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In the literature, although many methods depend on the ansatz solution, there is not any specific rule to
determine the degree of the ansatz i.e. balancing principle. The problem is especially seen with the frac-
tional and the generalized nonlinear evolution equations. But the main thing is how many terms are
needed to determine explicit solution of these type equations. As the previous work, in this work the bal-
ancing principle is generalized for large classes of nonlinear evolution equations, also includes fractional
nonlinear models.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
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1. Introduction

Nonlinear models play key role in various filed of physics such
as field theory, condensed matter physics, and hydrodynamics.
(1 + 1)- and (2 + 1)-dimensional models can be seen more than
(3 + 1)-dimensional models. Especially, the behavior of solutions
of the sine-Gordon (Alfimov et al., 2000) and nonlinear Schrödinger
(Richard et al., 2007) equations for spatially two and three-
dimensional cases was numerically and analytically studied in
detail by Ekomasov and Salimov (2014; 2015).

For the analytical solution of nonlinear models is tried to obtain
via one of the computational methods such as the tanh method
(Zhou et al., 2003; Ozis and Koroglu, 2008), sine–cosine method
(Ma et al., 2010), G0=G-expansion method (Mirzazadeh et al.,
2014; Ozis and Aslan, 2010), the Jacobi elliptic function expansion
method (Yong et al., 2009), auxiliary equation method
(Sirendaoreji, 2007; Lv et al., 2009; Yomba, 2008; Abdou, 2008;
Lim et al., 2001; Pınar and Özis�, 2013a; 2013b), sub-equation
method (Zhang, 2009; Lia et al., 2008; Yomba, 2006; 2005) etc..
The mentioned methods depending on the ansatz are chosen and
the main problem is how many terms of the finite series i.e. ansatz
is considered. Now, the general methodology for the mentioned
methods is given as following:

For general, (1 + 1)-dimensional nonlinear model is considered

P u;ux;ut;uxx;utx;utt;:::ð Þ ¼ 0 ð1Þ
and using an appropriate transformation Eq.(1) is reduced to Eq.(2)

Q u;uf;uff;ufff:::ð Þ ¼ 0 ð2Þ
The analytical solutions of the Eq.(2) is considered as a finite

series which is known ansatz

u fð Þ ¼
XN
i¼0

aizi fð Þ ð3Þ

where ai; i ¼ 0;1; :::;Nð Þ are constants and z fð Þ is the elementary
function and changes respect to the considered method.

As it is seen that the main problem of these type methodologies
is determining N and generally N is determined by a ‘‘balancing
principle” and there is a classical determination but it cannot be
applied all types of nonlinear models. Pınar and Özis� (2015a) pro-
posed different determination for N and it is more general than
exist one.

The value of N is always considered as a positive integer and to
satisfy this condition, the variable transformations are done (Pınar
and Özis�, 2015a). The review of all balancing principles is given by
Pınar and Özis� (2015a) and they pointed that there is no unique
balancing principle for every type nonlinear models.

Now the novel and generalized balancing principle is intro-
duced in this work. It is suitable for all type of nonlinearities,
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Fig. 1. The solution of the Eq.(6) for a0 ¼ 2e�rcos tp
2

� �
; a1 ¼ 0:0001t;C1 ¼ 2;
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results as positive integer and also, the power is, in most cases, the
least number that meets the final expansion (Eq. (3)). To obtain
integer degree ansatz, the novel balancing principle (Eq. (4)) given
by modular balance formula

N þ n ¼ qN þ p N þ sð Þ; ðmod nÞ ð4Þ
where the highest order linear term is @nu

@xn and the highest order non-

linear term isuq @su
@xs
� �p

.
In the following section we exemplify some situations that do

not work with the existing balancing principles either in the liter-
ature or in their work, Eq. (4) is lower than the anchor in which the
power determined by the balancing principle proposed is. There-
fore, the computation cost is also reduced via optimum degree of
the ansatz.

In this work Lorentz-invariant model is solved via Bernoulli
approximation method which has the given procedure and gener-
alized BBM equation is solved via the extended auxiliary equation
method.

2. The solution of Lorentz-invariant model

Nonlinear wave equations, especially most known are nonlinear
Klein–Gordon equations, are used in several areas of physics and
engineering such as hydrodynamics, condensed state physics,
and field theory (Scott,2004; Braun et al., 2004; Knight et al.,
2013; Dauxois and Peyrard, 2010; Saadatmand and Kurosh,2013;
Sirendaoreji, 2007) and a quantified version of the relative
energy–momentum relationship. Although (1 + 1) and (2 + 1)
dimensional models (Knight et al., 2013; Saadatmand and
Kurosh, 2013; Gonzalez et al., 2007; Efremidis et al., 2007; Fokas,
2006; Biswas et al., 2012) are the most studied, these equations
can be easily generalized to higher dimensional space, e.g., for
spherical symmetry.

Now one of the most important models of physics is a Lorentz-
invariant model that has solutions in the form of plane waves and
is a modification of the previously considered equations
(Ekomasov and Salimov, 2014):

urr þ 2
ur

r
� utt ¼ um=n ur

2 � ut
2� �k=s ð5Þ

where m;n; s are odd natural numbers and k is even natural num-
ber. These types of equations are drawn attention for plane waves.
At this point, the analytical solutions are important to obtain time
periodic solutions in a large number of models and various dimen-
sions of space time.

When m ¼ 3; k ¼ 2;n ¼ s ¼ 13, Eq. (5) is rewritten

urr þ 2
ur

r
� utt ¼ u3=13 ur

2 � ut
2

� �2=13 ð6Þ

with the wave transformation f ¼ lr þ ct, c–0 and l–0, as a result
the reduced equation is

l2 � c2
� �

u00 þ 2l
r

u0 ¼ l2 � c2
� �2=13

u0ð Þ4=13u3=13 ð7Þ

and using classical balancing principle N ¼ � 11
3 is obtained, but how

the finite series can be determined with this upper bound?
For Eq. (7), reduced form of Eq. (6), with the novel proposed bal-

ancing principle (i.e. Eq.(4)) N � 0 � 2 mod 2ð Þ is obtained.
Hence, the solution of the Eq. (7) can be given by

u fð Þ ¼
XN¼2

i¼0

aizi fð Þ ¼ a0 þ a1z fð Þ þ a2z2 fð Þ; f ¼ lr þ ct

where z fð Þis considered as a solution of the variable coefficient Ber-
noulli differential equation
dz nð Þ
dn

¼ P nð Þz nð Þ þ Q nð Þzn nð Þ ð8Þ

where P fð Þ and Q nð Þ are any functions and n > 1 is an integer. New
precise analytical solutions of the Bernoulli equation (i.e. Eq. (8))
have been given by Pınar and Özis� (2015b) and Pinar and Kocak
(2018) for different coefficient functions and n ¼ 2under twenty
different conditions.

For n ¼ 2, as a result of nonlinear algebraic system, the param-
eters are obtained

P fð Þ ¼ 2l
r c2 � l2ð Þ ;Q fð Þ

¼ �
exp � 4fl

r c2�l2ð Þ
� �

2a2lexp 4fl
r c2�l2ð Þ

� �
þ a1rC1 l2 � c2

� �� �

r c2 � l2ð Þa1 ; a2

¼ a1rC1 c2 � l2
� � ffiffiffi

3
p

6exp 4f
r c2�l2ð Þ

� � ;

Hence the solution of the Bernoulli differential equation is

z fð Þ ¼ 2 l2 � 5lþ 6
� �

a1exp
2f

r c2 � l2ð Þ
� �

=

c2a1rC1exp
2 l�2ð Þf
r c2�l2ð Þ

� �
l� 3þ l3 � 3l2
� �

þ2a1C2 6� 5lþ l2
� �þ 4a2exp f

r c2�l2ð Þ
� �2

l2 � 4lþ 4
� �

0
BBB@

1
CCCA

The solution is given for large times by Fig. 1 and behavior of the
amplitude in the center of the pulson for Eq. (6) at small times and
large times are seen in Fig. 2.

To be sure, also we need to check that the stabilization of the
oscillation by Eq.(6)

c tð Þ ¼ 1
t

Z1

0

u 0; tð Þj jdt ð9Þ
C2 ¼ 1;l ¼ 1; c ¼ �2



Fig. 2. Behavior of the amplitude in the center of the pulson for Eq. (6) at small times and large times, respectively.

Fig. 3. Time evolution of the quantity c tð Þfor Eq. (6).
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The plot of the time evolution of the quantity c tð Þfor Eq. (6) is
given by Fig. 3.

For the following example, in (Pınar and Ozis, 2013b), ansatz is
taken first degree, in (Layeni and Akinola, 2010) ansatz is 2=n-th
degree and in (Wazwaz and Helal, 2005) the degree of ansatz is
2

n�1-th for the general Benjamin–Bona–Mahony (BBM) equation.
In (Wazwaz and Helal, 2005), it is said that degree of ansatz should
be integer. This means that when n ¼ 3, the result is N ¼ 1 and in
the similar manner if n ¼ 2, N ¼ 2is obtained. For general equa-
tions, appropriate n is chosen so that N is an integer. So, we do
not have the general equation solution. By Pınar and Özis�
(2015a), ansatz with fractional degree is used as a result new solu-
tions for the general equation is obtained. Hence, to obtain ansatz
with integer degree, the novel balancing principle (Eq. (4)) given by
modular balance formula is considered.

3. The generalized Benjamin–Bona–Mahony (BBM) equation

The generalized BBM equation (Nickel, 2007;Wang et al., 2014),
which is an improvement of the Korteweg–de Vries equation (KdV
equation) for modeling long surface gravity waves of small ampli-
tude, is considered;

ut þ aunux þ ux þ uxxx ¼ 0: ð10Þ
with the wave transformation f ¼ lxþ ct, c–0 and l–0, as a result
the reduced equation

cu0 þ lunu0 þ lu0 þ l3u000 ¼ 0 ð11Þ
For Eq. (11), we obtain zero-degree ansatz by which the trivial

solution of Eq.(11) is hold. In addition, Eq. (11) is an integrable
equation. If Eq. (11) is integrated respect to f, then we obtain

cuþ lunþ1

nþ 1
þ luþ l3u00 ¼ 0: ð12Þ

Using the novel balancing principle (Eq.(4)), 2=n- degree ansatz
for Eq. (12) is obtained. For 2=n- degree ansatz, we have several
cases as following.

Case 1. Considering n ¼ 1, the ansatz is second degree and Eq. (12)
become

cuþ lu2

2
þ luþ l3u00 ¼ 0: ð13Þ

We get solution of Eq. (13) using the second degree ansatz and

the extended auxiliary equation z0 fð Þð Þ2 ¼ a2z2 fð Þ þ a6z6 fð Þ, the
solution is plotted in Fig. 4.

Case 2. Considering n ¼ 2, the ansatz is first-degree and Eq. (12)
becomes

cuþ lu3

3
þ luþ l3u00 ¼ 0: ð14Þ



Fig. 4. This solution of Case 1 is obtained using second degree ansatz.

Fig. 5. This solution of Case 2 is obtained using first degree ansatz.
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We get solution of Eq. (14) using the first degree ansatz and the

extended auxiliary equation z0 fð Þð Þ2 ¼ a2z2 fð Þ þ a6z6 fð Þ, the solu-
tion is plotted in Fig. 5.

Now, we compare same n value with different ansatzs. If we
take for n ¼ 1, first and second degree ansatzes with the extended

auxiliary equation z0 fð Þð Þ2 ¼ a2z2 fð Þ þ a4z4 fð Þ þ a6z6 fð Þ
Here, we have important question, if we take non-integer

degree ansatz, what kind of solutions are obtained. For this exam-
ple, if we take n ¼ 3, ansatz is 2=3-degree but it is equivalence to 2
with respect to mod2ð Þ. Using the extended auxiliary equation

z0 fð Þð Þ2 ¼ a6z6 fð Þ and u fð Þ ¼ a0 þ a1z2=3 fð Þ ansatz, we obtain

u x; tð Þ ¼ a0 þ a1

2l xþ �l� 5
8 ala03

� �
t

� �þ c1
� �1=3 ð15Þ

The solutions which are obtained using second degree ansatz
and 2=3-degree ansatz have same behaviors.

As mentioned above, the value of N is always considered as a
positive integer and to satisfy this condition, the variable transfor-
mations or if the equation is integrable, the equation is integrated
considering the integration constant is zero, etc.. Instead of all
these reductions, with the novel principle the problem is solved.

4. Conclusion

The common balancing principles (i.e. determines the power N
of ansatz (cf. Eq.(4)) usually by balancing the highest order linear
term in the equation with the highest order nonlinear term) work
only for positive integer values. In this study, a prosperous balanc-
ing principle has been proposed that works for the positive integer
one and with least power of the ansatz. To verify our objective
well-known problems in the literature is given which works paral-
lel to our goal. In addition, the proposed balancing principle make
possible for finding new travelling wave solutions or analytical
solutions of the nonlinear problems due to introducing a novel
ansatz(s) as in the given examples. The future work will focus on
symmetries of the Lorentz-invariant model.
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