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We study the surfaces corresponding to solutions of the localized induction equation in the pseudo-Galilean space G1
3
. We classify

such surfaces with null curvature and characterize some special curves on these surfaces in G1
3
.

1. Introduction

The localized induction equation (LIE), also called the vortex
filament equation or the Betchov-Da Rios equation, is an
idealized model of the evolution of the centerline of a thin
vortex tube in a three-dimensional inviscid incompressible
fluid. The connection of LIE with the theory of solitons was
discovered by Hasimoto proving that the solutions of LIE
are related to solutions of the cubic nonlinear Schrödinger
equation, which is well known to be an equation with soliton
solutions. For details, see [1–5].

The soliton surface associated with the nonlinear
Schrödinger equation is called a Hasimoto surface. The
geometric properties of such surfaces are investigated in
[4, 6, 7]. Bymotivating the fact that the study of theHasimoto
surfaces can be interesting in the pseudo-Galilean space
which is one of the Cayley-Klein spaces, we are mainly
interested in the geometric properties of these surfaces in the
pseudo-Galilean space.

Let (𝑀, 𝑔) be a 3-dimensional Riemannian manifold and
∇ the Levi-Civita connection with respect to 𝑔. Note that the
cross product of two vector fields 𝑋,𝑌 on 𝑀 may be defined
as

𝑔 (𝑋×𝑌,𝑍) = 𝑑V
𝑔
(𝑋, 𝑌, 𝑍) , (1)

where 𝑑V
𝑔
is the volume form of the manifold and 𝑋,𝑌, 𝑍 ∈

Γ(𝑇𝑀). Denote by r = r(𝑠, 𝑡) the vortex filament; then LIE or
the Betchov-Da Rios filament equation is

r
𝑡
= r
𝑠
×∇r
𝑠

r
𝑠
. (2)

On the other hand, the Galilean space which can be
defined in three-dimensional projective space 𝑃3(R) is the
space of Galilean Relativity.The geometries of Galilean space
and pseudo-Galilean space have similarities but, of course,
are different. For study of surfaces in the pseudo-Galilean
space, we refer to Šipuš and Divjak’s series of works [8–13].

In classical geometry of surfaces, it makes sense to classify
the surfaces having null curvature. In particular, a surface is
said to be developable if it has null Gaussian curvature. In
this case the surface can be flattened onto a plane without
distortion. We remark that cylinders and cones are examples
of developable surfaces, but the spheres are not under any
metric.

There exist significant applications of the results obtained
on the surfaces of null curvature in different fields, for
example, inmicroeconomics.When the graphs of production
functions in microeconomics have null Gaussian curvature,
one can realize a “good” analysis of isoquants by projections,
without losing essential information about their geometry
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(see [14, 15]). By targeting that, we study the Hasimoto
surfaces in the pseudo-Galilean space G1

3.
In this paper, we classify the Hasimoto surfaces having

null curvature in G1
3. Then we analyze the parameter curves

on such surfaces from the point of view to be the geodesics,
asymptotic lines, and principal curves in G1

3.

2. Preliminaries

The pseudo-Galilean space G1
3 is one of the Cayley-Klein

spaces with absolute figure that consists of the ordered
triple {𝜔, 𝑓, 𝐼}, where 𝜔 is the absolute plane in the three-
dimensional real projective space𝑃3(R),𝑓 is the absolute line
in 𝜔, and 𝐼 is the fixed hyperbolic involution of points of 𝑓
[8, 9, 13].

Homogenous coordinates of G1
3 can be given in the

following way: The absolute plane 𝜔 is given by 𝑥0 = 0, the
absolute line 𝑓 by 𝑥0 = 𝑥1 = 0, and the hyperbolic involution
by (0 : 0 : 𝑥2 : 𝑥3) 󳨃→ (0 : 0 : 𝑥3 : 𝑥2), which is
equivalent to the requirement for the conic 𝑥

2
2 − 𝑥

2
3 = 0

to be the absolute conic. The metric connections in G1
3 are

introduced with respect to the absolute figure. According to
the affine coordinates given by (𝑥0 : 𝑥1 : 𝑥2 : 𝑥3) = (1 : 𝑥 :

𝑦 : 𝑧), the distance between the points X = (𝑥1, 𝑥2, 𝑥3) and
Y = (𝑦1, 𝑦2, 𝑦3) is defined by (see [16])

𝑑 (X,Y) =
{

{

{

󵄨󵄨󵄨󵄨𝑦1 − 𝑥1
󵄨󵄨󵄨󵄨 , if 𝑥1 ̸= 𝑦1,

√
󵄨󵄨󵄨󵄨󵄨
(𝑦2 − 𝑥2)

2
− (𝑦3 − 𝑥3)

2󵄨󵄨󵄨󵄨󵄨, if 𝑥1 = 𝑦1.
(3)

The pseudo-Galilean scalar product of the vectors X =

(𝑥1, 𝑥2, 𝑥3) and Y = (𝑦1, 𝑦2, 𝑦3) is defined by

X ⋅Y =
{

{

{

𝑥1𝑦1, if 𝑥1 ̸= 0 or 𝑦1 ̸= 0,

𝑥2𝑦2 − 𝑥3𝑦3, if 𝑥1 = 0, 𝑦1 = 0.
(4)

In this sense, the pseudo-Galilean norm of a vectorX is ‖X‖ =

√|X ⋅ X|. A vector X = (𝑥1, 𝑥2, 𝑥3) is called isotropic if 𝑥1 =

0; otherwise it is called nonisotropic. All unit nonisotropic
vectors are of the form (1, 𝑥2, 𝑥3). The isotropic vector X =

(0, 𝑥2, 𝑥3) is called spacelike, timelike, and lightlike if 𝑥2
2 −𝑥2

3 >

0, 𝑥2
2 − 𝑥2

3 < 0, and 𝑥2 = ±𝑥3, respectively. The pseudo-
Galilean cross product of X and Yon G1

3 is given by

X×Y =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 −e2 e3
𝑥1 𝑥2 𝑥3

𝑦1 𝑦2 𝑦3

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (5)

where e
𝑖
= (𝛿
𝑖1, 𝛿𝑖2, 𝛿𝑖3), 1 < 𝑖 ≤ 3.

Let 𝛾 be an admissible curve given by 𝛾(𝑠) =

(𝛾1(𝑠), 𝛾2(𝑠), 𝛾3(𝑠)) in G1
3; that is, it has no isotropic tangent

vectors for ∀𝑠. Note that an admissible curve has nonzero

curvature. Then its curvature and torsion functions are,
respectively, defined by

𝜅 (𝑠) =
√
󵄨󵄨󵄨󵄨󵄨
( ̈𝛾2 (𝑠))

2
− ( ̈𝛾3 (𝑠))

2󵄨󵄨󵄨󵄨󵄨

( ̇𝛾1 (𝑠))
2 ,

𝜏 (𝑠) =
̈𝛾2 (𝑠)

...
𝛾3 (𝑠) −

...
𝛾2 (𝑠) ̈𝛾3 (𝑠)

󵄨󵄨󵄨󵄨 ̇𝛾1 (𝑠)
󵄨󵄨󵄨󵄨
5
𝜅2 (𝑠)

,

(6)

where ̇𝛾
𝑖
(𝑠) = 𝑑𝛾

𝑖
/𝑑𝑠 and so forth, 1 ≤ 𝑖 ≤ 3. If 𝛾 is an

admissible curve parameterized by the arc length 𝑠, it is of
the form

𝛾 (𝑠) = (𝑠, 𝛾2 (𝑠) , 𝛾3 (𝑠)) . (7)

The associated Frenet frame field of 𝛾 is the trihedron
{T,N,B} such that

T (𝑠) = ̇𝛾 (𝑠) = (1, ̇𝛾2 (𝑠) , ̇𝛾3 (𝑠)) ,

N (𝑠) =
1

𝜅 (𝑠)
̈𝛾 (𝑠) =

1
𝜅 (𝑠)

(0, ̈𝛾2 (𝑠) , ̈𝛾3 (𝑠)) ,

B (𝑠) =
1

𝜅 (𝑠)
(0, 𝜖 ̈𝛾3 (𝑠) , 𝜖 ̈𝛾2 (𝑠)) ,

(8)

where 𝜖 = sgn(( ̈𝛾2(𝑠))
2 − ( ̈𝛾3(𝑠))

2). In this sense, the Frenet
formulas for the curve 𝛾 are [17, 18]

Ṫ = 𝜅N,

Ṅ = 𝜏B,

Ḃ = 𝜏N.

(9)

Let 𝑀
2 be a surface in the pseudo-Galilean space G1

3
parameterized by

r (𝑢1, 𝑢2) = (𝑟1 (𝑢1, 𝑢2) , 𝑟2 (𝑢1, 𝑢2) , 𝑟3 (𝑢1, 𝑢2)) . (10)

Denote (𝑟
𝑘
)
𝑢
𝑖

= 𝜕𝑟
𝑘
/𝜕𝑢
𝑖
and (𝑟

𝑘
)
𝑢
𝑖
𝑢
𝑗

= 𝜕2𝑟
𝑘
/𝜕𝑢
𝑖
𝜕𝑢
𝑗
, 1 ≤ 𝑘 ≤ 3

and 1 ≤ 𝑖, 𝑗 ≤ 2. Then such a surface is admissible if and
only if (𝑟1)𝑢

𝑖

̸= 0 for some 𝑖 = 1, 2.The coefficients of the first
fundamental form of𝑀2 are

𝑔
𝑖
= (𝑟1)𝑢

𝑖

,

ℎ
𝑖𝑗
= (0, (𝑟2)𝑢

𝑖

, (𝑟3)𝑢
𝑖

) ⋅ (0, (𝑟2)𝑢
𝑗

, (𝑟3)𝑢
𝑗

) ,

𝑖, 𝑗 = 1, 2,

(11)

or, in matrix form,

𝑑𝑠
2
= (

𝑑𝑠21 0

0 𝑑𝑠22
) , (12)

where 𝑑𝑠21 = (𝑔1𝑑𝑢1 + 𝑔2𝑑𝑢2)
2 and 𝑑𝑠22 = ℎ11𝑑𝑢

2
1 +

2ℎ12𝑑𝑢1𝑑𝑢2 + ℎ22𝑑𝑢
2
2.
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Let us define the function𝑊 as

𝑊 = √
󵄨󵄨󵄨󵄨󵄨󵄨
((𝑟1)𝑢1

(𝑟2)𝑢2
− (𝑟1)𝑢2

(𝑟2)𝑢1
)
2
− ((𝑟1)𝑢1

(𝑟3)𝑢2
− (𝑟1)𝑢2

(𝑟3)𝑢1
)
2󵄨󵄨󵄨󵄨󵄨󵄨
. (13)

Thus a side tangential vector is defined by

S =
1
𝑊

[(𝑟1)𝑢1
r
𝑢2

− (𝑟1)𝑢2
r
𝑢1
] , (14)

which can be a spacelike isotropic or a timelike isotropic
vector. The unit normal vector field U of𝑀2 is given by

U =
1
𝑊

(0, (𝑟1)𝑢1 (𝑟3)𝑢2 − (𝑟1)𝑢2
(𝑟3)𝑢1

, (𝑟1)𝑢1
(𝑟2)𝑢2

− (𝑟1)𝑢2
(𝑟2)𝑢1

) .

(15)

The second fundamental form II of𝑀2 and its coefficients are
defined by

II = 𝐿11𝑑𝑢
2
1 + 2𝐿12𝑑𝑢1𝑑𝑢2 +𝐿22𝑑𝑢

2
2,

𝐿
𝑖𝑗
= 𝜖

1
𝑔1

(𝑔1 (0, (𝑟2)𝑢
𝑖
𝑢
𝑗

, (𝑟3)𝑢
𝑖
𝑢
𝑗

)

− (𝑔
𝑖
)
𝑢
𝑗

(0, (𝑟2)𝑢1 , (𝑟3)𝑢1)) ⋅U = 𝜖

⋅
1
𝑔2

(𝑔2 (0, (𝑟2)𝑢
𝑖
𝑢
𝑗

, (𝑟3)𝑢
𝑖
𝑢
𝑗

)

− (𝑔
𝑖
)
𝑢
𝑗

(0, (𝑟2)𝑢2 , (𝑟3)𝑢2)) ⋅U,

(16)

where 𝜖 = U⋅U = −S⋅S = ±1. Two types of admissible surfaces
can be distinguished: spacelike surfaces having timelike unit
normals (𝜖 = −1) and timelike ones having spacelike unit
normals (𝜖 = 1). The third fundamental form of𝑀2 is

III = 𝑃11𝑑𝑢
2
1 + 2𝑃12𝑑𝑢1𝑑𝑢2 +𝑃22𝑑𝑢

2
2, (17)

where

𝑃11 = − 𝜖
𝑔2
2𝐿

2
11 − 2𝑔1𝑔2𝐿11𝐿12 + 𝑔2

1𝐿
2
12

𝑊2 ,

𝑃12

= − 𝜖
𝑔2
2𝐿11𝐿12 − 𝑔1𝑔2 (𝐿11𝐿22 + 𝐿2

12) + 𝑔2
1𝐿12𝐿22

𝑊2 ,

𝑃22 = − 𝜖
𝑔2
2𝐿

2
12 − 2𝑔1𝑔2𝐿11𝐿22 + 𝑔2

1𝐿
2
22

𝑊2 .

(18)

The Gaussian curvature and the mean curvature of 𝑀2 are,
respectively, defined by

𝐾 = − 𝜖
𝐿11𝐿22 − 𝐿2

12
𝑊2 , (19)

𝐻 = − 𝜖
𝑔2
2𝐿11 − 2𝑔1𝑔2𝐿12 + 𝑔2

1𝐿22
2𝑊2 . (20)

A surface in G1
3 is said to be minimal if its mean curvature

vanishes.

3. Hasimoto Surfaces with Null
Curvature in G1

3

Let 𝐼
𝑠
and 𝐼
𝑡
be the open intervals of R and 𝐷 = 𝐼

𝑠
× 𝐼
𝑡
open

domain of R2.
A Hasimoto surface 𝑀2 is the surface traced out by a

curve inG1
3 as it evolves over time according to this evolution

equation:
r
𝑡
= r
𝑠
× r
𝑠𝑠
, (21)

where r : 𝐷 ⊂ R2 → G1
3 is smooth and regular mapping

such that𝑀2 = r(𝐷).
In order to parameterize by arc length the curve r(𝑠, 𝑡)

for ∀𝑡 ∈ 𝐼
𝑡
, the parameterization of the surface in G1

3 may
be chosen as follows:

r (𝑠, 𝑡) = (𝑠 + 𝑢 (𝑡) , 𝑟2 (𝑠, 𝑡) , 𝑟3 (𝑠, 𝑡)) , (22)

where 𝑢 = 𝑢(𝑡) is a smooth function of one variable on
𝐼
𝑡
. After using the pseudo-Galilean cross product given by

(5) and (21), it can be easily seen that the function 𝑢(𝑡) is a
constant function. In this sense, we get the parameterization
of a Hasimoto surface𝑀

2 in G1
3 as

r (𝑠, 𝑡) = (𝑠 + 𝜆, 𝑟2 (𝑠, 𝑡) , 𝑟3 (𝑠, 𝑡)) (23)

for arbitrary constant 𝜆. Note that the Hasimoto surface
given by (23) is always admissible; that is, it has no pseudo-
Euclidean tangent planes, if (𝑟2)𝑡 ̸= 0.

Now, let 𝑀2 be a Hasimoto surface given by (23) in G1
3.

Denote the associated Frenet frame field of the curve 𝑟 =

𝑟(𝑠, 𝑡) for ∀𝑡 ∈ 𝐼
𝑡
by {T,N,B}. Then, the derivative of T with

respect to 𝑡 has the expression
T
𝑡
= 𝜑1N+𝜑2B (24)

for some smooth functions 𝜑1, 𝜑2 on 𝐷. By (21) and (24), we
get

𝜑1 = 𝜀𝜅𝜏,

𝜑2 = 𝜀𝜅
𝑠
.

(25)

Moreover, applying the compatibility condition T
𝑠𝑡

= T
𝑡𝑠

yields that
𝜅
𝑡
= 𝜀 ((𝜅𝜏)

𝑠
+ 𝜅
𝑠
𝜏) . (26)

In similar ways, we deduce

N
𝑡
= 𝜀 (

𝜅
𝑠𝑠

𝜅
+ 𝜏

2
)B,

B
𝑡
= 𝜀 (

𝜅
𝑠𝑠

𝜅
+ 𝜏

2
)N.

(27)



4 Advances in Mathematical Physics

The compatibility conditions N
𝑠𝑡

= N
𝑡𝑠
and B

𝑠𝑡
= B
𝑡𝑠
give

𝜏
𝑡
= 𝜀 (

𝜅
𝑠𝑠

𝜅
)
𝑠

+ 2𝜀𝜏𝜏
𝑠𝑠
. (28)

Summing up, we have the following result.

Lemma 1. Let 𝑀2 be a Hasimoto surface given by (23) in G1
3.

Then the following equations hold:

(i) 𝜅
𝑡
= 𝜀((𝜅𝜏)

𝑠
+ 𝜅
𝑠
𝜏) and 𝜏

𝑡
= 𝜀(𝜅
𝑠𝑠
/𝜅)
𝑠
+ 2𝜀𝜏𝜏

𝑠𝑠
;

(ii)

[
[

[

T
𝑡

N
𝑡

B
𝑡

]
]

]

=

[
[
[
[
[

[

0 𝜀𝜅𝜏 𝜀𝜅
𝑠

0 0 𝜀 (
𝜅
𝑠𝑠

𝜅
+ 𝜏2)

0 𝜀 (
𝜅
𝑠𝑠

𝜅
+ 𝜏2) 0

]
]
]
]
]

]

[
[

[

T
N
B

]
]

]

, (29)

where {T,N,B} is the Frenet frame field of the curve 𝑟 = 𝑟(𝑠, 𝑡)

for ∀𝑡 ∈ 𝐼
𝑡
.

Example 2. Let us consider the spacelike admissible Hasi-
moto surface 𝑀2 in G1

3 parameterized by

r (𝑠, 𝑡) = (𝑠 − 3, 𝑡𝑠 − 2, 𝑠
3

6
) , −2.5 ≤ 𝑠, 𝑡 ≤ 2.5. (30)

It can be easily seen that

T (𝑠, 𝑡) = (1, 𝑡, 𝑠
2

2
) ,

N (𝑠, 𝑡) = (0, 0, 1) ,

B (𝑠, 𝑡) = (0, − 1, 0) ,

𝜅 (𝑠, 𝑡) = 𝑠,

𝜏 (𝑠, 𝑡) = 0.

(31)

We plot the surface𝑀
2 as in Figure 1.

Example 3. Take the timelike admissible Hasimoto surface
𝑀2 in G1

3 as

r (𝑠, 𝑡) = (𝑠, cosh (𝑠 + 𝑡) − 1, sinh (𝑠 + 𝑡)) ,

− 1.3 ≤ 𝑠, 𝑡 ≤ 1.3.
(32)

It follows that

T (𝑠, 𝑡) = (1, sinh (𝑠 + 𝑡) , cosh (𝑠 + 𝑡)) ,

N (𝑠, 𝑡) = (0, cosh (𝑠 + 𝑡) , sinh (𝑠 + 𝑡)) ,

B (𝑠, 𝑡) = (0, sinh (𝑠 + 𝑡) , cosh (𝑠 + 𝑡)) ,

𝜅 (𝑠, 𝑡) = 1,

𝜏 (𝑠, 𝑡) = 1.

(33)

We plot the surface𝑀2 as in Figure 2.
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Theorem4. Let𝑀2 be aHasimoto surface given by (23) inG1
3.

Then

(i) 𝑀2 has null Gaussian curvature in G1
3 if and only if

𝜀(𝜅
𝑠𝑠
/𝜅) + (𝜀 − 1)𝜏2 = 0;

(ii) 𝑀2 is a minimal Hasimoto surface in G1
3 if and only

if 𝜅
𝑠𝑠

+ 𝜅𝜏2 = 0, where 𝜅 and 𝜏 are, respectively, the
curvature and the torsion of the curve 𝑟 = 𝑟(𝑠, 𝑡) for
∀𝑡 ∈ 𝐼

𝑡
.
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Proof. Let 𝑀2 be a Hasimoto surface given by (23) in G1
3.

Then the unit normal vector field U of𝑀2 is

U (𝑠, 𝑡) =
(0, (𝑟2)𝑠𝑠 , (𝑟3)𝑠𝑠)

√
󵄨󵄨󵄨󵄨󵄨
[(𝑟2)𝑠𝑠]

2
− [(𝑟3)𝑠𝑠]

2󵄨󵄨󵄨󵄨󵄨

= N (𝑠, 𝑡) , (34)

whereN(𝑠, 𝑡) is the principal normal vector field of the curve
r = r(𝑠, 𝑡) for ∀𝑡 ∈ 𝐼

𝑡
. Thus, we have

𝑔1 = 1,

𝑔2 = 0,

𝐿11 = 𝜀𝜅,

𝐿12 = 𝜀𝜅𝜏,

𝐿22 = 𝜅
𝑠𝑠
+ 𝜅𝜏

2
.

(35)

From (19) and (35), we deduce that

𝐾 =
𝜀𝜅𝜅
𝑠𝑠
+ (𝜀 − 1) 𝜅2𝜏2

𝜅2
, (36)

which gives the first statement.
Next by substituting (35) into (20), we obtain that𝑀2 is a

minimal Hasimoto surface if and only if

𝜅
𝑠𝑠
+ 𝜅𝜏

2
= 0. (37)

Thus the proof is completed.

Gheorghe Tzitzeica (1873–1939) introduced a class of
curves, nowadays called Tzitzeica curves, and a class of sur-
faces of the 3-dimensional Euclidean space, called Tzitzeica
surface.

A Tzitzeica surface is a spatial surface for which the ratio
of its Gaussian curvature𝐾 and the distance 𝑑 from the origin
to the tangent plane at any arbitrary point of the surface
satisfy𝐾 = 𝜆𝑑

4 for a constant𝜆.This class of surface is of great
interest, having important applications both in mathematics
and in physics (see [15]). The relation between Tzitzeica
curves and surfaces is the following: For a Tzitzeica surface
with negative Gaussian curvature, the asymptotic lines are
Tzitzeica curves [19–21].

It is easy to prove that the tangent plane at an arbitrary
point of any Hasimoto surface passes through the origin of
G1

3. That is why all Hasimoto surfaces having null Gaussian
curvature satisfy Tzitzeica condition in G1

3.
Therefore the following result can be given without proof.

Theorem5. Let𝑀2 be aHasimoto surface given by (23) inG1
3.

Then it is a Tzitzeica surface if and only if 𝜀(𝜅
𝑠𝑠
/𝜅)+(𝜀−1)𝜏2 =

0, where 𝜅 and 𝜏 are, respectively, the curvature and the torsion
of the curve 𝑟 = 𝑟(𝑠, 𝑡) for ∀𝑡 ∈ 𝐼

𝑡
.

On the other hand, the third fundamental form III of
a surface in G1

3 may be introduced in the analogous way
as in Euclidean space. Let 𝑀2 be a surface and U its unit
normal vector in G1

3. If 𝑀2 is spacelike (timelike) in G1
3,

then the end points of associated position vectors of U lie

on a unit spacelike sphere 𝑧
2 − 𝑦2 = 1 (unit timelike sphere

𝑦2 − 𝑧2 = 1). The mapping obtained in such a way is called
the Gauss mapping or the spherical mapping in G1

3. The set of
all end points of U is called the spherical image of 𝑀2 in G1

3.
In this sense, the third fundamental form is indeed the first
fundamental form of the spherical image (cf. [13]). Thus the
following result for the Hasimoto surfaces inG1

3 can be given.

Corollary 6. Let 𝑀2 be a Hasimoto surface given by (23)
in G1

3. Then its third fundamental form is singular; that is,
detIII = 0.

Proof. Let us consider theHasimoto surface𝑀2 given by (23)
inG1

3.Then from (35) we have𝑔2 = 0 as one of the coefficients
of the first fundamental formof𝑀2.This immediately implies
from (18) that 𝑃11𝑃22 − 𝑃2

12 = 0, which completes the proof.

4. Curves on Hasimoto Surfaces in G1
3

There exists a frame field, also called theDarboux frame field,
for the curves lying on surfaces apart from the Frenet frame
field. For details, see [22, 23]. Let 𝛾 be a curve lying on the
surface 𝑀

2 with unit normal vector field U. By taking T =

𝛾
∗
(𝑑/𝑑𝑡) one can get a new frame field {T,T ×U,U} which is

the Darboux frame field of 𝛾 with respect to𝑀2.
On the other hand, the second derivative ̈𝛾 of the curve

𝛾 on 𝑀
2 has a component perpendicular to 𝑀2 and a

component tangent to𝑀2; that is,

̈𝛾 = ̈𝛾
⊺
+ ̈𝛾
⊥
, (38)

where the dot “⋅” denotes the derivative with respect to the
parameter of the curve. The norms ‖ ̈𝛾

⊺‖ and ‖ ̈𝛾⊥‖ are called
the geodesic curvature and the normal curvature of 𝛾 on 𝑀2,
respectively. The curve 𝛾 is called geodesic (resp., asymptotic
line) if and only if its geodesic curvature 𝜅

𝑔
(resp., normal

curvature 𝜅
𝑛
) vanishes.

In our framework, the following results provide some
characterizations for the parameter curves of the Hasimoto
surfaces to be geodesics and asymptotic lines in G1

3.

Theorem7. Let𝑀2 be aHasimoto surface given by (23) inG1
3.

Then
(i) the 𝑠-parameter curves on 𝑀2 are geodesics of𝑀2,
(ii) the 𝑡-parameter curves on 𝑀2 are geodesics of 𝑀2 if

and only if (𝜅𝜏)
𝑠
+ 𝜅
𝑠
𝜏 vanishes, where 𝜅 and 𝜏 are,

respectively, the curvature and the torsion of the curve
𝑟(𝑠, 𝑡) for ∀𝑡 ∈ 𝐼

𝑡
.

Proof. Let us assume that 𝑀2 is a Hasimoto surface given by
(23) in G1

3. Then the geodesic curvature of the 𝑠-parameter
curves on𝑀2 is the tangential component of r

𝑠𝑠
; that is,

𝜅
𝑔
= S ⋅ r

𝑠𝑠
=

1

√
󵄨󵄨󵄨󵄨󵄨
[(𝑟2)𝑠𝑠]

2
− [(𝑟3)𝑠𝑠]

2󵄨󵄨󵄨󵄨󵄨

(r
𝑡
⋅ r
𝑠𝑠
) . (39)

From (21), we derive that the geodesic curvature 𝜅
𝑔
of the 𝑠-

parameter curves vanishes. This gives first statement.
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Similarly, the geodesic curvature of the 𝑡-parameter
curves on𝑀2 is given by

𝜅
𝑔
= S ⋅ r

𝑡𝑡
=

1

√
󵄨󵄨󵄨󵄨󵄨
[(𝑟2)𝑠𝑠]

2
− [(𝑟3)𝑠𝑠]

2󵄨󵄨󵄨󵄨󵄨

(r
𝑡
⋅ r
𝑡𝑡
) . (40)

By considering Lemma 1 into (40), we deduce that 𝜅
𝑔
is

identically zero if and only if (𝜅𝜏)
𝑠
+ 𝜅
𝑠
𝜏 vanishes, which

implies statement (ii).

Theorem8. Let𝑀2 be aHasimoto surface given by (23) inG1
3.

Then

(i) the 𝑠-parameter curves on 𝑀2 cannot be asymptotic
lines of 𝑀2,

(ii) the 𝑡-parameter curves on 𝑀2 are asymptotic lines of
𝑀2 if and only if 𝜅

𝑠𝑠
+ 𝜅𝜏2 vanishes, where 𝜅 and 𝜏 are,

respectively, the curvature and the torsion of the curve
𝑟(𝑠, 𝑡) for ∀𝑡 ∈ 𝐼

𝑡
.

Proof. Suppose that 𝑀2 is a Hasimoto surface given by (23)
in G1

3. Then the normal curvature of the 𝑠-parameter curves
on𝑀2 is the normal component of r

𝑠𝑠
; that is,

𝜅
𝑛
= U ⋅ r

𝑠𝑠
= N ⋅ (𝜅N) = 𝜅. (41)

This means that the 𝑠-parameter curves are asymptotic lines
if and only if 𝜅 = 0, which is not possible since the fact that
𝑟 = 𝑟(𝑠, 𝑡) is a regular mapping. This gives the first statement.

The normal curvature of the 𝑡-parameter curves on𝑀
2 is

defined by

𝜅
𝑛
= U ⋅ r

𝑡𝑡
= 𝜅
𝑠𝑠
+ 𝜅𝜏

2
. (42)

Equation (42) yields that the 𝑡-parameter curves are asymp-
totic lines if and only if (𝜅

𝑠𝑠
/𝜅) + 𝜏2 = 0, which completes the

proof.

ComparingTheorems 4 and 8, we have the following.

Corollary 9. A Hasimoto surface given by (23) in G1
3 is

minimal if and only if its 𝑡-parameter curves are asymptotic
lines.

A curve 𝛾 on a regular surface 𝑀
2 is called a principal

curve if and only if its velocity vector field always points
in a principal direction. Moreover, a surface 𝑀2 is called
a principal surface if and only if its parameter curves are
principal curves.

A principal curve 𝛾 on a surface in G1
3 is determined by

the following formula:

det ( ̇𝛾,U, U̇) = 0, (43)

where U is the unit normal vector field of the surface. Thus,
we have the following results.

Theorem 10. Let 𝑀2 be a Hasimoto surface given by (23) in
G1

3. Then

(i) the 𝑠-parameter curves on 𝑀2 are principal curves of
𝑀2 if and only if 𝜏 vanishes, where 𝜏 is the torsion of
the curve r(𝑠, 𝑡) for all 𝑡;

(ii) the 𝑡-parameter curves on 𝑀2 are principal curves of
𝑀2.

Proof. Assume that 𝑀2 is a Hasimoto surface given by (23)
inG1

3. Then the 𝑠-parameter curves are the principal curves if
and only if

det (𝑟
𝑠
,U,U

𝑠
) = det (𝑟

𝑠
,N,N

𝑠
) = 𝜏 det (T,N,B) , (44)

where 𝜏 is the torsion and {T,N,B} is the Frenet frame field
of the curve r = r(𝑠, 𝑡) for all 𝑡 such that det(T,N,B) = 1. By
(43), it follows that the 𝑠-parameter curves are principal if and
only if their torsions vanish, which gives the first statement.

In a similar way, by using (24), it is easily seen that
det(r
𝑡
,U,U

𝑡
) = 0, which specify that 𝑡-parameter curves are

the principal curves.
Therefore the proof is completed.

As a consequence ofTheorem 10, the following result can
be given.

Corollary 11. A Hasimoto surface 𝑀2 given by (23) in G1
3 is

a principal surface if and only if the torsions of s-parameter
curves vanish.
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[10] B. Divjak and Ž. M. Šipuš, “Special curves on ruled surfaces
in Galilean and pseudo-Galilean spaces,” Acta Mathematica
Hungarica, vol. 98, pp. 175–187, 2003.

[11] Ž. M. Šipuš, “Ruled Weingarten surfaces in the Galilean space,”
Periodica Mathematica Hungarica, vol. 56, pp. 213–225, 2008.
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