Polynomial Affine Translation Surfaces in Euclidean 3-Space

Hülya Gün Bozok and Mahmut Ergüt

ABSTRACT: In this paper we study the polynomial affine translation surfaces in E^{3} with constant curvature. We derive some non-existence results for such surfaces. Several examples are also given by figures.
Key Words: Affine translation surface, polynomial translation surface, Gaussian curvature, mean curvature.

Contents

1 Introduction

2 Polynomial Affine Translation Surface with Constant Gaussian

 and Mean Curvature
3 A Further Application

1. Introduction

A surface in Euclidean 3-space is called a translation surface if it is the graph surface of the function

$$
z(x, y)=f(x)+g(y),
$$

where f and g are smooth functions. Such surfaces are obtained by translating two planar curves. This class of the surfaces are well-studied classical surfaces in Euclidean and Lorentzian space $[1,2,3,6,9]$.

A polynomial translation surface $[8,10]$ is parametrized by

$$
r: U \subseteq E^{2} \rightarrow E^{3},(x, y) \mapsto r(x, y)=(x, y, f(x)+g(y)),
$$

where f and g are polynomial functions on U.
Most recently H. Liu and Y. Yu introduced a new translation surfaces so-called affine translation surfaces. The affine translation surface in Euclidean 3-space is defined as a parameter surface $r(u, v)$ in E^{3} which can be written as

$$
r(u, v)=(u, v, f(u)+g(v+a u))
$$

for some non zero constant a and smooth functions $f(u)$ and $g(v+a u)$.
The authors classified minimal affine translation surfaces in three dimensional Euclidean space. M. Magid and L. Vrancken [7] considered affine translation surface

[^0]with constant sectional curvature in 4-dimensional affine space, by proving that such surfaces must be flat and one of the defining curves must be planar. Affine translation surfaces with constant Gaussian curvature in 3-dimensional affine space are investigated by Y. Fu and Z. Hou and they obtained a complete classification of such surfaces [4]. Also, Y. Yuan and H. L. Liu dealth with translation surfaces of some new types in 3-Minkowski space [11].

In this paper we investigate the affine translation surfaces with constant curvature in E^{3}, then we provided non-existence theorems for these surfaces.

2. Polynomial Affine Translation Surface with Constant Gaussian and Mean Curvature

Let \langle,$\rangle denote the standart scalar product on E^{3}$ and let $\|$.$\| be the induced$ norm. Consider the affine translation surface M in E^{3} parametrized by

$$
\begin{equation*}
r: U \subseteq E^{2} \rightarrow E^{3},(x, y) \mapsto r(x, y)=(x, y, f(x)+g(y+a x)) \tag{2.1}
\end{equation*}
$$

where f and g are real-valued and smooth functions on U and a is a non-zero constant. Then the first fundamental form of M can be written as

$$
I=E d x^{2}+2 F d x d y+G d y^{2}
$$

where

$$
\begin{aligned}
E & =\left\langle r_{x}, r_{x}\right\rangle=1+\left(f^{\prime}+a g^{\prime}\right)^{2} \\
F & =\left\langle r_{x}, r_{y}\right\rangle=g^{\prime}\left(f^{\prime}+a g^{\prime}\right) \\
G & =\left\langle r_{y}, r_{y}\right\rangle=1+g^{\prime 2}
\end{aligned}
$$

and here $f^{\prime}=\frac{d f(x)}{d x}$ and $g^{\prime}=\frac{d g(v)}{d v}=\frac{d g(y+a x)}{d(y+a x)}$ for $v=y+a x$. The unit normal vector field so-called the Gauss map of M is given by

$$
N=\frac{r_{x} \times r_{y}}{\left\|r_{x} \times r_{y}\right\|}=\frac{\left(-\left(f^{\prime}+a g^{\prime}\right),-g^{\prime}, 1\right)}{\sqrt{1+\left(f^{\prime}+a g^{\prime}\right)^{2}+g^{\prime 2}}}
$$

Then the second fundamental form of M is

$$
I I=L d x^{2}+2 M d x d y+N d y^{2}
$$

where

$$
\begin{aligned}
L & =\left\langle r_{x x}, N\right\rangle=\left(f^{\prime \prime 2} g^{\prime \prime}\right) D^{-1} \\
M & =\left\langle r_{x y}, N\right\rangle=a g^{\prime \prime} D^{-1} \\
N & =\left\langle r_{y y}, N\right\rangle=g^{\prime \prime} D^{-1}
\end{aligned}
$$

and here $D^{2}=E G-F^{2}=1+\left(f^{\prime}+a g^{\prime}\right)^{2}+g^{\prime 2}$. Hence the Gauss and mean curvatures of M are given, respectively,

$$
\begin{equation*}
K=\frac{L N-M^{2}}{E G-F^{2}}=f^{\prime \prime} g^{\prime \prime} D^{-4} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
H=\frac{L G-2 F M+N E}{2\left(E G-F^{2}\right)}=\frac{1}{2}\left[f^{\prime \prime}\left(1+g^{\prime 2}\right)+g^{\prime \prime}\left(1+a^{2}+f^{\prime 2}\right)\right] D^{-3} \tag{2.3}
\end{equation*}
$$

Note that the affine translation surface given by (2.1) is flat, i.e. $K \equiv 0$, if and only if at least one of f or g is a linear function.

Example 2.1. Let M be an affine translation surface in E^{3} parametrized by

$$
r(x, y)=\left(x, y, x^{2}+x+y\right),(x \in(-2,1), y \in(-2,1)) .
$$

It is easy to see that M is a parabolic cylinder and flat. It can be plotted as in Fig.1.

Figure 1:
H. Liu and Y. Yu [5] proved the classification theorem for minimal affine translation surfaces in the following

Theorem 2.1. Let $r(x, y)=(x, y, z(x, y))$ be a minimal affine translation surface. Then either $z(x, y)$ is linear or can be written as

$$
\begin{equation*}
z(x, y)=\frac{1}{c} \log \frac{\cos \left(c \sqrt{1+a^{2}} x\right)}{\cos [c(y+a x)]} . \tag{2.4}
\end{equation*}
$$

The minimal translation surface given by (2.4) is called generalized Sherk surface or affine Sherk surface in E^{3}.

Example 2.2. Let M be an affine Sherk surface in E^{3} given by
$r(x, y)=\left(x, y, 2 \ln \cos \left(\frac{\sqrt{2}}{2} x\right)-2 \ln \cos \left(\frac{1}{2} y+\frac{1}{2} x\right)\right),(x \in(-2,2), y \in(-2,2))$
We plot it as in Fig.2.

Figure 2:

Now, we consider the polynomial affine translation surfaces parametrized by

$$
r: U \subseteq E^{2} \rightarrow E^{3},(x, y) \mapsto r(x, y)=(x, y, f(x)+g(y+a x))
$$

where f and g are polynomial functions on U. Therefore, the following nonexistence results for polynomial affine translation surfaces can be provided.

Theorem 2.2. There does not exist a polynomial affine translation surface with non-zero constant Gaussian curvature in E^{3}.

Proof: Let M be a polynomial affine translation surface with constant Gaussian curvature. From (2.2) we have $f^{\prime \prime} g^{\prime \prime} \neq 0$. Differentiating (2.2) with respect to y, we get

$$
\begin{equation*}
g^{\prime \prime \prime}\left(1+\left(f^{\prime}+a g^{\prime}\right)^{2}+g^{\prime 2}\right)-4 g^{\prime \prime 2}\left(a\left(f^{\prime}+a g^{\prime}\right)+g^{\prime}\right)=0 \tag{2.5}
\end{equation*}
$$

Denoting f^{\prime} and g^{\prime} by α and β, respectively, we obtain

$$
\begin{equation*}
\beta^{\prime \prime}\left(1+(\alpha+a \beta)^{2}+\beta^{2}\right)-4 \beta^{\prime 2}(a(\alpha+a \beta)+\beta)=0 \tag{2.6}
\end{equation*}
$$

Suppose that the polynomials α and β are given by

$$
\alpha=b_{m} u^{m}+b_{m-1} u^{m-1}+\ldots+b_{1} u+b_{0}
$$

and

$$
\beta=c_{n} v^{n}+c_{n-1} v^{n-1}+\ldots+c_{1} v+c_{0}
$$

where b_{m} and c_{n} are non-zero constants. Replacing α and β in (2.6) we get a polynomial expression in u and v vanishing identically, i.e., all the coefficients are zero. Let us consider some cases of equation (2.6)

Case 1. $m, n \geq 2$
i. Suppose that $m>n(\geq 2)$. The dominant term according to $u^{2 m} v^{n-2}$ which comes from $\beta^{\prime \prime}+\beta^{\prime \prime} \alpha^{2}+2 a \alpha \beta \beta^{\prime \prime}$ having the coefficient $b_{m}^{2} c_{n} n(n-1)$. This cannot vanish since $b_{m}, c_{n} \neq 0$ and $m>n \geq 2$.
ii. Suppose that $n>m(\geq 2)$ Using similar way, this case cannot occur.
ii. Suppose that $m=n(\geq 2)$ This case can be treated in similar way.

Case 2. $m, n \geq 1$
i. $m>n=1$. We get $\beta=c v+d$ with real constants c, d and $c \neq 0$. If we consider this situation in equation (6), the coefficient of highest degree u^{m} comes from $-4 a \alpha \beta^{\prime 2}+\left(-4-4 a^{2}\right) \beta \beta^{\prime 2}$ having the coefficient $-4 a b_{m} c^{2}$. Then this expression cannot occur since $b_{m}, c \neq 0$.
ii. $n>m=1$. From the similar way, this case cannot occur.

Case 3. $m \geq n=0$ (or $n \geq m=0$) this situation is not possible since $f^{\prime \prime} g^{\prime \prime} \neq 0$.
So, in every case, we obtain that there is no a polynomial affine translation surfaces with constant Gaussian curvature.

So, the following result can be given
Corollary 2.3. If the Gaussian curvature of a polynomial affine translation surfaces in E^{3} is equal to a constant, the constant must be zero.

Theorem 2.4. There does not exist a polynomial affine translation surface with constant mean curvature in E^{3}.

Proof: Suppose that M is a polynomial affine translation surface with constant mean curvature. Differentiating equation (2.3) with respect to y, we get

$$
\begin{aligned}
& {\left[2 f^{\prime \prime} g^{\prime} g^{\prime \prime}+g^{\prime \prime \prime}\left(1+a^{2}+f^{\prime 2}\right)\right]-\frac{3}{2}\left(f^{\prime \prime}\left(1+g^{\prime 2}\right)+g^{\prime \prime}\left(1+a^{2}+f^{\prime 2}\right)\right)} \\
& \left(2\left(f^{\prime}+a g^{\prime}\right) a g^{\prime \prime}+2 g^{\prime} g^{\prime \prime}\right)\left(1+\left(f^{\prime}+a g^{\prime}\right)^{2}+g^{\prime 2}\right)^{-1}=0
\end{aligned}
$$

Denoting f^{\prime} by α and g^{\prime} by β we have

$$
\begin{align*}
& {\left[2 \alpha^{\prime} \beta \beta^{\prime}+\beta^{\prime \prime}\left(1+a^{2}+\alpha^{2}\right)\right]\left[1+(\alpha+a \beta)^{2}+\beta^{2}\right]} \tag{2.7}\\
& -3\left(\alpha^{\prime}\left(1+\beta^{2}\right)+\beta^{\prime}\left(1+a^{2}+\alpha^{2}\right)\right)\left((\alpha+a \beta) a \beta^{\prime}+\beta \beta^{\prime}\right)=0
\end{align*}
$$

Let us assume α and β are polynomials given by

$$
\alpha=b_{m} u^{m}+b_{m-1} u^{m-1}+\ldots+b_{1} u+b_{0}
$$

and

$$
\beta=c_{n} v^{n}+c_{n-1} v^{n-1}+\ldots+c_{1} v+c_{0}
$$

where b_{m} and c_{n} are non-zero constants. Substiuting α and β in (2.7) we get a polynomial expression in u and v vanishing identically that is all the coefficients are zero.

Let us consider some cases of equation (2.7) :
Case 1. $m, n \geq 2$
i. Suppose that $m>n(\geq 2)$. The dominant term according to $u^{4 m} v^{n-1}$ which comes from $a^{2} \beta^{\prime \prime} \alpha^{2}+\beta^{\prime \prime} \alpha^{4}+2 a \alpha \beta \beta^{\prime \prime}$ having the coefficient $b_{m}^{4} c_{n} n(n-1)$. This cannot vanish since $b_{m}, c_{n} \neq 0$ and $m>n \geq 2$.
ii. Suppose that $n>m(\geq 2)$ and $m=n(\geq 2)$. It is easy to see that these cases can be treated using similar method mentioned above.

Case 2. $m, n \geq 1$
i. $n>m=1$. We get $\alpha=b u+d$ with real constants b, d and $b \neq 0$. If we consider this situation in equation (2.7), the coefficient of highest degree $v^{4 n-1}$ comes from $4 \alpha^{\prime} \beta^{3} \beta^{\prime}-3 a^{2} \alpha^{\prime} \beta^{3} \beta^{\prime}-3 \alpha^{\prime} \beta^{3} \beta^{\prime}$ having the coefficient $\left(1-3 a^{2}\right) n b c_{n}^{4}$. Then this case cannot occur since $b, c_{n} \neq 0$.
ii. $m>n=1$. Using similar way, this case cannot occur.

Case 3. $m, n \geq 0$
i. $m \geq n=0$. Then β is a constant, so the equation (2.7) is satisfied. But if β is constant from the equation (2.3) α is not be a polynomial. It is a contradiction, so this situation cannot occur.
ii. $n \geq m=0$. Then $\alpha(\alpha=b)$ is constant, so the equation (2.7) can rewrite with this case in the following way

$$
\begin{aligned}
& {\left[\beta^{\prime \prime}\left(1+a^{2}+b^{2}\right)\right]\left[1+(b+a \beta)^{2}+\beta^{2}\right]} \\
& -3\left(\beta^{\prime}\left(1+a^{2}+b^{2}\right)\right)\left((b+a \beta) a \beta^{\prime}+\beta \beta^{\prime}\right)=0
\end{aligned}
$$

Using the same idea like in case 1,2 we can say that this situation cannot occur since $b_{m} \neq 0$.

So, the proof is completed.
Then the following result is given.

Corollary 2.5. If the mean curvature of a polynomial affine translation surfaces in E^{3} is equal to a constant, the constant must be zero.
Example 2.3. Let M be a polynomial affine translation surface in E^{3} parametrized by

$$
r\left(x, y, x^{4}+(x+y)^{2}-\mathrm{x}-\mathrm{y}\right),(x \in(-1,1), y \in(-1,1))
$$

It can be plotted as in Fig.3.

Figure 3:

3. A Further Application

As a further application we can choose the functions α and β as the exponential ones, i.e., $\alpha=c_{1} e^{u}$ and $\beta=c_{2} e^{v}$ where c_{1} and c_{2} are real numbers and $c_{1}, c_{2} \neq 0$. Then the equation (2.6) can be written

$$
c_{2} e^{v}+c_{1}^{2} c_{2} e^{v} e^{2 u}+\left(2 a c_{1} c_{2}^{2}-4 a c_{1} c_{2}^{2}\right) e^{2 v} e^{u}+\left(2 c_{2}^{3}-4 a^{2} c_{2}^{3}-4 c_{2}^{3}\right) e^{3 v}=0
$$

It is easy to see that the coefficients c_{1} and c_{2} have to be zero in order to satisfy the above equation, but this is not possible.

Then we have the following:

Corollary 3.1. There does not exist an exponential affine translation surface with non-zero constant Gaussian curvature in E^{3}.

If we get the functions α and β as the exponential ones again, the equation (2.7) can be written

$$
\begin{aligned}
& {\left[2 c_{1} c_{2}^{2} e^{u} e^{2 v}+c_{2} e^{v}\left(1+a^{2}+c_{1}^{2} e^{2 u}\right)\right]\left[1+\left(c_{1} e^{u}+a c_{2} e^{v}\right)^{2}+c_{2}^{2} e^{2 v}\right]} \\
& -3\left[\left(c_{1} e^{u}\left(1+c_{2}^{2} e^{2 v}\right)+c_{2} e^{v}\left(1+a^{2}+c_{1}^{2} e^{2 u}\right)\right)\right. \\
& \left.\quad\left(\left(c_{1} e^{u}+a c_{2} e^{v}\right) a c_{2} e^{v}+c_{2}^{2} e^{2 v}\right)\right]=0
\end{aligned}
$$

Considering the same technique mentioned before we obtain the following result:
Corollary 3.2. There does not exist an exponential affine translation surface with non-zero constant mean curvature in E^{3}.

References

1. Ali A.T., Abdel Aziz H.S. and Sorour A.H., On Curvatures and Points of the Translation Surfaces in Euclidean 3-space, Journal of the Egyp. Math. Soc., 23, 167-172, (2015).
2. Aydin M.E. and Mihai A., Translation hypersurfaces and Tzitzeica translation hypersurfaces of the Euclidean space, Proc. Rom. Acad. Series A, 16, 477-483, (2015).
3. Cetin M., Kocayigit H. and Onder M., Translation surfaces according to Frenet frame in Minkowski 3-space, Int. J. Phys.Sci. 7, 6135-6143, (2012).
4. Fu Y. and Hou Z., Affine translation surfaces with constant Gaussian curvature, Kyungpook Math. J., 50, 337-343, (2010).
5. Liu H. and Yu Y., Affine translationsurfaces in Euclidean 3-space, Proc. Japan Acad., 89, 111-113, (2013).
6. Lopez R and Moruz M., Translation and homothetical surfaces in Euclidean spaces with constant curvature,Journal of the Korean Math. Soc., 52, 523-535, (2015).
7. Magid M. and Vrancken L., Affine Translation Surfaces with constant sectional curvature, Journal of Geometry, 68, 192-199, (2000).
8. Munteanu I.M and Nistor A.I., On the geometry of the second fundamental form of translation surfaces in E^{3}, Houston J.Math. 37, 1087-1102, (2011).
9. Verstraelen L., Walrave J. and Yaprak S., The minimal translation surfaces in Euclidean space, Soochow J. Math. 20,77-82, (1994).
10. Yoon D.W., Polynomial translation surfaces of Weingarten types in Euclidean 3-space, Central Eur. J. Math. 8,430-436, (2010).
11. Yuan Y. and Liu H.L., Some new translation surfaces in 3-Minkowski space, Journal of Mathematical Res.\& Exp., 31, 1123-1128, (2011).

Hülya Gün Bozok,
Department of Mathematics,
Osmaniye Korkut Ata University,
Osmaniye, Turkey.
E-mail address: hulyagun@osmaniye.edu.tr
and

Mahmut Ergüt,
Department of Mathematics,
Namık Kemal University,
Tekirdağ, Turkey.
E-mail address: mergut@nku.edu.tr

[^0]: 2010 Mathematics Subject Classification: 53A05.
 Submitted August 03, 2016. Published July 21, 2017

