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Abstract: The resolutions andmaximal sets of compatible resolutions of all 2-(120, 8, 1) designs arising from
maximal (120, 8)-arcs, and the 2-(52, 4, 1) designs arising from previously known maximal (52, 4)-arcs, as
well as some newly discovered maximal (52, 4)-arcs in the known projective planes of order 16, are com-
puted. It is shown that each 2-(120, 8, 1) design associated with a maximal (120, 8)-arc is embeddable in
a unique way in a projective plane of order 16. This result suggests a possible strengthening of the Bose–
Shrikhande theorem about the embeddability of the complement of a hyperoval in a projective plane of even
order. The computations of the maximal sets of compatible resolutions of the 2-(52, 4, 1) designs associated
with maximal (52, 4)-arcs show that five of the known projective planes of order 16 contain maximal arcs
whose associated designs are embeddable in two nonisomorphic planes of order 16.
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1 Introduction

A 2-(v, k, λ) design (or shortly, a 2-design) is a pair D = (X, B) of a set X of v points and a collection B of subsets
of X of size k called blocks, such that every two points appear together in exactly λ blocks; see [4; 10]. Every
point of a 2-(v, k, λ) design is contained in r = λ(v − 1)/(k − 1) blocks, and the total number of blocks is
b = v(v − 1)λ/k(k − 1).

The incidence matrix of a design D is a (0, 1)-matrix A = (aij) with rows labeled by the blocks, columns
labeled by the points, where ai,j = 1 if the ith block contains the jth point, and ai,j = 0 otherwise. If p is a
prime, the p-rank of a design D is the rank of its incidence matrix over a finite field of characteristic p.

Two designs are isomorphic if there is a bijection between their point sets that maps every block of the
first design to a block of the second design. An automorphism of a design is any isomorphism of the design to
itself. All automorphisms of D form the automorphism group Aut(D) of D.

The dual design D⊥ of a design D has as points the blocks of D, and as blocks the points of D. A 2-(v, k, λ)
design is symmetric if b = v, or equivalently, r = k. The dual design D⊥ of a symmetric 2-(v, k, λ) design
D is a symmetric design with the same parameters as D. A symmetric design D is self-dual if D and D⊥ are
isomorphic.

A design with λ = 1 is called a Steiner design. An affine plane of order n, where n ≥ 2, is a Steiner 2-
(n2, n, 1) design. A projective plane of order n is a symmetric Steiner 2-(n2 + n+1, n+1, 1) design with n ≥ 2.
The classical (or Desarguesian) plane PG(2, pt) of order n = pt, where p is prime and t ≥ 1, has as points the
1-dimensional subspaces of the 3-dimensional vector space V3 over the finite field of order pt, and as blocks
(or lines), the 2-dimensional subspaces of V3.

Let D = (X, B) be a Steiner 2-(v, k, 1) designwith point set X, collection of blocks B, and let v be amultiple
of k, say v = nk. Since every point of X is contained in r = (v − 1)/(k − 1) = (nk − 1)/(k − 1) blocks, it follows
that k−1 divides n−1. Thus, n−1 = s(k−1) for some integer s ≥ 1, and v = nk = (sk− s+1)k. A parallel class
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P is a set of v/k = n pairwise disjoint blocks, and a resolution of D is a partition of the collection of blocks B
into r = (v − 1)/(k − 1) = sk + 1 parallel classes. A design is resolvable if it admits a resolution.

Any 2-((sk−s+1)k, k, 1) designwith s = 1 is an affine plane of order k, and admits exactly one resolution.
If s > 1, a resolvable 2-((sk − s +1)k, k, 1) designmay admit more than one resolution. Following [31], we call
two resolutions R1, R2,

R1 = P(1)1 ∪ P
(1)
2 ∪ ⋅ ⋅ ⋅ ∪ P

(1)
r , R2 = P(2)1 ∪ P

(2)
2 ∪ ⋅ ⋅ ⋅ ∪ P

(2)
r (1)

compatible if they share one parallel class, P(1)i = P
(2)
j , and |P(1)i ∩ P

(2)
j | ≤ 1 for (i

, j) ̸= (i, j). More generally,
a set of m resolutions R1, . . . , Rm is compatible if every two of these resolutions are compatible.

Let P be a projective plane of order q = sk. Amaximal ((sk − s + 1)k, k)-arc, or a maximal arc of degree k,
is a set A of (sk − s + 1)k points of P such that every line of P is either disjoint from A or meets A in exactly k
points; cf. [22]. A maximal arc of degree k is nontrivial if 2 ≤ k < q. A hyperoval is a maximal arc of degree 2.
The collection of lines of Pwhich have no points in commonwith A determines amaximal ((sk−k+1)s, s)-arc
A⊥ (called a dual arc) in the dual plane P⊥.

Maximal arcswith1 < k < q donot exist in anyDesarguesianplaneof oddorder q by [3], andare known to
exist in every Desarguesian plane of order q = 2t, see [12; 11; 19; 20; 24], as well as in some non-Desarguesian
planes of even order, see [18; 17; 15; 16; 21; 28; 29; 30].

If k > 1, the nonempty intersections of a maximal ((sk − s + 1)k, k)-arc A with the lines of a projective
plane P of order q = sk are the blocks of a resolvable 2-((sk − s + 1)k, k, 1) design D. Similarly, if s > 1, the
corresponding ((sk − k + 1)s, s)-arc A⊥ in the dual plane is the point set of a resolvable 2-((sk − k + 1)s, s, 1)
design D⊥. We refer to D (respectively D⊥) as a design embeddable in P (respectively P⊥) as a maximal arc.
The points of D⊥ determine a set of (sk−k+1)smutually compatible resolutions of D. Respectively, the points
of D determine a set of (sk − s + 1)k mutually compatible resolutions of D⊥.

Two maximal arcs A, A in a projective plane P are equivalent if there is an automorphism of P that
maps A to A. We note that the designs associated with equivalent arcs are necessarily isomorphic, while
the converse is not true in general.

The following theorem, proved recently by one of the authors [31], gives an upper bound on the number
of pairwise compatible resolutions of a 2-((sk − s + 1)k, k, 1) design, and characterizes the designs for which
this upper bound is achieved.

Theorem 1.1 ([31]). Let S = {R1, . . . , Rm} be a set ofmmutually compatible resolutions of a 2-((sk−s+1)k, k, 1)
design D = (X, B). Then m ≤ (sk − k + 1)s. The equality m = (sk − k + 1)s holds if and only if there exists a
projective plane P of order sk such that D is embeddable in P as a maximal {(sk − s + 1)k, k}-arc.

The possible values for the degree k of a nontrivial maximal arc in a projective plane of order 16 are 2, 4,
and 8, and the parameters of the Steiner designs associated with such arcs are 2-(18, 2, 1), 2-(52, 4, 1), and
2-(120, 8, 1), respectively. Clearly, a 2-(18, 2, 1) associated with a hyperoval H is the trivial design having as
blocks the unordered pairs of points of H, or equivalently, the edges of the complete graph on 18 vertices
being the points of H.

This paper summarizes the computation of all parallel classes, resolutions, and compatible sets of resolu-
tions of maximum size of the 2-(52, 4, 1) designs associated with maximal (52, 4)-arcs, and the 2-(120, 8, 1)
associated with maximal (120, 8)-arcs in the known projective planes of order 16. The main results are:

Theorem 1.2. (i) Every 2-(120, 8, 1) design associated with a maximal (120, 8)-arc in a known projective
plane P of order 16 admits exactly one compatible set of resolutions of maximal size, meeting the bound
of Theorem 1.1, and consequently it is uniquely embeddable in P.

(ii) Five of the known projective planes of order 16 (the Lorimer–Rahilly plane LMRH, its dual plane
LMRH⊥, the Johnson plane JOHN, the plane BBH1 obtained by Bose–Barlotti derivation [5] of the
Hall plane, and the Johnson–Walker plane JOWK), contain maximal (52, 4)-arcs whose associated
2-(52, 4, 1) designs admit two different sets of 52 compatible resolutions, and are embeddable in two
different planes.
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(iii) Each of the following pairs {P1, P2} of projective planes of order 16 contain maximal (52, 4)-arcs such
that the associated 2-(52, 4, 1) designs are isomorphic:
∙ the Johnson plane and the Johnson–Walker plane;
∙ the Johnson plane and the plane BBH1;
∙ the Lorimer–Rahilly plane LMRH and its dual plane.

Part (i) of Theorem 1.2 gives rise to the following

Conjecture 1.3. Every 2-((q2),
q
2 , 1) design D associated with a maximal ((q2),

q
2 )-arc A in a projective plane P of

even order q is uniquely embeddable in P.

We note that a ((q2),
q
2 )-arc in a plane of even order q is a dual arc of a hyperoval in P

⊥ (for this reason, the
associated 2-((q2),

q
2 , 1) design is called an oval design in [1, 8.4]). Since each of the planes of order 2, 4, and

8 contains exactly one equivalence class of hyperovals, the answer of the above question is in the affirmative
(trivially) for q = 2, 4, and 8.

Conjecture 1.3, if true, would be a significant strengthening of a theorem due to Bose and Shrikhande [6],
stating that the complement of a hyperoval, that is, a maximal (q+2, 2)-arc, in any projective plane P of even
order q is uniquely embeddable in P, because the conjecture assumption is weaker than the assumption of
Bose–Shrikhande’s theorem: for, the complement of ahyperoval contains q2−1points,while the complement
of a ((q2),

q
2 )-arc contains (q

2 + q + 2)/2 points, that is, (q2 − q − 4)/2 points less than the complement of a
hyperoval.

Part (ii) of Theorem 1.2 provides new connections between the known projective planes of order 16 (com-
pare with the diagram of known connections given by Moorhouse in [26]). Part (iii) of Theorem 1.2 implies
that the points and lines of the corresponding pair of planes {P1, P2} can be reordered in such a way that the
resulting planes {P1, P


2 } share a maximal (52, 4)-arc A, and the incidence matrices of the designs D, D as-

sociatedwith A are identical. Listswith the lines of planes isomorphic to the pairs of planes fromTheorem 1.2,
Part (iii), which share a maximal (52, 4)-arc, are available at www.math.mtu.edu/∼tonchev/arcs.htm.

2 Maximal (120, 8)-arcs and related 2-(120, 8, 1) designs

There are 22 nonisomorphic projective planes of order 16 that are known currently. Four planes, PG(2, 16),
SEMI2, SEMI4, and BBH1 (in the notation of [28]) are self-dual, and there are nine planes which are not self-
dual: HALL, LMRH, JOWK, DSFP, DEMP, BBH2, JOHN, BBS4, and MATH; see [28]. Lists with the collections of
lines of these planes are available at Eric Moorhouse’s web page [26].

In [28], Penttila, Royle, and Simpson enumerated and classified up to equivalence all hyperovals in the
known planes of order 16. A hyperoval A in a plane P of order 16 is amaximal (18, 2)-arc, and its dual arc A⊥

is a maximal (120, 8)-arc in the dual plane P⊥. Since twomaximal arcs A and A in a plane P are equivalent
if and only if their dual arcs (A)⊥, (A)⊥ are equivalent, the results from [28] imply the classification of all
maximal (120, 8)-arcs in the known projective planes of order 16, up to equivalence.

We used the data about the inequivalent hyperovals graciously provided to the authors by Gordon
F. Royle, to compute the corresponding dual (120, 8)-arcs and the related 2-(120, 8, 1) designs. The 93 in-
equivalent hyperovals give rise to 93 inequivalent (120, 8)-arcs. For each 2-(120, 8, 1) design D associated
with an arc in the dual plane of the plane containing the corresponding hyperoval, we computed all parallel
classes of D, all resolutions of D, and all compatible sets of maximal size 18. The parallel classes were found
as 13-cliques in a graph Γ having as vertices the blocks of D, where two blocks are adjacent in Γ if they are
disjoint. The resolutions were computed as 17-cliques in a graph ∆ having as vertices the parallel classes
of D, where two parallel classes are adjacent in ∆ if they do not share any block. Finally, we computed the
compatible sets of maximal size 18 as 18-cliques in a graph E having as vertices the resolutions of D, where
adjacency is defined according to the definition of compatible resolutions given in the preceding section. For
these computations, wewrote algorithms usingMagma [7] and Cliquer [27]. The results of these computations
are summarized in [32, Table 2.4].
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Remark 2.1. The number of parallel classes ranges from 153 to 221, cf. [32, Table 2.4], while the number
of resolutions is 18 in all but one notable exception, namely the 2-(120, 8, 1) oval design corresponding to
the dual (120, 8)-arc of the regular hyperoval in PG(2, 16), with automorphism group of order 16, 320. The
number of resolutions of this particular design is 137. However, the set of 137 resolutions contains only
one set of 18 pairwise compatible resolutions, thus this design, as well as all remaining oval designs, are
embeddable in a unique way in a projective plane of order 16.

The unique embeddability of the 2-(120, 8, 1) oval designs implies that the 273×273 incidencematrix of
the related projective plane can be recovered uniquely (up to a permutation of the rows or columns), from the
120 × 255 incidence matrix of an oval design, which is a much smaller matrix than the 255 × 273 incidence
matrix of the complement of a hyperoval (see Conjecture 1.3 in the previous section).

Remark 2.2. The 2-ranks of the 2-(120, 8, 1) designs associated with maximal (120, 8)-arcs range from 65
to 94, and the minimum 65 is achieved only by the two designs in the Desarguesian plane PG(2, 16) corre-
sponding to the regular hyperoval with a group of order 16, 320, and the Lunelli–Sce hyperoval (see [23],
also known as the Hall hyperoval [14]), with a group of order 144. This supports a conjecture by Carpenter
[9], stating that the 2-rank of any design associated with a hyperoval in PG(2, 2t) is 3t − 2t, as well as the
following stronger conjecture formulated in [31], which generalizes a conjecture by Brouwer [8].

Conjecture 2.3 ([31]). If D is a 2-(22t−1 − 2t−1, 2t−1, 1) design (t ≥ 2), with an incidence matrix A, then
rank2(A) ≥ 3t − 2t, and the equality rank2(A) = 3t − 2t holds if and only if D is embeddable as a maxi-
mal (22t−1 − 2t−1, 2t−1)-arc in PG(2t , 2).

Conjecture 2.3 is trivially true for t = 2, and its validity for t = 3 follows from the results of [25].

3 Maximal (52, 4)-arcs and related 2-(52, 4, 1) designs

A list of all previously known maximal (52, 4)-racs in the known non-Desarguesian planes of order 16 is
given in [21]. The following eight new arcs were found recently by Mustafa Gezek [13]:

MATH.2* = {260, 261, 259, 266, 20, 104, 74, 211, 170, 109, 214, 244, 32, 49, 129, 158, 117, 143, 63,
203, 40, 150, 251, 78, 69, 240, 198, 120, 17, 54, 241, 51, 175, 141, 136, 79, 46, 218, 212,
144, 197, 100, 106, 123, 21, 157, 115, 171, 160, 35, 205, 30}

MATH.3* = {53, 139, 113, 207, 256, 257, 265, 258, 13, 172, 179, 18, 42, 208, 148, 110, 73, 247, 86,
232, 54, 91, 229, 121, 136, 241, 79, 199, 0, 109, 170, 190, 34, 211, 156, 20, 9, 253, 192,
155, 183, 209, 52, 67, 111, 82, 126, 236, 37, 24, 166, 138}

MATH.4* = {256, 257, 258, 265, 15, 220, 118, 165, 234, 27, 45, 57, 254, 98, 147, 200, 64, 84, 177,
135, 8, 76, 242, 202, 237, 182, 213, 169, 83, 107, 23, 48, 47, 116, 145, 142, 14, 156, 85,
51, 235, 34, 250, 121, 199, 104, 176, 31, 214, 68, 161, 141}

MATH.5* = {263, 271, 270, 268, 0, 229, 190, 216, 91, 61, 102, 131, 22, 37, 206, 24, 243, 43, 192,
253, 7, 138, 58, 183, 226, 82, 111, 223, 5, 187, 224, 134, 94, 56, 99, 221, 10, 198, 40,
251, 239, 90, 55, 35, 103, 205, 210, 30, 21, 191, 240, 130}

MATH.6* = {256, 258, 257, 265, 5, 17, 224, 244, 187, 74, 175, 94, 6, 18, 25, 184, 179, 172, 13,
167, 42, 62, 208, 148, 122, 128, 196, 110, 39, 51, 194, 153, 104, 141, 214, 124, 43, 63,
243, 92, 149, 89, 72, 129, 231, 223, 77, 97, 226, 117, 203, 246}

MATH.7* = {260, 261, 259, 266, 0, 235, 201, 156, 190, 85, 34, 119, 22, 253, 77, 243, 168, 24, 166, 67,
7, 236, 185, 92, 9, 82, 226, 183, 11, 224, 153, 204, 181, 94, 114, 39, 16, 251, 205, 147,
174, 152, 198, 69, 38, 171, 115, 120, 45, 64, 254, 21}
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JOHN.3* = {5, 18, 10, 24, 130, 179, 182, 136, 135, 185, 188, 141, 256, 267, 271, 263, 269, 270, 257,
261, 74, 190, 93, 88, 99, 133, 166, 152, 163, 79, 116, 113, 157, 128, 187, 102, 9, 167, 12,
37, 55, 153, 132, 156, 162, 32, 50, 27, 186, 191, 129, 30}

JOHN.4* = {97, 115, 121, 107, 192, 236, 227, 207, 5, 18, 10, 24, 197, 233, 230, 202, 100, 118, 124,
110, 131, 245, 178, 155, 211, 193, 231, 170, 134, 240, 183, 158, 214, 196, 226, 175, 64,
180, 87, 82, 105, 143, 172, 146, 169, 69, 126, 123, 151, 138, 177, 108}

Using an algorithm similar to the one applied to the designs associated with maximal (120, 8)-arcs, we
computed all parallel classes, resolutions, and maximals sets of 52 pairwise compatible resolutions for each
of the 2-(52, 4, 1) designs associated with maximal (52, 4)-arcs in the known planes of order 16. The results
of these computations are summarized in Table 1, where we use the notation from [21] for previously known
arcs. An arc with a name ending at ∗ denotes a new arc found in [13]. The arcs PG(2, 16).1 and PG(2, 16).2
are maximal (52, 4)-arcs in the Desarguesian plane PG(2, 16). As shown in [2], up to projective equivalence,
PG(2, 16) contains only two maximal (52, 4)-arcs, both of Denniston type [12].

Table 1:Maximal (52, 4)-arcs and related 2-(52, 4, 1) designs

Arc |Aut(D)| 2-rank Par. Cl. Res. Comp. Res. Plane

PG(2, 16).1 68 41 2329 409 52 (×1) PG(2, 16)
PG(2, 16).2 408 41 2550 460 52 (×1) PG(2, 16)
DEMP.1 24 49 250 52 52 (×1) DEMP
DEMP.2 144 47 543 52 52 (×1) DEMP
SEMI4.1 96 45 2569 52 52 (×1) SEMI4
SEMI2.1 24 47 327 52 52 (×1) SEMI2
SEMI2.2 144 45 1279 55 52 (×1) SEMI2
LMRH.1 96 47 2265 104 52 (×2) LMRH, LMRH⊥

MATH.1 24 49 291 52 52 (×1) MATH
MATH.2* 32 46 1729 52 52 (×1) MATH
MATH.3* 32 47 2401 64 52 (×1) MATH
MATH.4* 32 46 1665 52 52 (×1) MATH
MATH.5* 16 47 1233 52 52 (×1) MATH
MATH.6* 16 48 1329 52 52 (×1) MATH
MATH.7* 16 48 1125 52 52 (×1) MATH
HALL.1 24 49 274 52 52 (×1) HALL
BBH1.1 24 47 330 52 52 (×1) BBH1
BBH1.2 32 46 2017 136 52 (×2) BBH1, JOHN
JOWK.1 16 46 1389 52 52 (×1) JOWK
JOWK.2 32 46 2409 104 52 (×2) JOWK, JOHN
JOHN.1 32 47 1953 144 52 (×2) JOHN
JOHN.2 32 47 1953 144 52 (×2) JOHN
JOHN.3* 32 46 2017 136 52 (×2) JOHN, BBH1
JOHN.4* 32 46 2409 104 52 (×2) JOHN, JOWK
DSFP.1 24 47 1045 52 52 (×1) DSFP

The most interesting outcome of these computations is the following phenomenon that provides knew
connections between some of the known projective planes of order 16: there are seven maximal (52, 4)-arcs
(LMRH.1, BBH1.2, JOWK.2, JOHN.1, JOHN.2, JOHN.3* and JOHN.4*), whose related 2-(52, 4, 1) designs admit
two different sets of 52 pairwise compatible resolutions, meeting the bound of Theorem 1.1, and consequently
are embeddable in two different planes. The two sets of 52 compatible resolutions of the designs associated
with the maximal arcs JOHN.1 and JOHN.2 give rise to two projective planes, both isomorphic to the Johnson
plane JOHN. However, in the remaining cases, one of the sets of 52 compatible resolutions gives rise to the
original plane, while the second set gives rise to another nonisomorphic plane:

Brought to you by | Stockholm University Library
Authenticated

Download Date | 11/10/19 9:09 PM



350 | Gezek, Wagner and Tonchev, Maximal arcs in projective planes of order 16 and related designs

∙ the 2-(52, 4, 1) design associated with the maximal arc LMRH.1 is embeddable in the Lorimer–Rahilly
plane LMRH, as well as in its dual plane;
∙ the 2-(52, 4, 1)design associatedwith themaximal arc BBH1.2 is embeddable in the planeBBH1 obtained
by Bose–Barlotti derivation [5] of the Hall plane, as well as in a second plane isomorphic to the Johnson
plane JOHN;
∙ the 2-(52, 4, 1) design associated with the maximal arc JOWK.2 is embeddable in the Johnson–Walker
plane JOWK, as well as in a second plane isomorphic to the Johnson plane;
∙ the 2-(52, 4, 1) design associated with the maximal arc JOHN.3* is embeddable in the Johnson plane
JOHN, as well in a second plane isomorphic to the plane BBH1;
∙ the 2-(52, 4, 1) design associated with the maximal arc JOHN.4* is embeddable in the Johnson plane
JOHN, as well in a second plane isomorphic to the Johnson–Walker plane JOWK.
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