

Where, F_1 = mean value of the trait in the hybrid, MP = mean of the two parents = (P₁+P₂) / 2; and HP = mean value of the trait in the better or high parent and calculated the heterosis values from this formulae were presented in Table 4 and 5. In addition, all obtained data were summarized as heterotic effect (+: significant or -: non significant) according to the female and male parents, and the combinations in terms of the examined traits as the MP and HP in the F₁ and F₂ in Table 6.

Results

A perusal of analysis of variance indicated significant heterotic differences among the parents, combinations and the progenies for all the investigated and obtained results were presented at the Table 2 to 6.

Heterosis for the parents: P₇ was showed the significant and negative MP for the PH at the F_1 and the significant and positive for the NSP at the F_2 . Similarly, P_{11} for the SL at the F_2 , P_4 for the NSP at the F_1 , and P_{13} for the NG at the F_1 were also expressed the significant and positive MP; however, P_7 was displayed the significant HP for the NS at the F_1 and F_2 , and the NSP at the F_2 (Table 2, 3 and 6). P_{13} and P_4 were also showed the statistically significant HP for the NG at the F₁ and for the NS, respectively (Table 6). Out of nine female parents, P₁₃, P₁₁, P₇, P₄ were showed the statistifically significant and positive MP; and, P₁₃, P₇, P₄, were exhibited HP. From them, P_{11} and P_7 were effective on the PH and NS at the F_1 and F_2 , P_{13} , P_9 and P_4 have also been maximized of the SL, NG and NSP (Table 6). These results are agreement with Shamsuddin, (1990) and Sharma et al.(1984). Common wheats much more affected and contributed the heterosis and dry matter yield within the parents in this research.

Heterosis for the semi wilds: P_8 was exhibited the significant and negative MP heterosis for the PH at the F_1 (Table 6). In spite of P_3 and P_6 (for the NSP at the F_1 and F_2), they were also expressed the significant and positive MP (Table 6). But, P_8 was displayed the significant and positive HP for the NS and NG at the F_1 and the F_2 , respectively (Table 6). Similarly, P_6 has shown the significant and positive HP for the NSP at the F_2 and for the NG at F_1 (Table 6). P_3 had also a significant HP for the NSP at the F_1 (Table 6). Semi wilds were showed three distinc groups for the contribution in terms of heterotic effect according to examined agro-morphological traits in this research such as *i*) P_6 for the NG at the F_1 and F_2 , *ii*) P_3 for the PH and NSP at the F_1 and *iii*) P_8 for the SL at the F_1 and for the NS at the F_1 and F_2 (Table 6). In addition, it was seen that P₆ and P₈ are common participatory female parents for the all traits (Table 6).

Heterosis for the combinations: In the research, seven combinations; namely, $P_{10} \times P_6$ for the PH; $P_9 \times P_6$, $P_{11} \times P_3$ and $P_{11} \times P_6$ for the SL; $P_{10} \times P_6$, $P_7 \times P_6$ for the NSP and $P_1 \times P_3$ for the NG were showed the statistically significant and positive MP; two combinations $P_7 \times P_8$ for the NS and $P_7 \times P_6$ for the NSP were displayed the statistically significant and positive HP (Table 2, 3 and 6). All examined traits were exhibited the significant and positive MP but two combinations ($P_7 \times P_8$ and $P_7 \times P_6$) were showed the significant and negative HP for the NS and NSP (Table 2, 3 and 6). Only, $P_4 \times P_3$ showed both significant and positive MP and HP at the F_1 and F_2 for the SL (Table 6).

Heterosis for the examined traits: Mean values were found significantly for the all traits except for NS, SL and NG (Table 2, 3 and 6). The MP and HP mean values were varied for the PH, -26.6 to 16.3% for F₁ and 28.0 to -11.8% for F₂; 28.1 to -13.4% for F₁ and 12.8 to -19.3% for F₂, respectively (Table 2 and 3). For the SL, 51.8 to 29.4% and 65.5 to -66.7% for F₁; 32.3 to -49.7% and 42.3 to -62.0% for F₁, relatively (Table 2 and 3). For the NS, 152.6 to -21.4% for F₁ and 148.4 and -47.6% for F₂, respectively (Table 2 and 3). For the NSP, 20.0 to -9.2% for F₁ 91.6 to -8.4% for F₂,

respectively; 18.3 to -23.0% for F_1 and 54.3 to -73.6% for F₂, respectively (Table 2 and 3) . For the NG, 69.0 to -33.1% for F₁ and 86.3 to -45.9% for F₂, respectively; 44.0 to -50.3% for F_1 and 2.4 to -58.3% for F_2 , respectively (Table 2 and 3). Prasad et al. (1998) were found the maximum positively HP heterosis for the NS and NG between -25.1 to 16.9 %; for the SL -33.0 to 26.7%, respectively. between Individually, all observed heterosis the MP and HP evolution can be summarized as follows according to examined agro-morphological traits and combinations (Table 2,3 and 6):

Plant height (PH): Maximum and minimum values with standardized deviations are 90.40 \pm 0.42 cm $P_7 \times P_8$ and 120.10 \pm 0.28 cm $P_{11} \times P_3$ at the F₁; 92.80±0.26 cm $P_{12} \times P_8$ and 137.84 \pm 0.78 cm P₁₁×P₆ at the F₂ (Table 2 and 3). The MP was varied between -26.6 $P_{12} \times P_8$ at the F_1 to 20.8% $P_4 \times P_2$ at the F_2 (Table 2 and 3). For the HP it was realized between -28.2 $P_{12} \times P_8$ at the F₁ to 11.9% P₉×P₆ at the F₁ (Table 2 and 3). Totally the 33 MP (15 positive, 3 negative at the F_1 and 11 positive, 4 negative at the F_2) and the 33 HP (13 positive, 5 negative at the F_1 and 5 positive, 10 negative at the F_2) were recorded (Table 4). Brown et al. (1966) were informed 105.0% MP and 101.0% HP at the F_1 ; Amaya et al. (1972) were determined the MP and HP between 6.3 to 3.5% at the F_1 and 5.1 to 0.7% at the F_2 , respectively; Güler and Özgen, (1994) were obtained the MP and HP between -7.0 to 6.0% and -12.0 to -2.0% at the F₁, respectively; Sun et al. (1999) were reported the MP is 11.0% and the HP is 0.3% at the F_1 ; Luo et al. (2000) were recorded them (13.0 to 1.3%) for the MP at the F_1 and (3.3 to 0.3%) for HP at the F₂. Halloran, (1975) recorded variable heterosis of 10 to 82.0% over the MP and the HP. He was added that heterosis rarely exceed 1.0% of the MP in the PH. Larik et al. (1995) were reported that heterosis values for this trait were ranged from 0.9 to -9.2% to the MP and -1.3 to -14.6% for the HP. Bashir (2002) was estimated as 15.11% over the MP and 0.21% over the HP.

Spike length (SL): Minimum and maximum mean values with the standardized deviations are observed as 7.20 ± 0.65 cm $P_1 \times P_3$ and 13.1 ± 1.82 cm $P_{13} \times P_8$ at the F_1 while 5.08 ± 0.87 cm $P_5 \times P_3$ and 15.78 ± 1.47 cm $P_{11} \times P_6$ at the F_2 (Table 2 and 3). The MP ranged between -49.5 $P_{12} \times P_8$ at the F_2 to 51.8% $P_7 \times P_6$ at the F_1 and HP varied between -62.0 $P_{12} \times P_8$ to 150.0% $P_7 \times P_8$ at the F_2 (Table 2 and 3). Totally the 33 MP (14 positive, 4 negative in the F_1 and 5 positive, 10 negative at the F_2) and the 33 HP (8 positive, 10 negative at the F_1 and 7 positive, 8 negative at the F_2) were fixed (Table 4). Gyawali et al. (1968) obtained heterosis ratios for the MP and HP that lied between -1.0 to 18.0% at the F_1 and between -3.0 to 17.0% at F_1 , respectively. In general, obtained results are in accordance with those obtained by Singh, (1978) who reported 10% increase over the MP for the SL. It is possible to develop new wheat cultivars or hybrid combinations having long spike but dwarf PH (Li et al. 1997).

Number of spike per plant (NS): For this trait, mean values with the standardized deviations were found as $3.3\pm1.17 P_4 \times P_3$ and $12.0\pm3.19 P_7 \times P_8$ at the F₁; $2.2\pm0.86 P_5 \times P_3$ and 11.8±0.11 $P_7 \times P_8$ at the F_2 (Table 2 and 3). The MP and the HP were varied between -96.6 $P_5 \times P_6$ at the F_2 to 84.0% $P_1 \times P_3$ at the F_1 and 67.3 $P_5 \times P_6$ to 185.6% $P_7 \times P_8$ at the F_2 (Table 2 and 3). Totally, the 33 MP (16 positive, 2 negative in the F_1 and 7 positive, 8 negative at the F_2) and the 33 HP (7 positive, 11 negative at the F_1 and 5 positive, 10 negative at the F_2) were fixed (Table 4). Fonseca and Patterson (1968) were reported for MP between 93.0 to 119.0% and 90.0 to 110.0% at the F₁. Winzeler et al. (1994) were determined the HP between -2.37 to 2.22% at the F_1 ; Gyawali et al. (1968) were obtained the MP and HP estimates between -40.0 to -21.0% and -48.0 to -23.0% at the F_1 , respectively. Similar results have been reported and confirmed by Chakraborty and Tiwari, (1995) and Larik et al. (1987) and Larik et al. (1995) for the NS.

Number of spikelets per spike (NSP): Minimum and maximum values with the standardized deviations for the number of spikelets are 17.9 \pm 0.59 P₁₀×P₈ and 22.2 \pm 0.93 $P_7 \times P_6$ at the F_1 while 18.6±0.17 $P_{13} \times P_8$ and $36.6\pm 2.09 P_7 \times P_6$ at the F₂ (Table 2 and 3). The MP was ranged between -57.4 $P_5 \times P_3$ at the F_1 to 93.7% $P_5 \times P_6$ at the F_2 ; and the HP was varied between -57.5 $P_5 \times P_3$ at F_1 and 71.0% $P_7 \times P_6$ at the F_2 (Table 2 and 3). Totally, the 33 MP (15 positive, 3 negative at the F_1 and 13 positive, 2 negative at the F_2) and the 33 HP (11 positive, 7 negative and 12 positive, 3 negative at the F_2) were obtained (Table 4). Fonseca and Patterson, (1968) determined the MP and HP values between 1.1 at the F_1 to 0.8% at the F_2 and 3.7 at the F_1 and 4.3% at F_2 for this trait, respectively. Obtained findings were supported and confirmed by Singh et al. (2004); but not Prasad et al. (1972) who did not find any significant amount of the HP in the combinations. The NSP proved to be an important trait and may explain the superiority of the hybrids over the traditional varieties.

Number of grain per spikelet (NG): This trait is the most important yield determinant of wheat (Sinclair and Jamieson, 2006) and it products of plants per m², ears per plant and grains per spike. The overall means with the standardized deviations of the crosses were varied between 27.4 \pm 0.28 P₁₂×P₈ to 50.8 \pm 0.66 $P_9 \times P_6$ at the F_1 and 14.4 ± 0.20 $P_{11} \times P_8$ to 59.6 \pm 0.79 P₁₁×P₆ at the F₂ (Table 2 and 3). The MP was varied between -25.0 $P_{13} \times P_8$ to 87.3% $P_{13} \times P_6$ only at the F_1 ; and the HP was ranged between -85.6 $P_{10} \times P_6$ at the F_2 and 50.3% $P_{12} \times P_6$ at the F₁ (Table 2 and 3). Totally, the 33 MP (15 positive, 3 negative at the F_1 and 13 positive, 8 negative at the F_2) and the 34 HP (8 positive, 10 negative at the F_1 and 4 positive, 12 negative at the F_2) were fixed (Table 4). These results were in accordance with Garcia et al. (1991) who reported MP is 4.0% in the F_1 and 4.3% in the F_2 and HP is 4.3% in the F_1 and 7.3% in the F₂.

Correlation coefficients: The highest positive significant correlation coefficient was found between (MP-F₂) and NS, (r=0.570) and the lowest positive significant correlation coefficient was found between (P_2-F_1) and NS, (r=0.380). Four negative but non significant coefficients were found among (P_1-F_1) and NG, $(r=-0.126); (P_1-F_2) \text{ and } NG, (r=-0.050); (P_2-F_2)$ and NS, (r=-0.250) and $(HP-F_1)$ and NG, (r=-0.250)0.160). Among (P_1-F_1) and SL, (r=0.495, p>0.01; (P₁-F₁) and NSP, (r=0.500, p>0.01); (P_2-F_2) and NSP, (r=0.200, p>0.01); (MP-F_1) and PH, (r=0.450, p>0.01); (MP-F₁) and SL, (r=0.570, p>0.01); (MP-F₁) and NS, (r=0.550, p=0.01);p>0.01; (MP-F₁) and NSP, (r=0.540, p>0.01); $(MP-F_2)$ and NS, (r=0.625, p>0.01); $(MP-F_2)$ and NG, (r=0.125, p>0.05) and (HP- F_1) and NS, (r=0.450, p>0.01); (HP-F₂) and NSP, (r=0,380, p>0.01); (HP-F₂) and NG, (r=0.150, p>0.05) (Table 5). These correlations verified and supported to our research results. In the light of these findings, it can be suggested that always the MP must be preferred and for the NS and NG (for both F_1 and F_2). Bai et al.

(1992) and Zhang et al. (1985) are being supported this judgment with their research findings. Similarly, Shamsuddin, (1985) was done the identical studies and he was reported the similar significant and positive associations among the investigated various morphological, genetical and agronomic characters in his study with 20 winter and spring wheat hybrids (r=0.460 and r=0.450, respectively; Kaltsikes and Larter, (1970) were also found a significant and positive correlation between the PH and yield in wheat.

Discussion

Female and male parents can be ordered according to their heterotic effect (heterosis) from the maximum minumum to as $P_4 > P_7 > P_{10} > P_5 > P_9 > P_{13} > P_{11} > P_{12} > P_1$ and $P_3 > P_6 > P_8 > P_2$, respectively in this research (Table 6). P_6 and P_8 are the common participitory female parents for the traits. Highest significant and positive MP was taken from the $P_7 \times P_8$ for the NS at the F₁ with 152.6% and for HP was also taken from the same combiniton with 135.3% for the NS at the F_1 (Table 4). It may have been the result of interaction between the parental cytoplasm (genotypic diversity) and applied agronomic practices or environmental effects. It was seen that the more genetic diversity the more and violently MP. This testimony was observed and verified by Shamsuddin, (1985). Semi wilds showed less heterosis than the cultivars; but much more affected from the PH for the MP and SL for the HP; however, not at the F_1 and F₂. According to data, it can be suggested that only MP values must be used without paying the attention for the F_1 or F_2 to be able to get a higher hybrid wheat yield. This case also been reported by Briggle, 1967; Singh and Singh, 1971; Krishna and Ahmad, 1992; Picket, 1993; Sinclair and Jamieson, 2006). On the other hand, it showed that the gene pool of spelt wheat (P₈) could be potentially useful for the selection of parents for the hybrid wheat production. This result verified by Winzeler et al. 1993). But, there are several problems that to be solved and needs to be more improved so despite the very high heterosis effect no short statued varieties exist at the present, close and hard, tightness of the glumes pollination or pollination easly could be hamperring if used as a pollinator. However, a breeding effort to

select for improved parents within the gene pool of spelt appears useful for future F₁ hybrids between spelt and wheat. These findings can be applied to the hybrid wheat breeding as a cultivars x semi wild wheats. First of all, plant height traits can be shortened with the heterotic effect of this type hybridization. Obtained reslts research showed that to be able to get maximum level of heterosis is possible only for MP at the level of F_1 . If this process continue to the out of this limits (esp. for HP at the F_1 or F_2) yield level is being celarly decreased ! On the other hand, with their genetical backgrounds or by genepools semiwild wheats can be use against to stress conditions such as disease and pest resistance.

References

- Agnus, J.W. 1997. Hybrid Wheat—A Dream or Reality ?. Aspects Appl. Biol. 50:15–22.
- Amaya A.A., R.H. Bush and K.L. Lebsock, 1972. Estimates of Genetic Effects of Heading Date Plant Height and Grain Yield in Durum Wheat. Crop Sci., 12:478-481.
- Anonymous, 1999. Soil Analysis Report. Department of Soil Science Laboratories, University of Ankara, Faculty of Agriculture, Ankara, Turkey.
- Bai N.R., Devika R., Regina, A. and Joseph, C.A. 1992 Correlation of Yield and Yield Components in Medium Duration Rice Cultivars. Environ. Ecol., 10:469-470.
- Bashir, A. 2002. Diallel Analysis of Yield and Yield Components in Triticum aestivum (l.) Em. Thell. Ph.D Thesis, India Agriculture University, 289 pp.
- Briggle, L.W. 1963. Heterosis in Wheat-A Review, Crop Sci., 3:407-412.
- Briggle, L.W., H.D. Petersen and R.M. Hayes, 1967. Performance of a Winter Wheat Hybrid, F2, F3 and Parent Varieties at Five Population Levels. Crop Sci., 7:485-490.
- Brown, C.M., O.R. Weiber, and R.D. Seif, R.D, 1966. Heterosis and Combining Ability in Bread Winter Wheat. Crop Sci., 6, 382-400.
- Chakraborty, S.K. and V. Tiwari, 1995. Heterosis in Bread Wheat. J. Res. Bisra Agric. Univ. 7:109– 111.
- Cox, T.S, and J.P. Murphy, 1990. The Effect of Parental Divergence on F2 Heterosis in Winter Wheat Crosses. Theor. Appl. Genet., 79:241-250.
- Cregan, P. B and Bush, R. H. 1992. Heterosis. Inbreeding and Line Performance in Crosses Adapted Spring Wheats, Crop Sci., 18: 247-251.

Similarly, with the addition of the modern biotechnological approaches apomixis might be hope to facilitate seed production; llinkage maps and DNA based molecular markers can be considered a promising tool to predict hybrid performance, at the same time it could be a powerful tool for the identification of genetically diversified sources such as wild or semi wild wheats in the long run.

Acknowledgement

The author thanks to the Mr. Aslan ÖKSEL, Ankara University, Agricultural Faculty, Department of Field Crops, Ankara, Turkey for his assistances to me during the research.

- Dreisigacker, S., A.E. Melchinger, P. Zhang, K. Ammar, C. Flachenecker, D. Hoisington and M.L. Warburton, 2005. Hybrid performance and heterosis in spring bread wheat, and their relations to SSR-based genetic distances and coefficients of parentage. Euphytica, 144:51–59.
- Duncan, B.D. 1955. Duncan's Multiple Range and Multiple F-Test. Biometrics, 11:1-42.
- Fonseca, A. and F.L. Patterson, 1968. Hybrid Vigor in Seven-Parent Diallel Cross in Winter Wheat (T. aestivum L.) Crop Sci., 2:85-88.
- Garcia, P., M.I. Morris, M.L.E. Saenz de., R.W. Allard., M. Perra de la Vega and G. Ladizinsky, 1991. Genetic Diversity and Adaptedness in Tetraploid Avena barbata and Its Diploid Ancestors Avena hirtula and Avena westii, Proc. of the Nat. Acad. of Sci. of USA, 1207-1211.
- Güler, M. and MÖzgen, 1994. Relationship Between Winter Durum Wheat (Triticum durum Desf.) Parents and Hybrids for Some Morphological and Agronomical Traits. Tr. J. Agric. and Forestry, 18:229-233.
- Gyawali, K.K., C.O. Qualset and W.W. Yamazaki, 1968. Estimates of Heterosis and Combining Ability in Bread Winter Wheat. Crop Sci., 8:322-324.
- Halloran, G.M. 1975. Genetic Analysis of Plant Height in Wheat. Theor. App. Genet., 45:368-375.
- Kaltsikes, P.J. and E.N. Larter, 1970. The interaction of genotype and environment in durum wheat, Euphytica, 19:236-242.
- Khan, M.A. and A.S. Khan, 1996. Heterosis Studies For Yield and Yield Components in Some Crosses of Bread Wheat (Triticum aestivum L.). Pakistan J. Agric. Sci., 33:66-68.

Krishna, R. and Z. Ahmad, 1992. Heterosis for Yield Components and Development Traits in Spring Wheat. Genetica (Beograd), 24:127-132.

Knott, D.R. 1965. Heterosis in Seven Wheat Hybrids. Canad. J. Plnt. Sci., 45:499-501.

Larik, S.A., H.M.I. Hafiz and A.M. Khushk, 1987. Estimation of Heterosis in Wheat Populations Derived from Intercultivarl Hybridization. WIS., 65:12-15.

Larik, S.A., R.A. Mahar and H.M.I. Hafiz, 1995. Heterosis and Combining Ability Estimates in Diallel Crosses of Six Cultivars of Spring Wheat. WIS., 80:12-19.

Li, Y., Peng, J. and Z. Liu, 1997. Heterosis and combining ability for plant height and its components in hybrid wheat with Triticum timopheevi cytoplasm, Euphytica, 95:337-345.

Luo M.C., Z.L. Yang and J. Dvorak, 2000. The Q Locus of Iranian and European Spelt Wheat. Theor. Appl. Genet., 100;602-606.

Matzinger, D.F., T.J. Mannand and C.C. Cockerham, 1962. Diallel Cross in Nicotiana tabacum. Crop Sci., 2:238-286.

Morgan, C.L. 1998. Mid-parent Advantage and Heterosis in F1 Hybrids of Wheat from Crosses Among Old and Modern Varieties. J. Agric. Sci., 130:287-295.

MSTAT-C. 1998. Michigan State University Statistical Software Manuel Handbook, East Lansing, MI 48824, Michigan

Oettler, G., H. Burger and E.A. Melchinger, 2003. Heterosis and Combining Ability for Grain Yield and Other Agronomic Traits in Winter Triticale. Plant Breeding, 122:318-321.

Pickett, A.A. 1993. Hybrid Wheat—Results and Problems. Advances in Plant Breeding, 15, Paul Parey Scientific Publishers, Berlin.

Pickett, A.A. and N.W. Galway, 1997. A Further Evaluation of Hybrid Wheat. Plant Varieties Seeds, 10:13–32.

Prasad, M.V.R. 1972. Studies on Induced Mutants with Reference to Species Relationships Some Tetraploid Triticums. Theor. Appl. Genet., 42:160-167.

Prasad, K.D., M.F. Haque and D.K. Ganguli, 1998. Heterosis Studies for Yield and Its Components in Bread Wheat (Triticum aestivum L. Indian J. Genet., 58:97-100.

Rajaram, S. 2000. International Wheat Breeding. Past and Present Achievements and Future Directions. Special Report 1017, 2000, Warren E. Kronstad Honarary Symposium. Shamsuddin, A.K.M. 1985. Genetic Diversity in Relation to Heterosis and Combining Ability in Spring Wheat. Theor. Appl. Genet., 70:306-308.

Shamsuddin, A.K.M. 1990. Gene Action and Selection Response for Grain Yield and Morpho-Physiological Yield Components in Spring wheat. Ph.D. Thesis, Bangladesh Agric. Univ., 250 pp., Mymensingh.

Sharma, S.K., R.K. Singh and M. Singh, 1984. Components of Heterosis for Harvest Index, Biological Yield and Grain Yield in Wheat. Indian J. Agric. Sci., 54:75-78.

Singh, K.B. and J.K. Singh, 1971. Potentialities of Heterosis Breeding in Wheat. Euphytica, 20:586-590.

Sharma, H.C. and B.S. Gill, 1986 Current Status of Wide Hybridization in Wheat. Euphytica, 32:17-31.

Sharma, S.K., I. Singh and K.P. Singh, 1986. Heterosis and Combining Ability in Wheat. Crop Imp., 13:101-103.

Sinclair, T.R. and P.D. Jamieson, 2006. Grain Number, Wheat Yield and Bottling Beer: An Analysis. Field Crops Research, 98:60-67.

Singh, D. 1978. On the Variety Cross Diallel Analysis of Gardner and Eberhart. Indian J. Genet., 38:115-118.

Singh, H., N. Sharma and R.S. Sain, 2004. Heterosis Studies for Yield and Its Components in Bread Wheat Over Environments. Hereditas, 141:106-114.

Sun, Q., Ni, Z., and Z. Liu, 1999. Differential Gene Expression Between Wheat Hybrids and Their Parental Inbreds in Seedling Leaves. Euphytica, 106:117–123.

Walton, P.D. 1971. Heterosis in Spring Wheat. Crop Sci., 1:422-424.

Winzeler, H., J.E. Schmid and M. Winzeler, 1994. Analysis of the Yield Potential and Yield Components of F1 and F2 Hybrids of Crosses Between Wheat (Triticum aestivum L.) and Spelt (Triticum spelta L.). Euphytica, 74: 211-218.

Zencirci, N and E. Kün, 1996. Variation in Landraces of Durum Wheat (T. turgidum L. convar. durum (Desf.) M.K.) From Turkey. Euphytica, 92: 333-339.

Zhang, A.M., J. Huang, M.L. Wang and T. Huang, 1985. The Relationships Between Genetic Distance of Quantitative Characters of Parents and Heterosis in Hybrid Wheat with Triticum timopheevii Cytoplasm. Acta Agriculturae Universitatis Pekinensis, 1:135–142.

Table 1. Meteorological data for 1992-1995 growing seasons (monthly average).

		Average	Temper	ature (°	C)		Ra	n)		Relative Humidity (%)							
			Years					Years			Years						
Months	1992	1993	1994	1995	LTA [§] 1926-92	1992	1993	1994	1995	LTA [§] 1926-92	1992	1993	1994	1995	LTA [§] 1926-92		
January	-4.0	-4.0	3.8	3.3	-0.1	4.9	28.8	30.2	33.6	40.9	76.5	79.5	75.5	33.6	78.0		
February	-3.0	-0.7	1.8	5.2	1.3	5.7	33.4	33.6	10.8	34.9	69.5	72.8	74.2	10.8	74.0		
March	3.9	5.7	6.8	6.7	5.4	50.3	22.4	18.4	92.6	35.6	70.1	61.3	60.1	92.6	65.0		
April	11.4	10.4	14.0	9.9	11.2	40.2	28.1	30.7	61.6	40.3	59.0	56.5	55.0	61.6	59.0		
May	16.2	15.3	17.0	17.6	15.9	1.6	88.1	39.0	30.8	51.3	45.4	65.1	56.5	30.8	57.0		
June	19.0	19.7	20.6	21.8	19.8	54.9	13.1	6.6	60.8	32.6	57.6	52.5	47.2	60.8	51.0		
July	20.5	22.9	24.2	23.1	23.1	29.9	3.5	5.0	10.7	13.5	55.4	45.3	44.4	10.7	44.0		
August	23.4	23.1	23.5	23.4	23.0	19.9	11.1	1.1	3.7	10.3	46.0	49.7	46.7	3.7	42.0		
September	16.7	19.3	22.8	19.0	18.4	2.6	11.1	6.3	12.7	17.4	52.0	49.7	44.0	12.7	47.0		
October	15.1	15.0	16.0	11.6	12.8	35.1	1.8	30.0	27.8	24.4	60.1	45.8	60.9	27.8	58.0		
November	5.4	4.1	5.6	3.4	7.3	47.0	33.6	67.5	61.6	36.4	68.4	65.7	75.0	61.6	70.0		
December	-0.6	4.0	0.5	2.4	2.3	37.9	33.0	20.6	52.3	45.6	77.4	76.6	78.8	52.3	78.0		

[§] Long term averages.; Source: Republic of the Environment and Forest Ministry, General Directorate of Meteorology

Combinations	РН	(cm)		SL (cm)	N	S (no)	NS	SP (no)		NG (no)			
and	\mathbf{F}_1	F ₂	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	F ₂	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2			
Parents													
$\mathbf{P}_1 \times \mathbf{P}_2$	104.21±0.06 A	-	8.1±0.28 B	-	5.8±1.56 B	-	20.7±0.85 A	-	39.0±4.01 B	-			
\mathbf{P}_1	93.3±0.13 CD		7.4±0.43 C		3.4±0.11 C		21.3±0.63 A		40.3±0.15 B				
\mathbf{P}_2	85.9±0.45 E		5.6±0.25 E		5.9±0.24 B		20.1±0.51 A		22.3±0.12 E				
$\mathbf{P}_1 \times \mathbf{P}_3$	109.57±0.25 A	119.24±0.30 A	7.2±0.65 C	7.38±0.64 B	4.6±1.01 B 5.6±0.08 B		19.8±0.50 A	30.4±3.61A	39.6±0.88 B	30.4±0.21 D			
P ₁	100.64±0.82 CD		6.5±0.30 D		2.0±0.37 D		19.5±0.24 A		30.1±0.63 D				
\mathbf{P}_3	105.63±0.25 CD		6.9±0.82 D		3.0±0.88 C		19.7±0.36 A		33.5±0.47C				
$\mathbf{P}_4 \times \mathbf{P}_3$	118.87±0.40 AD	108.60±0.61C	7.9±0.93 C	7.36±0.26 B	3.3±1.17 C	5.2±0.24 B	22.2±0.93 A	21.4±2.06 C	37.7±0.38 B	21.8±0.69 DE			
\mathbf{P}_4	111.87±0.11 D		6.2±0.10 D		3.7±0.46 C		19.7±0.18 A		32.4±0.26 C				
P ₃	110.78±0.36 D		7.0±0.65 C		4.7±0.52 C		19.8±0.20 A		32.4±0.55 C				
$\mathbf{P}_4 \times \mathbf{P}_2$	113.75±0.92 A	105.16±0.85 C	9.6±0.57 B	6.90±0.50 C	4.6±0.58 C	4.8±0.80 B	21.0±0.67 A	19.4±1.81 C	33.0±0.25 C	30.4±0.63 D			
\mathbf{P}_4	109.30±0.15 D		8.9±0.97 B		2.8±0.19 D		20.0±0.25 A		33.7±0.37 C				
\mathbf{P}_2	94.90±0.39 CD		6.5±0.33 D		5.3±0.26 B		19.6±0.30 A		33.4±0.28 C				
$\mathbf{P}_5 \times \mathbf{P}_3$	117.12±0.04 A	104.48±0.23 C	8.1±0.74 B	5.08±0.87 C	4.3±1.24 C	2.2±0.86 D	18.8±0.14 B	21.6±1.40 C	43.4±0.74 A	26.0±0.19 DE			
P ₅	112.70±0.58 B		8.6±0.50 B		4.1±0.13 C		20.3±0.19 A		35.2±0.66 BC				
P ₃	109.58±0.81 C		7.5±0.29 C		4.3±0.36 C		21.1±0.17 A		38.0±0.90 B				
$\mathbf{P}_5 \times \mathbf{P}_6$	114.36±0.67 A	109.46±0.56 C	11.0±1.21 A	11.52±1.49 A	4.1±1.40 B	3.4±0.51 C	20.4±0.55 A	33.2±2.92 A	41.0±0.59 A	43.0±0.60 C			
P ₅	111.32±0.64 B		8.1±0.13 B		2.0±0.18 D		20.1±0.50 A		42.0±0.13 A				
P_6	116.50±0.25 A		10.5±0.24 A		5.0±0.40 B		16.6±0.65 B		34.0±0.66 BC				
$\mathbf{P}_7 \times \mathbf{P}_6$	116.19±0.29 A	120.06±0.15 A	12.9±1.72 A	12.90±1.40 A	7.1±3.66 A	5.6±0.40 B	22.0±0.10 A	36.6±2.09 A	38.0±0.56 B	31.6±0.57 D			
\mathbf{P}_7	99.47±0.51 D		5.0±0.45 E		8.8±0.66 A		18.4±0.80 B		27.0±0.41D				
P ₆	114.41±0.14 A		12.0±0.78 A		4.7±0.20 C		20.0±0.54 A		39.3±0.29 B				
$\mathbf{P}_7 \times \mathbf{P}_8$	90.40±0.42 C	99.24±0.62 D	12.1±1.14 A	7.24±1.00 B	12.0±3.19 A	11.8±0.11 A	20.4±0.72 A	29.2±1.66 A	33.3±0.13 C	28.8±0.16 DE			
P ₇	97.55±0.26 D		10.5±0.66 A		5.1±0.75 B		16.0±0.34 B		17.1±0.36 F				
P ₈	95.35±0.40 D		12.3±0.19 A		4.4±0.50 C		21.0±0.10 A		23.2±0.88 E				
$P_9 \times P_8$	119.55±0.51 A	-	11.7±1.33 A	-	4.1±1.34 C	-	21.0±0.23 A	-	33.2±0.40 C	-			
P 9	111.15±0.36 B		9.5±0.57 B		3.3±0.39 C		18.8±0.61 B		31.1±0.41CD				
P ₈	110.30±0.47 B		13.7±0.81 A		5.7±0.15 B		21.2±0.50 A		31.4±0.17 CD				
$P_9 \times P_6$	115.70±0.21 A	116.50±0.11 A	12.6±1.26 A	14.38±2.02 A	6.0±2.40 A	10.0±0.97 A	19.5±0.18 A	28.4±4.43 A	50.8±0.66 A	48.8±0.11 B			
P9	103.27±0.78 BC		9.9±0.76 B		5.2±0.04 B		18.8±0.36 B		28.8±0.53 D				
P ₆	103.43±0.53 BC		12.8±0.94 A		5.7±0.16 B		20.0±0.40 A		43.6±0.25 A				
$\mathbf{P}_{10} \times \mathbf{P}_{6}$	107.95±0.89 AB	115.38±0.61 A	8.3±1.03 B	9.12±0.40 B	6.8±1.25 A	6.0±0.10 B	18.7±0.14 B	26.4±4.48 B	30.2±0.51 D	48.4±0.39 B			
P ₁₀	102.90±0.18 BC		5.1±0.65 E		9.2±0.63 A		18.3±0.24 B		28.4±0.64 D				
P ₆	113.00±0.77 A		11.4±0.71 A		4.4±0.70 C		19.0±0.68 A	00.0.1.66	32.0±0.34 CD				
$\mathbf{P}_{10} \times \mathbf{P}_{8}$	92.70±0.33 BD	109.22±0.51C	7.8±0.55 C	10.80±1.07 B	8.5±1.86 A	4.6±0.51 B	17.9±0.59 B	29.2±1.66 A	42.3±0.88 A	14.4±0.20 F			
P ₁₀	107.00±0.41 AB		6.6±0.25 D		6.1±0.52 A		17.9±0.53 B		28.8±0.95 D				
P ₈	103.40±0.99 BC		15.5±0.37 A		6.1±0.80 A		23.2±0.32 A		34.5±0.31BC				

Table 2. Means with the standardized errors in the combinations and parents in F_1 and F_2 .

 P_1 = First parent, P_2 = Second parent, PH = Plant height, SL = Spike length, NS = Number of spike per plant; NSP = Number of spikelet per spike; NG = Number of grain per spikelet; means within each column followed by the same letter are not significantly different; P<0.05; P_1 = Kunduru 414/44, P_2 = *T. dicoccum*, P_3 = *T. carthlicum*, P_4 = Kunduru 1149, P_5 = Aköz 86, P_6 = *T. vavilovii*, P_7 = Köse 220/39, P_8 = *T. spelta*, P_9 = Penjamo 62, P_{10} = Sivas 111/33, P_{11} = Sürak 1593/51, P_{12} = Sertak 52, P_{13} = Yektay 406

Combinations	PH	(cm)		. (cm)	NS	(no)	NSE	(no)	NG	(no)		
and Parents	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_{1}	\mathbf{F}_2	$\mathbf{F_1}$	\mathbf{F}_2	$\mathbf{F_1}$	\mathbf{F}_2	$\mathbf{F_1}$	\mathbf{F}_2		
$\mathbf{P}_{11} \times \mathbf{P}_3$	120.10±0.28 A	117.98±0.19 A	12.5±1.48 A	12.2±0.62 A	8.4±1.30 A	5.8±0.74 B	20.0±0.90 A	26.8±2.22 B	30.0±0.70 D	17.6±0.83 E		
P ₁₁	115.41±0.42 A		13.0±0.48 A		6.3±0.96 A		22.0±0.45 A		32.0±0.46 CD			
P ₃	104.92±0.86 BC		9.6±0.52 B		7.6±0.62 A		19.0±0.96 B		33.0±0.51 C			
$\mathbf{P}_{11} \times \mathbf{P}_{6}$	111.36±0.45 A	137.84±0.78 A	11.0±1.23 A	15.8±1.47 A	8.7±2.13 A	6.6±0.98 B	21.0±0.36 A	23.0±2.53 C	32.0±0.31 CD	59.6±0.79 A		
P ₁₁	106.20±0.88 AB		11.1±0.55 A		8.0±0.46 A		18.8±0.55 B		31.0±0.42 CD			
P ₆	109.10±0.54 AB		8.0±0.80 B		4.8±0.17 C		20.0±0.91 A		33.0±0.40 C			
$\mathbf{P}_{12} \times \mathbf{P}_{6}$	113.60±0.29 A	-	9.0±0.45 B	-	5.3±0.29 B	-	21.3±0.15 A	-	45.1±0.46 A	-		
P ₁₂	98.43±0.26 C		8.7±0.14 B		6.0±0.59 A		17.5±0.21 B		23.4±0.23 E			
P ₆	115.76±0.13 B		10.5±0.65 A		4.4±0.66 C		18.0±0.13 B		30.0±0.37 D			
$\mathbf{P}_{12} \times \mathbf{P}_{8}$	105.20±0.06 B	92.80±0.26 E	10.6±0.36 A	6.1±0.26 C	6.5±0.84 B	9.2±0.92 A	20.3±0.50 A	35.4±0.51A	27.4±0.28 D	31.2±0.28D		
P ₁₂	102.95±0.83 BC		6.5±0.38 D		7.5±0.78 A		17.3±0.96 B		22.0±0.54 E			
P ₈	107.45±0.52 AB		14.8±0.47 A		5.5±0.61 B		23.3±0.05 A		32.8±0.60 CD			
$P_{13} \times P_8$	115.55±0.74 A	113.76±0.29 B	13.1±0.82 A	8.5±0.76 B	5.6±0.15 B	5.4±0.03 B	21.4±0.89 A	18.6±0.17 D	29.3±0.19 D	31.6±0.61D		
P ₁₃	111.70±0.73 B		11.5±0.52 A		6.2±0.60 B		19.5±0.42 B		45.3±0.80 A			
P ₈	108.50±0.45 AB		22.2±0.38 A		6.2±0.47 B		21.3±0.87 A		32.7±0.19 CD			
$P_{13} \times P_6$	110.53±0.38 A	112.24±0.91 B	12.3±055 A	12.3±0.57A	5.4±0.06 B	5.0±0.63 B	22.0±0.76 A	34.2±0.08 A	47.7±0.28 A	32.6±0.76 D		
P ₁₃	88.63±0.65 D		8.1±0.44 B		5.6±0.74 B		19.7±0.56 B		20.0±0.75 F			
P ₆	121.42±0.89 A		12.3±0.19 A		4.1±0.24 C		17.7±0.32 B		41.1±0.56 A			
Mean	110.92±0.35	112.13±0.13	10.32±0.02	10.18±0.89	6.2±0.02	6.1±0.73	20.5±2.26	27.5±0.45	37.4±0.54	32.8±0.82		

Table 3. Means with the standardized errors in the combinations and parents in F_1 and F_2 (cont.).

 P_1 = First parent; P_2 = Second parent; PH = Plant height; SL = Spike length; NS = Number of spike perplant; NSP = Number of spikelet per spike; NG = Number of grain per spikelet; MP = Mid-parent heterosis; HP = High-parent heterosis, Means within each column followed by the same letter are not significantly different, n = 4, P_1 = Kunduru 414/44, $P_2 = T$. *dicoccum*, $P_3 = T$. *carthlicum*, P_4 = Kunduru 1149, P_5 = Aköz 86, $P_6 = T$. *vavilovii* P_7 = Köse 220/39, $P_8 = T$. *spelta*, P_9 = Penjamo 62, P_{10} = Sivas 111/33, P_{11} = Sürak 1593/51, P_{12} = Sertak 52, P_{13} = Yektay 406.

Combinations	PH (cm)				SL (cm)				NS (no)				NSF	' (no)		NG (no)				
	MP		HP		МР		HP		M	MP		HP		MP	HP		МР		HP	
	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	F ₂
$\mathbf{P}_1 \times \mathbf{P}_2$	16.3**	-	11.7**	-	24.6**	-	9.5**	-	24.7**	-	-1.7	-	0	-	-3.0	-	24.6**	-	18.2**	-9.3
$\mathbf{P}_1 \times \mathbf{P}_3$	6.2 6.7	6.1	3.7 6.3	4.6 -0.5	7.5 19.7**	10.2** -44.2**	9.2 ^{**} 12.9 ^{**}	7.0 5.1	84.0 ^{**} -21.4 ^{**}	124.0^{**} 24.0^{**}	53.3 ^{**} -29.8 ^{**}	86.7^{**} 10.6^{*}	$1.0 \\ 12.4^{**}$	55.1 ^{**} 8.4	0.5 12.1 ^{**}	54.3** 8.1	24.5 ^{***} 20.1 ^{***}	-4.4 -30.6**	16.4^{**} 14.2^{**}	32.7 -31.6
$\begin{array}{rrr} \mathbf{P_4} &\times & \mathbf{P_3} \\ \mathbf{P_4} &\times & \mathbf{P_2} \end{array}$	6.7 11.4 ^{***}	-2.5 3.0	6.3 4.1	-0.5	19.7 24.5 ^{**}	-44.2	32.3 ^{**}	-22.5 ^{**}	-21.4 13.6 ^{**}	18.5^{**}	-29.8 -13.2**	-9.4 [*]	6.1	-2.0	5.0	-3.0	20.1	-30.6 -9.0 [*]	-2.1	-31.0 -9.8
$P_5 \times P_3$	5.4	3.0	4.0	-7.5	0.6	-37.0**	-5.8	-5.0	2.4	-47.6 ^{**}	-13.2	-48.8**	-9.2*	4.3	11.0**	-3.0	18.6**	-29.0**	-2.1	-9.8
$P_5 \times P_6$	0.4	-6.0	-1.6	-13.0**	18.3**	4.8	23.9**	9.7*	17.1**	-2.9	-18.0**	-32.0**	11.2**	81.0**	1.5	65.2**	7.9	13.2**	-3.3	2.4
$P_7 \times P_6$	8.7	12.3**	1.6	-19.3**	51.8^{**}	52.0**	7.5	7.5	5.2	-17.0**	-19.3**	-36.4**	14.6**	91.6**	10.0^{**}	83.0**	-3.3	-19.6**	44.0^{**}	24.1
$P_7 \times P_8$	-6.3	2.9	-7.3	-7.3	6.1^{**}	-36.5**	-1.6	-41.1**	152.6**	148.4^{**}	135.3**	131.4**	10.3^{*}	0.6	-2.9	0.4	65.3**	43.0**	5.8	-71.2
$P_9 \times P_8$	7.8	-	7.6	-	0.9	-	-14.6**	-	-8.9*	-	-28.1**	**	5.0	-	-1.0	-	6.2		17.0^{**}	-
$P_9 \times P_6$	12.0**	12.7**	11.9 ^{**} -3.3	2.2 -8.2	11.0^{**} 0.6	26.7 ^{**} -10.6 ^{**}	-1.6 -27.2 ^{**}	12.3** -20.0**	10.1 [*] 0	83.5 ^{**} -11.8 ^{**}	5.3 -26.1 ^{**}	75.4 ^{**} -34.8 ^{**}	0.5 0.3	46.4^{**} 41.6^{**}	-25.0**	42.0 ^{**} 39.0 ^{**}	40.3 ^{**} 0	35.0 ^{**} 60.3 ^{**}	-5.6 23.0**	-12.0 -51.3
$\begin{array}{rrrr} \mathbf{P}_{10} \times \mathbf{P}_{6} \\ \mathbf{P}_{10} \times \mathbf{P}_{8} \end{array}$	1.2 -11.9 ^{**}	6.9 3.8	-3.3 -13.4 ^{**}	-8.2 -0.4	-29.4 ^{**}	-10.6	-27.2 -49.7**	-20.0 -30.3**	41.0^{**}	-11.8 -24.0^{**}	-26.1 39.3**	-34.8 -24.6 ^{**}	-12.9 ^{**}	41.6 42.1 ^{**}	-1.6 -23.0**	39.0 25.7 ^{**}	33.7**	-54.5 ^{**}	- 9.1**	-51.3 -58.3
$P_{11} \times P_3$	9.0*	7.1	4.1	12.8**	10.6**	-3.8	8.0	8.0	21.0**	-16.6 ^{**}	11.0**	-23.7**	-12.9	31.0**	-23.0 -9.1*	22.0**	-7.7	-45.9**	- 3.0	-46.7
$P_{11} \times P_6$	3.5	28.0**	2.1	8.2	15.2**	65.5**	-1.0	42.3**	36.0**	-3.1	8.8	-17.5**	8.3	18.6**	5.0	15.0**	0	86.3**	- 50.3**	-26.6
$P_{12} \times P_6$	6.1	-	-1.9	-	-6.3	-	-14.3**	-	2.0	-	-11.7**	-	20.0^{**}	-	18.3^{**}	-	69.0**	-	- 16.5**	-
$P_{12} \times P_8$	-26.6**	-11.8**	28.1^{**}	-14.9**	-0.5	-43.0**	-28.4**	-59.0**	0	42.0**	- 13.3**	22.7**	0	74.4**	12.9**	52.0**	0	13.9**	- 35.3**	-4.9
$\begin{array}{rrr} \mathbf{P_{13}} \times & \mathbf{P_8} \\ \mathbf{P_{13}} \times & \mathbf{P_6} \end{array}$	5.0 5.2	3.3 -9.0 [*]	3.5 6.9	4.3 -12.0**	-22.3** 20.6**	-50.0 ^{**} -66.7 ^{**}	-41.0 ^{**}	-62.0 ^{**} -38.2 ^{**}	$\begin{array}{c} 0 \\ 11.3^{*} \end{array}$	-12.9** 3.1	-9.7 [*] -3.6	-13.0** -10.7**	5.4 17.6 ^{**}	-8.4 82.9**	$0.5 \\ 11.7^{**}$	-12.7 ^{**} -73.6 ^{**}	-33.1** 56.4**	-19.0 ^{**} 6.4	16.1 ^{**} -2.1	-30.2 [°] -20.7
Mean	3.3	4.0	3.8	3.0	8.5	1.3	-4.6	-7.3	22.0	21.0	4.4	5.1	4.9	38.0	-1.4	-31.1	1.0	3.1	8.0	-4.5

. . . . **T** 11 4 TT 1 1 1 1 1 1. . .

PH=Plant height, SL=Spike length, NS=Number of spike per plant; NSP=Number of spikelet per spike; NG=Number of grain per spikelet; MP=Mid-parent heterosis; HP=High-parent heterosis, $P_1 = Kunduru 414/44$, $P_2 = T$. dicoccum, $P_3 = T$. carthlicum, $P_4 = Kunduru 1149$, $P_5 = Aköz 86$, $P_6 = T$. vavilovii, $P_7 = Köse 220/39$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Sürak 1593/51$, $P_{12} = Sertak 52$, $P_7 = Köse 220/39$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Sürak 1593/51$, $P_{12} = Sertak 52$, $P_7 = Köse 220/39$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Sürak 1593/51$, $P_{12} = Sertak 52$, $P_7 = Köse 220/39$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Sürak 1593/51$, $P_{12} = Sertak 52$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Sürak 1593/51$, $P_{12} = Sertak 52$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Surak 1593/51$, $P_{12} = Sertak 52$, $P_8 = T$. spelta, $P_9 = Penjamo 62$, $P_{10} = Sivas 111/33$, $P_{11} = Surak 1593/51$, $P_{12} = Surak 1593/51$, $P_{13} = Surak 1593/51$, $P_{$

ay 406 $^{*}P < 0.05, ^{**}P = 0.01$

123

Traits	Combinations	Generations	Means	МР	HP	(P1-F1)	(P1-F2)	(P2-F1)	(P2-F2)	(MP-F1)	(MP-F2)	(HP-F1)	(HP-F2)
PH (cm)	$^{1}(P_{11} \times P_{3})$	F ₁	(120.10±0.28)	9.0	4.1	0.473**	0.331**	0.315**	0.220**	0.450**	0.386**	0.217*	0.160*
	2 (P ₇ × P ₈)		(90.40±0.42)	-6.3**	-7.3								
	$(\mathbf{P}_{11} \times \mathbf{P}_6)$	F_2	(137.84±0.78)	3.5	2.1								
	$(\mathbf{P}_{12}\times \mathbf{P}_8)$		(92.80±0.26)	-26.6	-28.1								
SL (cm)	$(P_{13} \times P_8)$	F_1	(13.1±0.82)	-22.3	-41.0	0.495**	0.129^{*}	0.456**	0.041ns	0.570^{**}	0.633**	0.120^{*}	0.080 ns
· · ·	$(\mathbf{P}_1 \times \mathbf{P}_3)$	1	(7.2±0.65)	7.5	9.2								
	$(\mathbf{P}_{11} \times \mathbf{P}_6)$	F_2	(15.8 ± 1.47)	15.2	-1.0								
	$(\mathbf{P}_5 \times \mathbf{P}_3)$	2	(5.1±0.87)	0.6	5.8								
NS (no)	$(\mathbf{P}_7 \times \mathbf{P}_8)$	F_1	(12.0±3.19)	152.6	135.3	0.400^{**}	0.050 ns	0.074 ns	-0.250 ns	0.550^{**}	0.625**	0.450^{**}	0.001 ns
()	$(\mathbf{P}_4 \times \mathbf{P}_3)$	- 1	(3.3±1.17)	-21.4	29.8								
	$(\mathbf{P}_7 \times \mathbf{P}_8)$	F_2	(11.8 ± 0.11)	152.6	135.3								
	$(\mathbf{P}_5 \times \mathbf{P}_3)$	- 2	(2.2±0.86)	-94	1.7								
NSP (no)	$(\mathbf{P}_4 \times \mathbf{P}_3)$	F_1	(22.2±0.93)	12.4	12.1	0.500^{**}	0.330**	0.391**	0.200^{**}	0.540^{**}	0.113**	0.320 ns	0.380**
	$(\mathbf{P}_{10} \times \mathbf{P}_8)$	1	(17.9 ± 0.59)	12.4	-23.0	0.500	0.550	0.371	0.200	0.540	0.115	0.520 IIS	0.500
	$(\mathbf{P}_{10} \times \mathbf{P}_{8})$ $(\mathbf{P}_{7} \times \mathbf{P}_{6})$	F_2	(36.6 ± 2.09)	14.6	10.0								
	$(\mathbf{P}_{13} \times \mathbf{P}_8)$	12	(18.6 ± 0.17)	54.0	0.5								
NG (no)	$(P_{13} \times P_6)$	F_1	(47.7±0.28)	56.4	-2.1	-0.126 ns	-0.050 ns	0.390	0.110 ns	0.155	0.125	-0.160 ns	0.150
1.0 (10)	$(\mathbf{P}_{13} \times \mathbf{P}_{8})$ $(\mathbf{P}_{13} \times \mathbf{P}_{8})$	• 1	(29.3 ± 0.19)	33.1	-30.2	0.120 113	0.050 115	0.270	0.110 115	0.135	0.125	0.100 115	0.120
	$(\mathbf{P}_{11} \times \mathbf{P}_6)$	F_2	(59.6 ± 0.79)	0	-35.3								
	$(\mathbf{P}_{11} \land \mathbf{P}_{6})$ $(\mathbf{P}_{10} \times \mathbf{P}_{8})$	12	(14.4 ± 0.20)	-33.7	-58.3								
	$(\mathbf{r}_{10} \wedge \mathbf{r}_8)$		(14.4±0.20)	-33.7	-38.5								

Table 5. Minumum and maximum mean values, heterosis percentages as MP and HP according to the combinations and generations, and phenotypic correlation coefficients.

PH = Plant height, SL = Spike length, NS = Number of spike per plant; NSP = Number of spikelet per spike; NG = Number of grain per spikelet; MP = Mid-parent heterosis; HP = High-parent heterosis, ¹⁾ Maximum, ²⁾ Minimum,

 P_1 = Kunduru 414/44, P_3 =*T. carthlicum*, P_4 = Kunduru 1149, P_5 = Aköz 86, P_6 = *T. vavilovii*, P_7 = Köse 220/39, P_8 = *T. spelta*, P_9 = Penjamo 62, P_{10} = Sivas 111/33, P_{11} = Sürak 1593/51, P_{12} = Sertak 52, P_{13} = Yektay 406

 F_1 = First generation, F_2 = Second generation; P1: Mean values of the female parents, P2: Mean values of the male parents, *P < 0.05. **P < 0.01, ns = non significant.

MP-Fn = n generation's mean values of the mid-parent heterosis values of the females, HP-Fn = n generation's mean values of the mid-parent heterosis values of the semi wilds.

Genotypes		PH (cm)				SL (cm)				NS (no)			NSI	P (no)			NG (no)			
		MP		HP		МР		НР	Ν	ЛΡ]	HP		MP]	HP	I	мр		HP	
		-	-			-			_	-	-			-	-			-	-		
	\mathbf{F}_1	F ₂	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	F ₁	F ₂	F ₁	F ₂	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	F ₂	\mathbf{F}_1	\mathbf{F}_2	\mathbf{F}_1	F ₂	
(♀)																					
P ₁																					
\mathbf{P}_4												(-) s	(+) s						(-) s		
P ₅																					
\mathbf{P}_7											(+) s	(+) s		(+) s		(+) s					
P 9																					
\mathbf{P}_{10}																					
P ₁₁						(+) s															
P_{12}																					
P ₁₃												(-) s					(+) s		(-) s		
(ී)																					
\mathbf{P}_2													(-) s								
P ₃													(+) s	(+) s	(+) s						
P_6													(+) s	(+) s							
P ₈																(+) s			(+) s		
mbinations																					
$P_1 \times P_2$	(+) ns	No seed	(+) ns	No seed	(+) ns	No seed	(+) ns	No seed	(+) ns	No seed	(-) ns	No seed	(+) ns	No seed	(-) ns	No seed	(+) ns	No seed	(+) ns	(-) ns	
$P_1 \times P_3$	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) s	(-) ns	(+) ns	(+) ns	
$\mathbf{P}_4 \times \mathbf{P}_3$	(+) ns	(-) ns	(+) ns	(-) ns	(+) s	(-) ns	(+) s	(+) s	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	
$\begin{array}{ccc} \mathbf{P_4} & \times & \mathbf{P_2} \\ \mathbf{P_5} & \times & \mathbf{P_3} \end{array}$	(+) ns (+) ns	(+) ns (+) ns	(+) ns (+) ns	(-) ns (-) ns	(+) ns (+) ns	(-) ns (-) ns	(+) ns (-) ns	(-) ns (-) ns	(+) ns (+) ns	(+) ns (-) ns	(-) ns (+) ns	(-) ns (-) ns	(+) ns (+) ns	(-) ns (+) ns	(+) ns (+) ns	(-) ns (+) ns	(+) ns (+) ns	(-) ns (-) ns	(-) ns (-) ns	(-) ns (+) ns	
$P_5 \times P_6$	(+) ns	(-) ns	(-) ns	(-) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(-) ns	(-) ns	(-) ns	(-) ns	(+) ns	(+) ns	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	
$P_7 \times P_6$	(+) ns	(+) ns	(+) s	(-) ns	(+) ns	(+) ns	(+) ns	(+) s	(+) ns	(-) ns	(-) ns	(-) ns	(+) ns	(+) ns	(+) s	(+) ns	(+) ns	(-) ns	(+) s	(+) ns	
$P_7 \times P_8$	(-) ns	(+) ns	(-) ns	(-) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(+) s	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) s	(-) ns	
$P_9 \times P_8$ $P_9 \times P_6$	(+) ns (+) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(+) ns (+) s	No seed (+) ns	(-) ns (-) ns	No seed (+)ns	(-) ns (+) ns	No seed (+) ns	(-) ns (+) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(-) ns (-) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(+) ns (-) ns	No seed (-) ns	
$\mathbf{P}_{10} \times \mathbf{P}_{6}$	(+) ns (+) ns	(+) ns (+) ns	(+) lis (-) ns	(+) lis (-) ns	(+) s (+) ns	(+) lis (-) ns	(-) ns	(-) ns	(+) ns (+) ns	(+) lis (-) ns	(+) ns	(+) ns	(+) ns (-) ns	(+) ns (+) ns	(-) ns	(+) ns (+) ns	(+) ns $(+)$ ns	(+) ns (+) ns	(-) IIS (+) IIS	(-) ns	
$\mathbf{P}_{10} \times \mathbf{P}_8$	(-) ns	(+) ns	(-) ns	(+) ns	(-) ns	(-) ns	(-) ns	(-) ns	(+) ns	(-) ns	(+) ns	(-) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(-) ns	(-) ns	
$P_{11} \times P_3$	(+) ns	(+) ns	(+) ns	(+) ns	(+) s	(-) ns	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	
$P_{11} \times P_6$	(+) ns	(+) ns	(+) ns	(+) ns	(+) s	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(-) ns	(-) ns	
$\begin{array}{rrrr} \mathbf{P_{12}} \times & \mathbf{P_6} \\ \mathbf{P_{12}} \times & \mathbf{P_8} \end{array}$	(+) ns (-) ns	No seed (-) ns	(-) ns (+) ns	No seed (-) ns	(+) ns (-) ns	No seed (-) ns	(-) ns (-) ns	No seed (-) ns	(+) ns (+) ns	No seed (+) ns	(-) ns (-) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(+) ns (+) ns	No seed (+) ns	(-) ns (-) ns	No seed (-) ns	
$\mathbf{P}_{12} \wedge \mathbf{P}_{8}$ $\mathbf{P}_{13} \times \mathbf{P}_{8}$	(-) ns (+) ns	(-) is (+) ns	(+) ns (+) ns	(+) ns	(-) lis (-) ns	(-) ns	(-) ns	(-) ns	(+) ns (+) ns	(+) lis (-) ns	(-) ns	(+) ns	(+) ns (+) ns	(+) lis (-) ns	(+) ns $(+)$ ns	(+) lis (-) ns	(+) ns	(+) lis (-) ns	(+) ns	(-) ns	
$\mathbf{P}_{13} \times \mathbf{P}_{6}$	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(-) ns	(+) ns	(+) ns	(+) ns	(-) ns	(+) ns	(+) ns	(-) ns	(-) ns	

PH=Plant height, SL=Spike length, NS=Number of spike per plant; NSP=Number of spikelet per spike; NG=Number of grain per spikelet; MP=Mid-parent heterosis; HP=High-parent heterosis; P₁=Kunduru 414/44, P₂ = *T. dicoccum*, P₃ = *T. carthlicum*, P₄ = Kunduru 1149, P₅ = Aköz 86, P₆ = *T. vavilovii*, P₇ = Köse 220/39, P₈ = *T. spelta*, P₉ = Penjamo 62, P₁₀ = Sivas 111/33, P₁₁ = Sürak 1593/51, P₁₂ = Sertak 52, P₁₃ = Yektay 406