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Abstract

In this paper, we introduce canonical principal direction (CPD) sub-
manifolds with higher codimension in Euclidean spaces. We obtain the
complete classification of surfaces endowed with CPD in the Euclidean
4-space.
MSC 2010 Classification. 53B25(Primary); 53A35, 53C50 (Secondary)
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1 Introduction

Let N be a Riemannian manifold, M an immersed hypersurface of N and X

a vector field in N . M is said to have canonical principle direction (CPD)
with relative to X if the projection of X onto the tangent space of M gives
one of principle directions of M , [9]. One of the most common examples of
hypersurfaces with CPD is rotational hypersurfaces in Euclidean spaces which
have canonical principal direction relative X if X is chosen to be a vector field
parallel to its rotation axis.

On the other hand, a submanifold in the Euclidean space is said to be a
constant angle surface if there is a constant direction k which makes constant
angle with the tangent plane at every point of that surface. There are many
classification results for such hypersurfaces called as constant angle (CA) hy-
persurfaces obtained so far, in different ambient spaces, [1, 6, 8, 10, 11, 13, 15].
Before we proceed, we would like to note that a CAS surface in the Euclidean
3-space has CPD relative to k. Because of this reason, hypersurfaces with CPD
relative to a fixed direction in Euclidean spaces have caught interest of some ge-
ometers in the recent years. For example, surfaces with CPD in the Euclidean
3-space E

3 have been studied in [16]. Then, this study was moved into the
Minkowski 3-space E3

1 in [12, 17]. Furthermore, CPD surfaces in product spaces
also take attention of some geometers. For example, some classification results
on surfaces with CPD relative to ∂t in S

2×R and H
2×R have been obtained in
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[4, 7] (See also [8]), where ∂t denotes the unit vector field tangent to the second
factor.

On the other hand, Tojeiro studied CPD hypersurfaces of Sn×R and H
n×R

in [18]. Later, Mendonça and Tojeiro give generalization of the notion of CPD
hypersurfaces into higher codimensional submanifolds. For this porpose, they
give the definition class A in [14]. An immersion f : Mn → Qn

c × R is said
to belongs to class A immersions if the tangential part of ∂t is one of principal
directions of all shape operators of f . By a similar way, we would like to give
the following definition of CPD submanifolds in Euclidean spaces.

Definition 1.1. Let Mn be a submanifold in E
m and k be a fixed direction in

E
m. M is said to be a submanifold endowed with canonical principal direction,

(shortly, a CPD submanifold) if the tangential component kT of k is one of
principal directions of all shape operators of M .

The aim of this paper is to obtain complete classification of CPD surfaces
in the Euclidean 4-space E

4. In Sect. 2, we introduce the notation that we
will use and give a brief summary of basic definitions in theory of submanifolds
in Euclidean spaces. In Sect. 3, we obtain the complete classification of CPD
surfaces in the Euclidean 4-space.

2 Prelimineries

Let Em denote the Euclidean m-space with the canonical Euclidean metric ten-
sor given by

g̃ = 〈 , 〉 =
m∑

i=1

dx2

i ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in E
m.

Consider an n-dimensional Riemannian submanifold of the space E
m. We

denote Levi-Civita connections of Em and M by ∇̃ and ∇, respectively. The
Gauss and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y ), (1)

∇̃Xξ = −Sξ(X) +DXξ, (2)

whenever X,Y are tangent and ξ is normal vector field on M , where h, D

and S are the second fundamental form, the normal connection and the shape
operator of M , respectively. It is well-known that the shape operator and the
second fundamental form are related by

〈h(X,Y ), ξ〉 = 〈SξX,Y 〉 .

The Gauss and Codazzi equations are given, respectively, by

〈R(X,Y )Z,W 〉 = 〈h(Y, Z), h(X,W )〉 − 〈h(X,Z), h(Y,W )〉, (3)

〈RD(X,Y )ξ, η〉 = 〈[Sξ, Sη]X,Y 〉, (4)

(∇Xh)(Y, Z) = (∇Y h)(X,Z), (5)

whenever X,Y, Z,W are tangent to M , where R, RD are the curvature tensors
associated with connections ∇ and D, respectively. We note that ∇̄h is defined
by

(∇Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).
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A submanifold M is said to have flat normal bundle if RD = 0 identically.
The mean curvature vector field H of the surface M is defined as

H =
1

2
trh. (6)

If M is a surface, i.e, n = 2, then the Gaussian curvature K of the surface M2

is defined as

K =
R(X,Y,X, Y )

Q(X,Y )
, (7)

if X and Y are chosen so that Q(X,Y ) = 〈X,X〉〈Y, Y 〉 − 〈X,Y 〉2 does not
vanish.

3 CPD Surfaces in E
4

In this section, we obtain classification of CPD surfaces in E
4.

Let M be a surface in E
4 with CPD relative to k. Without loss of generality,

we assume that k = (1, 0, 0, 0). Then, one can define a tangent vector field e1
and a normal vector field e3 with the equation

k = cos θe1 + sin θe3 (8)

for a smooth function θ. Let e2 and e4 be a unit tangent vector field and a unit
normal vector field, satisfying 〈e1, e2〉 = 0 and 〈e3, e4〉 = 0, respectively. By a
simple computation considering (8) we obtain the following lemma. Note that

we put hβ
ij = 〈h(ei, ej), eβ〉 = 〈Sβei, ej〉, where Sβ = Seβ .

Lemma 3.1. The Levi-Civita connection ∇ of M is given by

∇e1e1 = ∇e1e2 = 0, (9a)

∇e2e1 = tan θh3

22e2, ∇e2e2 = − tan θh3

22e1. (9b)

and the matrix representations of shape operator S of M with respect to {e1, e2}
is

S3 =

(
−e1(θ) 0

0 h3

22

)
, S4 =

(
0 0
0 h4

22

)
(10)

for functions h4

11
, h4

12
, h3

22
and h4

22
satisfying

e1(h
3

22) = tan θh3

22(h
3

11 − h3

22), (11a)

e1(h
4

22
) = − tan θh3

22
h4

22
, (11b)

h4

11
= 0, h4

12
= 0. (11c)

Furthermore, θ satisfies
e2(θ) = 0. (12)

Proof. By considering (8) and the normal vector field e3 being parallel, one can
get

0 = X(cos θ)e1 + cos θ∇Xe1 + cos θh(e1, X)− sin θS3X +X(sin θ)e3 (13)

3



whenever X is tangent to M . (13) for X = e1 gives

∇e1e1 = 0, ∇e1e2 = 0,

h3

11
= −e1(θ), (14)

h4

11
= 0.

while (13) for X = e2 is giving

∇e2e1 = tan θh3

22
e2, ∇e2e2 = − tan θh3

22
e1,

h4

12 = 0, e2(θ) = 0.

where e2 is the other principal direction of M corresponding with the principal
curvature h3

22. Thus, we have (9) and (11c) and (12) and the second fundamental
form of M becomes

h(e1, e1) = −e1(θ)e3, h(e1, e2) = 0, h(e2, e2) = h3

22
e3 + h4

22
e4.

By considering the Codazzi equation (5), we obtain (11a) and (11b).

Because of (14), if e1(θ) ≡ 0 implies h3
11 = 0. We will consider this particular

case seperately.
First assume that e1(θ) 6= 0. Let p be a a point in M at which e1(θ) does

not vanish. First, we would like to prove the following lemma.

Lemma 3.2. There exists a local coordinate system (s, t) defined in a neighbor-
hood Np of p such that the induced metric of M is

g = ds2 +m2dt2 (15)

for a smooth function m satisfying

e1(m)− tan θh3

22m = 0. (16)

Furthermore, the vector fields e1, e2 described above become e1 = ∂s, e2 =
1

m
∂t

in Np.

Proof. We have [e1, e2] = − tan θh3

22e2 because of (9). Thus, if m is a non-
vanishing smooth function on M satisfying (16), then we have [e1,me2] = 0.
Therefore, there exists a local coordinate system (s, t) such that e1 = ∂s and

e2 =
1

m
∂t. Thus, the induced metric of M is as given in (15).

Now, we are ready to obtain the classification theorem.

Theorem 3.3. Let M be a regular surface in E
4. Let M be a surface endowed

with a canonical principal direction relative to k = (1, 0, 0, 0) and assume that
the function θ defined in (8) is not constant. Then, M is congruent to the
surface given by one of the followings

1. A surface given by

x(s, t) =
( ∫ s

s0

cos θ(τ)dτ , φj(t)

∫ s

s0

sin θ(τ)dτ
)
+ γ(t), j = 2, 3, 4 (17a)
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where γ is the E
4-valued function given by

γ(t) =
(
0,

∫ t

t0

Ψ(τ)φj
′(τ)dτ

)
. (17b)

for a function Ψ ∈ C∞(M) and φ = φ(t) is the unit speed curve lying on
S
3(1) in E

4;

2. A flat surface given by

x(s, t) =
(∫ s

s0

cos θ(τ)dτ , φj(t0)

∫ s

s0

sin θ(τ)dτ
)
+ t0φ(t). (18)

Here φ(t0) and φ(t) are a constant vector and the unit speed curve lying
on S

3(1) in E
4, respectively.

Conversely, surfaces described above are CPD relative to k = (1, 0, 0, 0).

Proof. In order to proof the necessary condition, we assume that M is a surface
endowed with a CPD relative to k = (1, 0, 0, 0) with the isometric immersion
x : M → E

4. Let {e1, e2; e3, e4} be the local orthonormal frame field described
as before in Lemma 3.1, h3

11
, h3

22
and h4

22
be the principal curvatures of M and

(s, t) a local coordinate system given in Lemma 3.2.
Note that, (11a), (11b) and (16) become, respectively

(h3

22
)s = − tan θh3

22
(θ′ + h3

22
), (19)

(h4

22)s = − tan θh3

22h
4

22, (20)

ms −m tan θh3

22
= 0, (21)

Moreover, we have
e1 = xs. (22)

By combining (21) and (20) with (10) we obtain the shape operator S of M as

S3 =

(
−θ′ 0
0 cot θms

m

)
, S4 =

(
0 0
0 1

m

)
(23)

where ′ denotes ordinary differentiation with respect to the appropriated vari-
able.

By combining (21) and (19) we obtain

mss − θ′ cot θms = 0

whose general solution is

m(s, t) = Ψ1(t)

∫ s

s0

sin θ(τ)dτ +Ψ2(t)

for some smooth functions Ψ1,Ψ2. Therefore, by re-defining t properly, we may
assume either

m(s, t) =

∫ s

s0

sin θ(τ)dτ +Ψ(t),Ψ ∈ C∞(M), (24a)
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or
m(s, t) = m(t). (24b)

Case 1. Let m satisfies (24a). In this case, by considering the equation (9)
with (22), we get the Levi-Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = ∇∂t
∂s =

ms

m
∂t, ∇∂t

∂t = −mms∂s +
mt

m
∂t.

By combining the first equation given above with (23) and using Gauss formula
(1), we have

xss = −θ′e3. (25)

On the other hand, we have 〈xs, k〉 = cos θ and 〈xt, k〉 = 0 from the decompo-
sition (8). By considering these equations, we see that x has the form of

x(s, t) =

(∫ s

s0

cos θ(τ)dτ , x2(s, t), x3(s, t), x4(s, t)

)
+ γ(t) (26)

for a E
4-valued smooth function γ = (0, γ2, γ3, γ4). On the other hand, by

considering (22) and (25) in (8), we yield

(1, 0, 0, 0) = cos θxs −
sin θ

θ′
xss. (27)

By solving (27) and considering 〈xs, xs〉 = 1, we obtain

x(s, t) =

∫ s

s0

cos θ(τ)dτ
(
1, 0, 0, 0

)
+ φ(t)

∫ s

s0

sin θ(τ)dτ + γ(t), (28)

where φ(t) =
(
0, φ2(t), φ3(t), φ4(t)

)
is the curve lying on S

3(1) in E
4. Now, by

considering xst =
ms

m
xt in (28), we can rewrite this parametrization as

x(s, t) =

∫ s

s0

cos θ(τ)dτ
(
1, 0, 0, 0

)
+ φ(t)

∫ s

s0

sin θ(τ)dτ +

∫ t

t0

Ψ(τ)φ′(τ)dτ ,

(29)

where Ψ = Ψ(t) is a smooth function and ′ denotes ordinary differentiation
with respect to the parameter t. Also, since 〈xt, xt〉 = m2, we yield the curve
φ parameterized by arc-lenght parameter t. Thus, we have the Case (1) of the
theorem.

Case 2. Let m satisfy (24b). Here, we can take m(t) = 1 by re-defining
t properly. In this case, the induced metric given in (15) of M becomes g =
ds2 + dt2, the Levi Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = 0, ∇∂t
∂t = 0. (30)

Also, considering m = 1 in (11b) and (21), thus (10) becomes

S3 =

(
−θ′ 0
0 0

)
, S4 =

(
0 0
0 1

)
. (31)
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Therefore, x and the normal vectors e3, e4 satisfy

xss = −θ′e3, xst = 0, xtt = e4.

(e3)s = −θ′xs, (e3)t = 0,

(e4)s = 0, (e4)t = −xt.

A straightforward computation yields that M is congruent to the surface given
in Case (2) of the theorem. Hence, the proof for the necessary condition is
obtained.

The proof of sufficient condition follows from a direct computation.

Now, assume that the function θ defined in (8) satisfied e1(θ) = 0. In this
case, Lemma 3.1 gives

Lemma 3.4. The Levi-Civita connection ∇ of M is given by

∇e1e1 = ∇e1e2 = 0, (32a)

∇e2e1 = tan θh3

22
e2, ∇e2e2 = − tan θh3

22
e1. (32b)

and the matrix representations of shape operator S of M with respect to {e1, e2}
is

S3 =

(
0 0
0 h3

22

)
, S4 =

(
0 0
0 h4

22

)
(33)

and coefficients of the second fundamental form satisfying

e1(h
3

22
) = − tan θ(h3

22
)2, (34a)

e1(h
4

22) = − tan θh3

22h
4

22, (34b)

h3

11
= 0, h4

11
= 0, h3

12
= 0, h4

12
= 0. (34c)

Note that here the angle θ is a non-zero constant.

Next, we obtain the following local coordinate system on a neighborhood of
a point p ∈ M .

Lemma 3.5. There exists a local coordinate system (s, t) defined in a neighbor-
hood Np of p such that the induced metric of M is

g = ds2 +m2dt2 (35)

for a smooth function m satisfying

e1(m)−m tan θh3

22
= 0. (36)

Here, the angle θ is a non-zero constant. Furthermore, the vector fields e1, e2

described above become e1 = ∂s, e2 =
1

m
∂t in Np.

Proof. We have [e1, e2] = − tan θh3

22e2 because of (32). Thus, if m is a non-
vanishing smooth function on M satisfying (36), then we have [e1,me2] = 0.
Therefore, there exists a local coordinate system (s, t) such that e1 = ∂s and

e2 =
1

m
∂t. Thus, the induced metric of M is as given in (35).

7



Now, we are ready to obtain the classification theorem.

Theorem 3.6. Let M be a regular surface in E
4. Let M be a surface endowed

with a canonical principal direction relative to k = (1, 0, 0, 0) and assume that
the function θ defined in (8) is constant. Then, M is congruent to the surface
given by one of the followings

1. A surface given by

x(s, t) = s
(
cos θ, φj(t) sin θ

)
+ γ(t), j = 2, 3, 4 (37a)

where γ is the E
4-valued function given by

γ(t) =
(
0, sin θ

∫ t

t0

φ′(τ)Ψ(τ)dτ
)
. (37b)

Here, Ψ ∈ C∞(M) and φ is the unit speed curve lying on S
3(1) in E

4 such
that 〈γ′(t), φ(t)〉 = 0 ;

2. A flat surface given by

x(s, t) = s
(
cos θ, φj(t0)sin θ

)
+ φ(t), j = 2, 3, 4 (38)

where φ(t0) = (0, φj(t0)) lying on S3(1) in E
4 is a constant vector perpen-

dicular to the vector (1, 0, 0, 0).

Conversely, surfaces described above are CPD relative to k = (1, 0, 0, 0).

Proof. Let {e1, e2; e3, e4} be the local orthonormal frame field and coefficients
of the second fundamental form described as before in Lemma 3.4, (s, t) a local
coordinate system given in Lemma 3.5.

Note that (34a), (34b) and (36) become, respectively

(h3

22
)s = − tan θ(h3

22
)2, (39)

(h4

22)s + tan θh3

22h
4

22 = 0, (40)

ms −m tan θh3

22
= 0. (41)

Moreover, we have
e1 = xs. (42)

By combining (41) with (33) we obtain the shape operator S of M as

S3 =

(
0 0
0 cot θms

m

)
S4 =

(
0 0
0 1

m

)
(43)

where θ is a non-zero constant.
By combining (41) and (39) we get

m(s, t) = Ψ1(t)
(
s+Ψ2(t)

)

for some smooth functions Ψ1,Ψ2. Therefore, by re-defining t properly, we may
assume either

m(s, t) = sin θ(s+Ψ(t)),Ψ ∈ C∞(M), (44a)

8



or
m(s, t) = m(t). (44b)

Case 1. Let m satisfies (44a). In this case, by considering the equation (32)
with (42), we get the Levi-Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = ∇∂t
∂s =

ms

m
∂t, ∇∂t

∂t = −mms∂s +
mt

m
∂t.

By combining these equations with (43) and using Gauss formula (1), we obtain

xss = 0. (45)

On the other hand, from the decomposition (8), we have 〈xs, k〉 = cos θ and
〈xt, k〉 = 0. By considering these equations, we see that x has the form of

x(s, t) =
(
scos θ, xj(s, t) + γj(t)

)
, j = 2, 3, 4. (46)

Here γ(t) = (0, γj(t)) is a E
4-valued smooth function. On the other hand,

since (45) and 〈xs, xs〉 = 1, we get φ(t) is a curve lying on S3(1) in E
4 with

φ(t) = (0, φj(t)). So, if the parametrization reorder, we get

x(s, t) =s
(
cos θ, φj(t)sin θ

)
+ γ(t). (47)

Now, by considering xst =
ms

m
xt in (47), we can rewrite the parametrization as

x(s, t) =s
(
cos θ, φj(t)sin θ

)
+ sin θ

∫ t

t0

Ψ(τ)φ′(τ)dτ , (48)

where Ψ = Ψ(t) is a smooth function. Also, since 〈xt, xt〉 = m2, we yield the
curve φ parameterized by arc-lenght parameter t. Thus, we have the Case (1)
of the theorem.

Case 2. m is given as (44b). In this case, the induced metric of M becomes
g = ds2 + dt2, the Levi Civita connection of M satisfies

∇∂s
∂s = 0, ∇∂s

∂t = 0, ∇∂t
∂t = 0. (49)

Also, considering (44b) in (34b) and (41), thus (33) becomes

S3 =

(
0 0
0 0

)
, S4 =

(
0 0
0 1

)
(50)

where K(t) is a smooth function. Therefore, x and the normal vectors e3, e4
satisfy

xss = 0, xst = 0, xtt = e4.

(e3)s = 0, (e3)t = 0,

(e4)s = 0, (e4)t = −xt.

A straightforward computation yields that M is congruent to the surface given
in Case (2) of the theorem. Hence, the proof for the necessary condition is
obtained.

The proof of sufficient condition follows from a direct computation.
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