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Abstract: Plant diseases reduce yield and quality in agricultural production by 20–40%. Leaf diseases 
cause 42% of agricultural production losses. Image processing techniques based on artificial neural 
networks are used for the non-destructive detection of leaf diseases on the plant. Since leaf diseases 
have a complex structure, it is necessary to increase the accuracy and generalizability of the developed 
machine learning models. In this study, an artificial neural network model for bean leaf disease 
detection was developed by fusing descriptive vectors obtained from bean leaves with HOG 
(Histogram Oriented Gradient) feature extraction and transfer learning feature extraction methods. The 
model using feature fusion has higher accuracy than only HOG feature extraction and only transfer 
learning feature extraction models. Also, the feature fusion model converged to the solution faster. 
Feature fusion model had 98.33, 98.40 and 99.24% accuracy in training, validation, and test datasets, 
respectively. The study shows that the proposed method can effectively capture interclass 
distinguishing features faster and more accurately. 
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1. Introduction  

In order to feed the world population, productivity in agricultural production should be 
increased by 60% annually until 2050 [1]. Plant diseases are one of the most important agricultural 
problems affecting crop yield and quality. Studies have shown that plant diseases reduce crop yields 
by 20–40% [2]. Most of the strategies used to prevent plant diseases today are based on the use of 
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chemical pesticides [2]. It has been determined that 78–79% overdose pesticides are used in pesticide 
applications without considering the plant need and the prevalence of the disease [3]. Excessive use of 
chemicals causes the emergence of disease and pest species that are more resistant to pesticides [4,5]. 
In addition, due to climate change, there are changes in the emergence time and periods of diseases [6–8]. 
For these reasons, there is a need for systems that will detect the location of the disease and apply 
chemicals only to these areas, thus preventing excessive pesticide use. 

According to past studies, 42% of agricultural production is in loss due to plant leaf diseases [9]. 
Detection of leaf diseases is commonly made with the diagnosis of an experienced plant pathologist. 
However, this method can be used in a limited way due to the small number of specialists and the slow 
diagnosis made in this way. Complex systems are frequently modelled using machine learning 
techniques [10,11]. The complexity of agriculture makes machine learning techniques well-suited for 
detecting leaf diseases with expert-level precision and significantly faster speed. [12]. Since there are 
many different diseases, variations within the disease, and plant varieties, more studies are needed to 
obtain a generalizable leaf disease classification solution in this regard [13]. The generalization of a 
machine learning model is that the classification success achieved during training and validation is 
also sustainable on new samples that the model has never seen [14]. 

Artificial neural network models for computer vision need very large image datasets for 
training [15]. However, collecting and tagging large image datasets is expensive in terms of both time 
and money [16]. Methods such as transfer learning, data regularization and data augmentation are used 
to obtain a model that can generalize the maximum from the available data [17–19]. In addition, it has 
been seen in various studies that fusion of descriptive features obtained by different methods can 
increase classification accuracy and generalization success, and that the machine learning model will 
be converged to the solution faster [20–22]. 

1.1. Literature review 

Chen et al. [23] used AlexNet modificated architecture-based CNN on the Android platform to 
predict tomato leaf diseases using training and testing data containing 18,345 and 4585 images 
respectively. The best model accuracy is 98%. 

Fan et al. [24] presented a general framework for identifying plant diseases by fusing deep feature 
descriptors and traditional handcrafted features. Extensive experiments have been conducted to 
validate the efficacy of the proposed method, which achieves classification accuracies of 99.79, 92.59 
and 97.12% on three datasets (Two apple leaf datasets and one coffee leaf dataset). They used 
InceptionV3 architecture as deep feature descriptors. 

Elfatimi et al. [25] suggested a method for classifying bean leaf diseases based on a publicly 
available bean leaf image dataset using MobileNetV2 model architecture as a deep feature extractor. 
The trained model achieved 97% accuracy on training data and 92% accuracy on test data. 

Harakannanavar et al. [26] conducted a research by using machine learning and image processing 
to detect leaf diseases in tomato plants. The extracted features are classified using machine learning 
approaches such as Support Vector Machine (SVM), Convolutional Neural Network (CNN) and K-
Nearest Neighbor (K-NN). The accuracy of the proposed model is tested using SVM (88%), K-NN 
(97%) and CNN (99.6%). The proposed model extracts informative features using computer vision 
techniques such as RGB conversion, Histogram Equalization, K-means clustering, contour tracing, 
Discrete Wavelet Transform, Principal Component Analysis, and GLCM (gray level co-occurrences 
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matrix). They suggest that they can improve accuracy by using fusion techniques in their future works. 
Annrose et al. [27] proposed a hybrid deep learning model with an Archimedes optimization 

algorithm (HDL-AOA) for the classification of soybean diseases. The hybrid deep learning strategy is 
built of Wavelet packet decomposition (WPD) and long short-term memory (LSTM). The WPD 
disassembles the input pictures into four subseries, and four LSTM networks were created. The HDL-
AOA model is applied in a cloud-based framework for collaboration and achieves a lower MAPE 
(mean absolute percentage error) than other existing techniques such as RNN, DCNN, LSTM and 
CNN. The suggested HDL-AOA model has an accuracy of 98.23%. 

Singh et al. [28] employed an artificial intelligence and computer vision approaches to construct 
and develop an intelligent leaf disease classification system. The PlantVillage data set (for apple, maize, 
potato, tomato, and rice plants) photos are augmented, and deep features are retrieved using a 
convolutional neural network (CNN). The picture was then subjected to preprocessing and feature 
extraction via color moments, HOG, and GLCM. For the selection of these hybrid features, binary 
particle swarm optimization is utilized, followed by random forest classification for classification 
results. Five convolutional neural network architectures were trained and evaluated, namely LeNet, 
ShuffleNet, AlexNet, EffNet, and MobileNet MobileNet achieved the highest accuracy (96.1%). 

1.2. Proposed method 

In this study, we aimed to detect the disease in bean leaves, which is one of the commonly 
produced cultivars, via digital images. For this purpose, we used an image dataset consisting of healthy, 
bean rust and angular leaf spot classes for the training of the machine learning model. In order to 
increase the classification accuracy of the developed model and the generalization success on the test 
dataset, an artificial neural network model was created and trained by fusion of descriptive vectors 
obtained by transfer learning feature extraction and HOG feature extraction methods. CNN-based 
machine learning models trained in the detection of leaf diseases will converge to the solution in less 
time and with more accuracy by employing fewer parameters according to the proposed method. 

2. Materials and methods 

2.1. Dataset 

The bean leaf dataset consists of images taken with smartphone cameras. The captured images 
consist of bean rust, angular leaf spot and healthy classes (Figure 1). The dataset was collected by the 
Makerere AI research lab and tagged by experts at the National Crops Resources Research Institute 
(NaCRRI) [29]. Images are 500 × 500 pixels in RGB (red-green-blue) digital format. 

We divided the image dataset into training, test and validation datasets to be used in the training, 
validation and testing of the machine learning model. There are 1034 images in the training dataset, 
128 images in the test dataset, and 134 images in the validation dataset. The total number of images in 
the healthy, bean rust and angular leaf spot classes are given in Table 2. We used training and validation 
datasets in the training of the machine learning model. We tested the developed model using a test 
dataset that has not been used in training before. 
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Figure 1. Image samples from the dataset. 

Table 2. Number of images by class. 

Healthy Bean rust Angular leaf spot 

428 436 432 

2.2. Data augmentation 

 

Figure 2. Some results of data augmentation applied on the original image. 

Data augmentation is a technique to improve the diversity of datasets. It is used in machine 

Random Crop Horizontal Flip Random Contrast 

Random Rotation Median Blur Vertical Flip 
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learning and deep learning to increase the size of training data, which can be very useful in cases where 
the training dataset is too small. Data augmentation involves adding more samples to the original 
dataset so that each sample has a different representation from the others. This can be done by 
translating/rotating/cropping/scaling/randomly changing pixels of an image [30]. In the data 
augmentation phase, each image in the training and validation dataset was subjected to randomly 
selected augmentation process (es) before entering to the artificial neural network (Figure 2). Test 
dataset representing real-world, unseen data. Consequently, we did not apply data augmentation to the 
test dataset for this reason. 

2.3. HOG feature extraction 

The histogram of oriented gradients (HOG) is an image feature descriptor and widely used in 
computer vision applications [31]. It simplifies images by discarding extraneous information and 
retaining only local texture and appearance information. Since diseased areas on the leaf have different 
local texture characteristics from healthy areas, HOG is effective for use in disease detection. The 
HOG function in the scikit-image 0.19.3 library was used with its default settings for HOG feature 
extraction (Figure 3) [32].  

 

Figure 3. HOG feature extraction. 

The calculation in HOG feature extraction was performed as follows. 
1) RGB image (𝑅ሺ𝑟, 𝑐ሻ, 𝐺ሺ𝑟, 𝑐ሻ, 𝐵ሺ𝑟, 𝑐ሻ) (r: row, c: column) firstly converted to grayscale image 

(𝐼ሺ𝑟, 𝑐ሻ) 

𝐼ሺ𝑟, 𝑐ሻ ൌ 0.299 ൈ 𝑅ሺ𝑟, 𝑐ሻ ൅ 0.587 ൈ 𝐺ሺ𝑟, 𝑐ሻ ൅ 0.114 ൈ 𝐵ሺ𝑟, 𝑐ሻ  (1)

2) The grayscale image was normalized with gamma correction to reduce the effects of change in 
brightness. 

𝐼ሺ𝑟, 𝑐ሻ ൌ 𝐼ሺ𝑟, 𝑐ሻଵ/ଶ (2)

3) Gradients were calculated separately for each pixel in the horizontal (𝐺௫ሺ𝑟, 𝑐ሻ ) and vertical 
(𝐺௬ሺ𝑟, 𝑐ሻ) directions.  

𝐺௫ሺ𝑟, 𝑐ሻ ൌ 𝐼ሺ𝑟, 𝑐 ൅ 1ሻ െ 𝐼ሺ𝑟, 𝑐 െ 1ሻ (3)

𝐺௬ሺ𝑟, 𝑐ሻ ൌ 𝐼ሺ𝑟 െ 1, 𝑐ሻ െ 𝐼ሺ𝑟 ൅ 1, 𝑐ሻ (4)

4) Then, the magnitude () and direction angle (𝜃) values that make up the gradient matrix were 
calculated for the gradient values in the horizontal and vertical directions.  

HOG 

Feature 

Extraction 
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 ൌ ට𝐺௫
ଶ ൅ 𝐺௬

ଶ (5)

𝜃 ൌ หtanିଵ൫𝐺௬/𝐺௫൯ห (6)

5) The gradient matrix was divided into blocks of 8x8 cells and 9 bins histograms (corresponding 
to 20 per bin) were generated for each cell in the block. The bin that the cell belongs to was calculated 
according to the direction angle. The value in each bin was calculated according to magnitude. By 
summing these values, the histogram of that block was found and histogram matrix was created. 

6) After the histogram matrix calculation was completed, the blocks in the histogram matrix 
were scanned with a 3 × 3 kernel so that the kernel shifted one block after each calculation. The 

histograms of the 9 blocks in the 3x3 kernel were combined and a feature vector (𝑓௕೔
) of 81 × 1 size 

was created for each step. 

𝑓௕೔
ൌ ሾ𝑏ଵ, 𝑏ଶ, 𝑏ଷ, … , 𝑏଼ଵሿ (7)

7) All feature vectors are normalized with the L2 norm 

𝑓௕೔
ൌ

𝑓௕೔

ට∥∥𝑓௕೔∥∥
ଶ

െ 𝜀

(8)

The HOG feature extraction of the images of Figure 1 are given in Figure 4. We performed HOG 
feature extraction of all images in the dataset Later, we used these images in the training of the artificial 
neural network. 

 

 

 

Figure 4. Visualization of HOG feature extraction samples. 
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2.4. Artificial neural networks 

Artificial neural networks are a type of machine learning algorithm inspired by the way the human 
brain works. Artificial neural networks are composed of layers of neurons, with each neuron 
connecting to the neurons in the previous layer. This allows for the information processed in one layer 
to be passed on to subsequent layers, helping the network learn how to solve certain problems by 
recognizing patterns in the data [33]. 

We used TensorFlow 2.10.0 library to create artificial neural networks and NVIDIA A100 SXM4 
40 GB GPU to accelerate training. We coded with Python 3.8.8 in Google Colab environment. We 
used the following layers in the artificial neural network models: Convolutional layer: A 2-D 
convolutional layer applies sliding convolutional filters to two-dimensional input. The convolution 
operation is performed by sliding the filters along the input horizontally and vertically, and calculating 
the dot product of the weights and input. A bias term is added afterwards. Dense layer: A dense layer, 
also known as a fully connected layer, connects every neuron in the preceding layer to every neuron 
in the present one. Flatten layer: These layers flatten the multi-dimensional input tensors into a single 
dimensional array for inputting it to the next layer. Batch normalization layer: Each input is normalized 
and zero-centered across all mini-batches by batch normalization layer. This layer is helping to reduce 
the risk of vanishing/exploding gradients problems at the artificial neural network training. Dropout 
layer: The Dropout layer randomly sets the input units to 0 with a frequency of rate at each step during 
training time, which prevents overfitting.  Global Average Pooling 2D layer: A 2-D global average 
pooling layer computes a mean of the height and width dimensions of the input to downsample it.  
Concatenation layer: The concatenation layer concatenates a list of inputs [34].  

A loss function is a function that compares the target (𝑦௜ ) and predicted output (𝑦ො௜ ) values; 
measures how well the artificial neural network models the training data. Because we have sparse 
labels we choose sparse categorical cross-entropy as a loss function.  

𝐿𝑜𝑠𝑠 ൌ െ ∑
୓௨௧௣௨௧

ௌ௜௭௘
௜ୀଵ 𝑦௜ ൈ log 𝑦ො௜ 

(9)

Optimizers are algorithms used to update the parameters of an artificial neural network such as 
weights and biases to reduce the losses. Adam optimizer [35] used in all trials. 

An activation function in an artificial neural network defines how the weighted sum of the input 
(𝑥) is transformed into an output. ReLU (rectified linear unit) activation function is used in conv and 
dense layers in all models. In the last layer, the softmax activation function (𝜎) is used to calculate 
which class the sample will belong to (𝑘) based on feature vector (𝑧). 

𝑅𝑒𝐿𝑈 ൌ 𝑓ሺ𝑥ሻ ൌ 𝑥ା ൌ 𝑚𝑎𝑥ሺ0, 𝑥ሻ.  (10)

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ൌ 𝜎ሺ𝑧ሻ௜ ൌ
௘೥೔

∑ೖ
ೕసభ ௘೥ೕ (11)

Accuracy is a metric that generally describes how the model performs across all classes. It is 
calculated as the ratio between the number of correct predictions to the total number of predictions. 

𝐴𝑐cur𝑎𝑐𝑦 ൌ
஼௢௥௥௘௖௧೛ೝ೐೏೔೎೟೔೚೙ೞ

்௢௧௔௟೛ೝ೐೏೔೎೟೔೚೙ೞ
 (12)
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2.5. Artificial neural network with HOG feature extraction 

We created the artificial neural network model using HOG feature extraction as in Figure 5. 
Images already have compressed information as they are converted with HOG transform. For this 
reason, we created a simpler artificial neural network structure. After the RGB images were converted 
to HOG images, the data was subjected to augmentation and the artificial neural network was trained 
with these images. We selected batch size as 32 and the training of the model continued for 100 epochs. 
We used sparse categorical cross-entropy as the loss function and Adam as the optimizer by setting the 
learning rate to 0.001. We used the softmax activation function in the output layer, and the ReLU 
activation function in the dense and convolution layers. 

 

Figure 5. Structure of artificial neural network with HOG feature extraction. 

2.6. Artificial neural network with transfer learning feature extraction 

Transfer learning allows us to build better performing artificial neural network models faster and 
with a better accuracy by using previously pre-trained models. In transfer learning, we used a pre-
trained model which is trained on a large and general enough dataset to serve as a generic model for 
our needs. We can use these pre-trained models without having to train a model from scratch on a 
large dataset. 

MobileNet V2 model was developed at Google [36], pre-trained on the ImageNet dataset with 
1.4M images and 1000 classes of web images. Since ImageNet is a large dataset in terms of number 
of images and classes, models trained with this dataset and giving good results can be easily adapted 
for other datasets. 

We created an artificial neural network using transfer learning feature extraction as in Figure 6. 
We chose 32 as the batch size in the artificial neural network. In this artificial neural network, we first 
subjected RGB images to data augmentation, then we extracted features with MobileNet V2 feature 
extractor, transformed the extracted features into vector by the global average pooling layer and 
passing them through various dense, batch normalization, dropout layers. All MobileNet V2 feature 
extractor weights are frozen for 5 epochs in order to heat the weights of other layers. Learning rate 
was 0.001 during initial 5 epochs. Then we applied the first fine-tuning process for 45 epochs by 
unfreezing the last 4 layers of MobileNet V2, reducing the learning rate to 0.0001. Later we applied 
the second fine-tuning process for 50 epochs by unfreezing the last 6 layers of MobileNet V2 and 
reducing the learning rate to 0.0001. So, we used 100 epochs in total for training. 
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Figure 6. Structure of artificial neural network with transfer learning feature extraction. 

2.7. Artificial neural network with feature fusion 

Feature fusion is the process of combining features extracted each of based on a different feature 
extraction method. Combining features can improve the accuracy of a classification model. We 
performed feature fusion by concatenating the descriptive feature vectors obtained from the artificial 
neural network which is using transfer learning feature extraction and the artificial neural network 
which is using HOG feature extraction. 

 

Figure 7. Structure of artificial neural network with feature fusion. 

The artificial neural network using feature fusion is shown in Figure 7. This network consists of 
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two separate branches through which HOG and RGB images pass. After the descriptive feature vectors 
which contains 128 neurons obtained from each of these branches are combined with a concatenation 
layer, they reach the output layer by passing through the dense, batch normalization layer, and dropout 
layers. By using the softmax activation function in the output layer, an estimate is made about which 
class the input image belongs to. The images were given to the network in batches of 32 images during 
the training. After training with a learning rate of 0.001 for 5 epochs, we unfreeze the last 4 layers of 
the MobileNet V2 feature extractor on the transfer learning feature extraction branch to apply the first 
fine tuning. We changed the learning rate to 0.0001 and trained the model for 45 epochs. Then, for the 
second fine tuning, we unfreeze the last 6 layers of the MobileNet V2 feature extractor, changed the 
learning rate to 0.00001 and trained the model for 50 more epochs. 

3. Results 

Figures 8 and 9 show the results of accuracy and loss results obtained from training and validation 
datasets of the artificial neural network using only HOG feature extraction. The accuracy and loss 
results in the training and validation datasets are not far from each other. Accuracy results remained 
approximately the same from the start of training and showed minor oscillations. Although the loss 
values followed a similar structure, especially after the 85th epoch, the loss values of the training 
dataset remained constant, while the loss value of the validation dataset made some peaks. 

 

Figure 8. Accuracy results of artificial neural network with HOG feature extraction. 

 

Figure 9. Loss results of artificial neural network with HOG feature extraction. 
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Figures 10 and 11 show the graphs of the accuracy and loss results obtained from the training and 
validation datasets of the artificial neural network using only transfer learning feature extraction. The 
training and validation accuracy values, which converged during the first 35 epochs, then began to 
diverge from each other. In addition, after the 80th epoch, both the validation and training set accuracy 
values remained approximately constant, sitting on a plateau around 92 and 96%, respectively. 

 

Figure 10. Accuracy results of artificial neural network with transfer learning feature extraction. 

 

Figure 11. Loss results of artificial neural network with transfer learning feature extraction. 

Figures 12 and 13 show the graphs of the accuracy and loss results obtained from the training and 
validation datasets of the artificial neural network using feature fusion, in which HOG and transfer 
learning feature extraction methods are used simultaneously. When we examine the accuracy and loss 
results of the feature fusion model, it is seen that the training and validation accuracy and loss values 
converge after the 20th epoch, and that the oscillation of the accuracy and loss values decreases after 
the 50th epoch.  
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Figure 12. Accuracy results of neural network with feature fusion. 

 

Figure 13. Loss results graphic of artificial neural network with feature fusion. 

We gave the accuracy values of all three models on the training, validation and test datasets in 
Table 3. When the model using feature fusion is compared to the model using transfer learning feature 
extraction method, it has been seen that the accuracy value is 1.65, 5.53 and 1.53% higher in the 
training, validation and test datasets, respectively. These results show us that the feature fusion model 
increases classification accuracy compared to the other two models. When we compared the accuracy 
values in the training set of the feature fusion model with the accuracy values in the validation and test 
datasets, we found a difference of -0.07 and -0.9%, respectively.  

Table 3. Accuracy results of three models on training, validation and test datasets. 

 
HOG feature extraction

model 

Transfer learning feature extraction

model 
Feature fusion model

Training accuracy 46.51% 96.71% 98.33% 

Validation accuracy 50.78% 92.96% 98.40% 

Test accuracy 44.36% 97.74% 99.24% 

Confusion matrix of the HOG feature extraction model on the test dataset is shown in Table 4. It 
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is seen that this model predicts the majority of the samples given in the test dataset as healthy class. 
Confusion matrix of the transfer learning feature extraction model on the test dataset is given in Table 5. 
In this model, the most error was estimating the images of the healthy class as belonging to the bean 
rust class. Confusion matrix of the feature fusion model on the test dataset is given in Table 6. 

Table 4. Confusion matrix of HOG feature extraction model. 

 Predicted Healthy Predicted Bean Rust Predicted Angular Leaf Spot 

Healthy 34 1 9 

Bean Rust 36 2 7 

Angular Leaf Spot 21 0 23 

Table 5. Confusion matrix of transfer learning feature extraction model. 

 Predicted Healthy Predicted Bean Rust Predicted Angular Leaf Spot

Healthy 41 3 0 

Bean Rust 0 45 0 

Angular Leaf Spot 0 0 44 

Table 6. Confusion matrix of feature fusion model. 

 Predicted Healthy Predicted Bean Rust Predicted Angular Leaf Spot 

Healthy 44 0 0 

Bean Rust 0 44 1 

Angular Leaf Spot 0 0 44 

Table 7. Classification report of models. 

 Precision Recall F1-Score 

Healthy 1.00a 1.00b 0.37c 1.00a 0.93b 0.77c 1.00a 0.96b 0.50c 

Bean Rust 1.00a 0.94b 0.67c 0.98a 1.00b 0.04c 0.99a 0.97b 0.08c 

Angular Leaf Spot 0.98a 1.00b 0.59c 1.00a 1.00b 0.52c 0.99a 1.00b 0.55c 

*note: a: Feature fusion model, b: Transfer learning feature extraction model, c: HOG feature extraction model 

In Table 4, we examined the confusion matrix obtained using the test dataset with the HOG feature 
extraction model. 77.27% of the leaves belonging to the healthy class were classified as healthy, 2.27% 
as bean rust, and 20.45% as angular leaf spot. 80% of the leaves belonging to the bean rust class were 
classified as healthy, 4.44% as bean rust, and 15.56% as angular leaf spot. 47.72% of the leaves 
belonging to the angular leaf spot class were classified as healthy and 52.28% classified correctly.  

In Table 5, we examined the confusion matrix obtained using the test dataset with the Transfer 
learning feature extraction model. 93.18% of the leaves belonging to the healthy class were classified 
as healthy and 6.82% as bean rust. All of the leaves belonging to the bean rust class and angular leaf 
spot classes were classified correctly.  

In Table 6, we examined the confusion matrix obtained by using the test dataset with the feature 
fusion model. All of the leaves belonging to the healthy and angular leaf spot classes were classified 
correctly. On the other hand, 97.78% of the leaves belonging to the bean rust class were classified as 
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bean rust and 2.2% as angular leaf spot.  
In Table 7, we examined the classification report of three different models on the test dataset 

Feature fusion model have best values on precision, recall and F1-scores. 

4. Discussion  

In the HOG feature extraction model, HOG images have compressed information. Because of 
that the HOG feature extraction model was kept shallow to prevent overfitting. Also HOG feature 
extraction model has been trained from scratch with a shallower structure, so the loss and accuracy 
values have remained low compared to other methods (Figures 8 and 9). Fluctuation in validation 
losses can be about the small validation dataset However, the accuracy and loss values obtained in the 
training and validation sets are not far from each other. In this sense, we can say that HOG images are 
successful in preventing overfitting. 

In the transfer learning feature extraction model, the training and validation accuracy values, 
which converged during the first 35 epochs, then started to diverge from each other. his indicates 
overfitting. In addition, after the 80th epoch, both validation and training dataset accuracy values 
remained approximately constant, reaching a plateau in the 92 and 96% bands, respectively (Figure 10). 

When we examine the accuracy and loss results of the feature fusion model, in which HOG and 
transfer learning feature extraction methods are used simultaneously, it is seen that they training and 
validation results converge after the 20th epoch, and that the oscillation of accuracy and loss values 
decreases after the 50th epoch (Figures 12 and 13). The results indicate that this artificial neural 
network with feature fusion shortens the converge time, increases the accuracy, and a more 
generalizable model can be obtained [24,25]. 

The results of the accuracy performances of all three models on training, validation and test 
datasets are given in Table 3. When the feature fusion model is compared with the transfer learning 
feature extraction model, it is seen that it provides 1.65, 5.53 and 1.53% performance increase in 
accuracy on training, validation and test datasets, respectively. These results show us that the feature 
fusion model increases classification accuracy compared to the other two models. 

In Table 4, we examined the confusion matrix obtained using the test dataset with the HOG feature 
extraction model. 77.27% of the leaves belonging to the healthy class were classified as healthy, 2.27% 
as bean rust, and 20.45% as angular leaf spot. 80% of the leaves belonging to the bean rust class were 
classified as healthy, 4.44% as bean rust, and 15.56% as angular leaf spot. 47.72% of the leaves 
belonging to the angular leaf spot class were classified as healthy and 52.28% classified correctly. 
These results show that the HOG feature extraction model is not very successful in classification and 
especially fails to distinguish diseased leaves from healthy ones. The shallow nature of the HOG 
feature extraction model and the use of only HOG images that already have compressed information 
are the most important reasons for this underfitting. 

In Table 5, we examined the confusion matrix obtained using the test dataset with the Transfer 
learning feature extraction model. 93.18% of the leaves belonging to the Healthy class were classified 
as healthy and 6.82% as bean rust. All of the leaves belonging to the Bean rust class and Angular leaf 
spot classes were classified correctly. These results show that while the diseased leaves are correctly 
detected with the transfer learning feature extraction model, some healthy leaves are misclassified as 
bean rust. 

In Table 6, we examined the confusion matrix obtained by using the test dataset with the feature 
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fusion model. All of the leaves belonging to the healthy and angular leaf spot classes were classified 
correctly. On the other hand, 97.78% of the leaves belonging to the bean rust class were classified as 
bean rust and 2.2% as angular leaf spot. These results show that while healthy and angular leaf spot 
leaves were detected correctly with the feature fusion model, some healthy leaves were misclassified 
as angular leaf spot. 

There are two main reasons for the misclassifications in Tables 5 and 6. The first and most 
important is that the dataset we use is not large enough and the second there are background scenes in 
most of the images. The fact that the background scenes have similar color and texture to the diseases 
may be the reason for the error [26,28]. 

 Original Image Visual Detection 

Healthy 

 

Bean Rust 

 

Angular Leaf Spot

 

Figure 14. Visual detection results. 

Figure 14 shows some images and visual detection results in the test dataset by using feature 
fusion model. Lime v0.2.0.1 library was used to visualize the results [37]. As seen in visual detection 
column, the most important parts of the image used by the model to make a decision for classification, 
are outlined in green, and the unimportant parts for the model are outlined in red. 

It is seen that the proposed feature fusion model has shown state of the art accuracy when 
compared with other studies using ibean dataset and transfer learning method [25,38].  

In recent years, image classification by transformer-based methods has been reported to give more 
successful results in terms of accuracy than CNN-based methods [39,40]. However, training 
transformer models from scratch requires much more data than CNN models, but agricultural 
production has a periodic structure, and it is often not possible to collect more images of the problem 
in question [41]. Also, transformer methods usually result in larger model size. Therefore, the 
operation of models using the transformer method may be slower than CNN models in computer 
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vision [42]. If the models developed to detect leaf diseases are used in smart spraying machines (only 
spraying the areas where the disease is present) machines, they should be able to work in mobile and 
edge devices with low computational resources [43]. In this respect, it is important that the models 
developed are not only accurate but also suitable for working on mobile and edge devices. Yu et al. [44] 
developed the Inception Convolutional Vision Transformer (ICVT) model by mixing CNN and 
transformer architecture and tested it on the ibean dataset. The number of parameters, which was 49M 
in the ViT/16 model [45], has decreased to 25M. The model we developed that is based on CNN feature 
fusion achieved slightly better accuracy compared to the ICVT model with 34% less (16M) parameters. 

Furthermore, inductive bias plays an important role in the ability of machine learning models to 
generalize to unseen data, and CNN models have a higher inductive bias than transformer models [43].  

5. Conclusions 

In this study, we made feature fusion of descriptive vectors obtained from two different machine 
learning models, which are using HOG feature extraction and transfer learning feature extraction, to 
classify healthy, bean rust and angular leaf spot classes on bean leaf images. The model developed in 
the study is unique in terms of its network structure, pre-processing processes used, input types and 
the use of this method for disease detection in bean leaves. This model is composed of two different 
branches that pass-through HOG and RGB images. After combining the descriptive characteristic 
vectors that contain 128 neurons obtained from each of these branches with concatenation layer, they 
reach the output layer through the dense, batch normalization and dropout layers. The softmax 
activation function in the output layer is used to estimate the class of input image. The model using 
feature fusion has higher accuracy on training, validation and test datasets than models using only 
HOG feature extraction and only Transfer Learning feature extraction. In addition, this new method 
provides a faster converge to the solution during the training of the artificial neural network. The 
present study has only examined bean leaf dataset Therefore, we will apply this model on various 
datasets to obtain better generalizability. Also, we will focus on model size optimization for future 
mobile applications. 
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