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Turkey., e-mail:alevkelleci@hotmail.com,
Mahmut Ergüt: Namık Kemal University, Faculty of Science and Letters, Department of
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1 Introduction

Let M̂ be a (semi-)Riemannian manifold, M a hypersurface of M̂ and X a
vector field tangent to M̂ . M is said to have a canonical principal direction
relative to X if the tangential projection of X to M gives a principal direction.
For example, a rotational hypersurface in Euclidean spaces has a canonical
principal direction relative to a vector field parallel to its rotation axis, [12]. It
turns out that when M̂ is a product space M̃ × R or a semi-Euclidean space,
some common interesting geometrical properties of hypersurfaces endowed with
a canonical principal direction relative to X occur if X is chosen to be a fixed
direction k (See Theorem 3.6, Theorem 3.13, Theorem 3.15, Theorem 4.1 and
Theorem 4.6).

Let Mn(c), c = ±1 denote the Riemannian space-form given by

Mn(c) =

{
Sn if c = 1,
Hn if c = −1.

We would like to note the following important property which relates con-
stant angle surfaces to surfaces with a canonical principal direction. The projec-
tion U of the unit vector field T tangent to the second factor R to the tangential
bundle of the surface is a principal direction for M with the corresponding prin-
cipal curvature equal to zero. Therefore, a constant angle surface in M2(c)×R is
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endowed with canonical principal direction relative to T . There are many classi-
fication results obtained so far, in different ambient spaces, [1, 3, 5, 6, 13, 15, 18].

A recent natural problem is that appears in the context of constant angle
surfaces is to study those surfaces for which U remains a principal direction but
the corresponding principal curvature is different from zero. This problem was
studied in S2 × R [4] and H2 × R [7]. Further, this problem has been recently
studied in Euclidean spaces and semi-Euclidean spaces, (see in [10, 19, 20])
where T is replaced by a constant direction k.

On the other hand, in [8, 9, 11, 23] authors study generalized constant ratio
surfaces. A hypersurface M in a semi-Euclidean space En+1

t is said to be a
generalized constant ratio surfaces if the tangential component of its position
vector is a principal direction of M . It is well-known that planes and complete
hypersurfaces of En+1

t with constant sectional curvatures are trivial examples
of generalized constant ratio surfaces.

This paper is organized as follows. In Sect. 2, we mention the notation that
we use in this paper. In Sect. 3 and Sect.4, we present a short survey of recent
results on surfaces endowed with a canonical principle curvatures. In Sect. 5,
we show some of the results that we have recently obtained. In Sect. 6 we
present classifications of generalized constant ratio hypersurfaces in Minkowski
spaces.

2 Preliminaries

In this section, we would like to give a brief summary of basic results on
Lorentzian surfaces, (see for detail, [2, 21]).

Let Emt denote the semi-Euclideanm-space with the canonical semi-Euclidean
metric tensor of index t given by

g̃ =

m−t∑
i=1

dx2i −
m∑

j=m−t+1

dx2j ,

where x1, x2, . . . , xm are rectangular coordinates of the points of Emt .
Let Snt (r2) and Hnt−1(−r2) denote the de Sitter space-time and the hyperbolic

space of dimension n > 2 defined by

Snt (1/r2) = {x ∈ En+1
t : 〈x, x〉 = r−2},

Hnt−1(−1/r2) = {x ∈ En+1
t : 〈x, x〉 = −r−2}.

For a short notation, we put Hn0 (−1) = Hn and Sn0 (1) = Sn.
We would like to note that all further notations, basic definitions and basic

facts that we will use in this paper are described in [8, 23]. We also would like
to refer to [4, 7, 19, 20] for detailed information of definition and geometrical
interpretation of surfaces endowed with canonical principal direction.
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3 Surface endowed with canonical
principal direction in product spaces

In recent years, a lot of research has been done about M̃2 × R by considering
the unit vector field T tangent to the second factor, parallel along M̃2 × R. A
special case is when M̃ is a 2-dimensional Riemanmian space form, i.e., M̃ =
M2(c), c = ±1. A surface M in M2(c)×R is said to be endowed with canonical
principal direction (in short, CPD) if the projection of T , i.e. the canonical unit
vector tangent to the R−direction, onto the tangent space of M , is a principal
direction. In this case, T can be decomposed as

T = sin θU + cos θN

where N is the unit normal vector field of surface M . Here, SU = k1U for a
smooth function k1 where S is the shape operator of M in M2×R, respectively.
Note that we consider the case θ /∈

{
0, π2

}
to eliminate trivial cases.

In this section, we would like to present a survey of classification results
recently obtained. However, before we proceed, we would like to note that a
further generalization of this notion is isometric immersions which belongs to
the class A. An isometric immersion f : M → Sn × R is said to have this
property if U is an eigenvector of all shape operators of f , where M is an m-
dimensional submanifold of Sn × R. This class was introduced in [22], where a
complete description was given for hypersurfaces, and extended to submanifolds
of Sn × R in [17].

3.1 Surfaces in S2 × R
We may note that the study of CPD surfaces in S2 ×R was investigated in [4].
The following results were obtained in that paper.

Let M be a surface endowed with canonical principal direction in S2 × R.
By choosing an appropriate local coordinate system on M , one can see that the
induced metric g of M becomes

g = dx2 + β2(x, y)dy2.

Moreover, the shape operator S with respect to the basis { ∂∂x ,
∂
∂y} is given by

S =

(
θx 0

0 βx tan θ
β

)
.

(See [4].)

Remark 3.1. An analogous result for CPD surfaces in H2×R is obtained in [7].

First, we would like to give the following characterization for CPD surfaces
in S2 × R.
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Theorem 3.2. [5] Let M be an immersed in S2×R and p a point of M for which
θ(p) /∈ {0, π/2}. Then, U is a principal direction if and only if M considered as
a surface in E4 is normally flat.

The following classification result is obtained in [4].

Proposition 3.3. [4] A surface M immersed in S2 × R is a surface for which
U is a principal direction if and only if the immersion F is in the neighborhood
of a point p where θ(p) /∈

{
0, π2

}
given by

F : M −→ S2 × R
(x, y) 7−→ (F1(x, y), F2(x, y), F3(x, y), F4(x)),

where

Fj(x, y) =

∫ y

y0

αj(v) sin(ψ(x) + φ(v))dv

for j = 1, 2, 3, ψ′(x) = cos(θ(x)), F ′4(x) = sin(θ(x)) and (α1, α2, α3) is a curve
in S2 and F 2

1 +F 2
2 +F 2

3 = 1. Moreover α1, α2, α3, ψ and φ are functions on M
related by

α′j(y) =− cos(ψ(x) + φ(y))

∫ y

y0

αj(v) cos(ψ(x) + φ(v))dv

− sin(ψ(x) + φ(y))

∫ y

y0

αj(v) sin(ψ(x) + φ(v))dv.

A direct consequence of this proposition is

Corollary 3.4. [4] A surface M immersed in S2×R is a minimal surface with
U a principal direction if and only if the immersion F is (up to isometries of
S2 × R) in the neighborhood of a point p where θ /∈

{
0, π2

}
given by

F : M −→S2 × R,

(x, y) 7−→

(
sinx√
1 + c2

,

√
cos2 x+ c2 cos y√

1 + c2
,

√
cos2 x+ c2 sin y√

1 + c2
, F4(x)

)
with

F4(x) =

∫ x

0

c√
cos2(u) + c2

du.

Corollary 3.5. [4] A surface M immersed in S2×R is a flat surface with U a
principal direction if and only if the immersion F is (up to isometries of S2×R)
in the neighborhood of a point p where θ /∈

{
0, π2

}
given by

F : M →S2 × R,

(x, y) 7−→

(√
1 + d− x2√

1 + d
,
x cos y√

1 + d
,
x sin y√

1 + d
, F4(x)

)
with

F4(x) =

∫ x

0

√
d− u2√

1 + d− u2
du.
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3.2 Surfaces in H2 × R
In [7], the authors studied CPD surfaces in H2 × R.

Note that we have the following characterization.

Theorem 3.6. [7] Let M be a surface isometrically immersed in H2 × R such
that θ /∈ 0. U is a principal direction if and only if M is normally flat in R3

1×R.

Theorem 3.7. [7] If F : M → H2 × R is an isometric immersion with θ /∈{
0, π2

}
, then U is a principal direction if and only if F is given by

F (x, y) = (F1(x, y), F2(x, y), F3(x, y), F4(x)),

with Fj(x, y) = Aj(y) sinhφ(x) + Bj(y) coshφ(x), for j = 1, 2, 3 and F4(x) =∫ x
0

sin(θ(τ)dτ), where φ′(x) = cos(θ). The six functions Aj and Bj are found
in one of the following three cases.

• Case 1.

Aj(y) =

∫ y

0

Hj(τ) coshψ(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ) sinhψ(τ)dτ + c2j ,

H ′j(y) =Bj(y) sinhψ(y)−Aj(y) coshψ(y);

• Case 2.

Aj(y) =

∫ y

0

Hj(τ) sinhψ(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ) coshψ(τ)dτ + c2j ,

H ′j(y) =−Aj(y) sinhψ(y) +Bj(y) coshψ(y);

• Case 3.

Aj(y) =±
∫ y

0

Hj(τ)dτ + c1j ,

Bj(y) =

∫ y

0

Hj(τ)dτ + c2j ,

H ′j(y) =c2j ∓ c1j ;

where H = (H1, H2, H3) is a curve on the de Sitter space S21, ψ is a smooth
function on M and c1 = (c11, c12, c13), c2 = (c21, c22, c23) are constant vectors.

Remark 3.8. [7] In order to obtain a unified description, we note that in all
cases F is given by

F (x, y) =

(
A(y) sinhφ(x) +B(y) coshφ(x),

∫ x

0

sin θ(τ)dτ

)
,
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where A is a curve in S21 and B is a curve in H2 orthogonal to A such that
the two speeds A′ and B′ are parallel. Denoting by H the unit vector of their
common direction, one has H = A⊗B and moreover

• H is a space-like curve in the first case,

• H is a time-like curve in the second case,

• H is a light-like curve in the last case.

Theorem 3.9. [7] If F : M → H2 × R is an isometric immersion with angle
function θ /∈

{
0, π2

}
, then U is a principal direction if and only if F is locally

given by
F (x, y) = (A(y) sinhφ(x) +B(y) coshφ(x), χ(x)) ,

where A(y) is a curve in S21 and B is a curve in H2, such that 〈A,B〉 = 0, A′ ‖ B′
and where (φ(x), χ(x)) is a regular curve in R2. The angle function θ of M
depends only on x and coincides with the angle function of the curve (φ, χ).
In particular, we can arc length reparametrize (φ, χ); then (x, y) are canonical
cordinates and θ′(x) = κ(x), the curvature of (φ, χ).

Theorem 3.10. [7] Let F : M → H2 × R is an isometric immersion with
θ /∈

{
0, π2

}
. Then M has U as a principal direction if and only if F is given by

F (x, y) = (f(y) coshφ(x) +Nf (y) sinhφ(x), χ(x)) ,

where f(y) is a regular curve in H2 and Nf (y) = f(y)⊗f ′(y)√
〈f ′(y),f ′(y)〉

represents the

normal of f . Moreover, (φ, χ) is a regular curve in R2 and the angle function
θ of this curve is the same as the angle function of the surface parametrized by
F .

Consequently, authors obtained the following classification results by con-
sidering minimal and flat surfaces.

Corollary 3.11. [7] Let M be a surface isometrically immersed in H2×R, with
θ /∈

{
0, π2

}
. Then M is minimal with U a principal direction if and only if the

immersion is, up to isometries of the ambient space, locally given by one of the
next cases

• F (x, y) =

(
b(x)√

1+c21−c22
, sinh y

√
a2(x)+1√
1+c21−c22

, cosh y

√
a2(x)+1√
1+c21−c22

, χ(x)

)
,

• F (x, y) =

(
cos y

√
a2(x)+1√
−1−c21+c22

, sin y

√
a2(x)+1√
−1−c21+c22

, b(x)√
−1−c21+c22

, χ(x)

)
,

• F (x, y) =
(
b(x)y, b(x)2 (1− y2)− 1

2b(x) ,
b(x)
2 (1 + y2) + 1

2b(x) , χ(x)
)

,

where χ(x) =
∫ x
0

1√
a2(τ)+1

dτ, with a(x) = c1 coshx+ c2 sinhx, b(x) = a′(x) and

c1, c2 are constants.
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Theorem 3.12. [7] Let M be a surface in H2 × R, with θ /∈
{

0, π2
}

. Then
M is flat with U a principal direction if and only if the immersion F is, up to
isometries of the ambient space, given by

• F (x, y) =
(

x√
1+c

cos y, x√
1+c

sin y,
√
x2+c+1√

1+c
, χ(x)

)
,

• F (x, y) =
(√

x2+c+1√
−1−c ,

x√
−1−c sinh y, x√

−1−c cosh y, χ(x)
)

,

• F (x, y) =
(
xy, x2 (1− y2)− 1

2x ,
x
2 (1 + y2) + 1

2x , χ(x)
)
,

where χ(x) =
∫ x
0

√
τ2+c√
τ2+c+1

dτ, c ∈ R.

3.3 Surfaces in M2(c)× R1

In [10], Fu and Nistor gave a partial classification of CPD surfaces by assuming
that the fixed vector is time-like. In this case, the fixed vector is k = (0, 0, 1)
which is time-like.

Similar to previous case, let U stand for the unit tangent vector on the
direction of kT .

Theorem 3.13. [10] Let M be a space-like surface in Lorentzian product spaces
M2(c)× R1. Then, U is a principal direction if and only if M is normally flat
in R3

1 for c = 0, R4
1 for c = 1, R4

2 for c = −1.

Next, we would like to mention the following theorem obtained in [10] where
authors assume k = (0, 0, 1).

Theorem 3.14. [10, 20] Let L : M →M2(c)×R1 be a space-like surface. Then,
U is a canonical principal direction for M if and only if M is parametrized as:

• If c = 1, then L : M → S2 × R1,

L(x, y) = (cosφ(x)f(y) + sinφ(x)Nf (y), χ(x)) ,

where f(y) is a regular curve on S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .

• If c = −1, then L : M → H2 × R1,

L(x, y) = (coshφ(x)f(y) + sinhφ(x)Nf (y), χ(x)) ,

where f(y) is a regular curve in S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .
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• If c = 0, then we have L : M → R3
1 is congruent to one of the following

two surfaces.

1. L(x, y) = (cos y, sin y, 0)φ(x)− (0, 0, 1)χ(x) + γ(v), where

γ(v) =

(∫ y

0

ψ(τ) sin(τ)dτ,−
∫ y

0

ψ(τ) cos(τ)dτ, 0

)
, ψ ∈ C∞(M).

2. L(x, y) = (cos y0, sin(y0), 0)φ(x)− (0, 0, 1)χ(x) + γ0(y), where

γ0(y) = (−(sin y0)y, (cos y0)y, 0)

and y0 is a real constant.

In all three cases φ(x) =
∫ x
x0

cosh θ(τ)dτ and χ(x) =
∫ x
x0

sinh θ(τ)dτ .

Now, we give the following results obtained in [10] for Lorentzian surfaces
with canonical principal direction. We note that they gave the partial classifi-
cation of those surfaces in that paper.

Theorem 3.15. [10] Let M be a Lorentzian surface in Lorentzian product
spaces M2(c) × R1, and let θ be the hyperbolic angle function. Then, U is a
principal direction if and only if M is normally flat in R3

1 for c = 0, R4
1 for

c = 1, R4
2 for c = −1.

Theorem 3.16. [10, 7] Let L : M → M2(c)× R1 be a Lorentzian surface and
let θ /∈ 0 be the hyperbolic angle function. Then, U is a canonical principal
direction for M if and only if M is parametrized as:

• If c = 1, then L : M → S2 × R1 is

L(x, y) = (cosχ(x)f(y) + sinχ(x)Nf (y), φ(x)) ,

where f(y) is a regular curve on S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .

• If c = −1, then L : M → H2 × R1 is

L(x, y) = (coshχ(x)f(y) + sinhχ(x)Nf (y), φ(x)) ,

where f(y) is a regular curve in S2 and

Nf (y) =
f(y)⊗ f ′(y)√
〈f ′(y), f ′(y)〉

represents the normal of f .
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• If c = 0, then L : M → R3
1

1. L(x, y) = (χ(x) cos y, χ(x) sin y, φ(x)) + γ(y) where

γ(y) =

(
−
∫ y

0

ψ(τ) sin(τ)dτ,

∫ y

0

ψ(τ) cos(τ)dτ, 0

)
, ψ ∈ C∞(M).

2. L(x, y) = (χ(x) cos y0, χ(x) sin y0, φ(x)) + γ0y, where

γ0 = (− sin y0, cos y0, 0)

and y0 is a real constant.

In all these cases φ(x) =
∫ x
x0

cosh θ(τ)dτ and χ(x) =
∫ x
x0

sinh θ(τ)dτ .

We have the following corollaries of the previvous theorem.

Corollary 3.17. [10] The only flat Lorentz surfaces M immersed in E3
1 en-

dowed with a canonical principal direction are given by the cylindirical surfaces
parametrized in the last case of Theorem 3.16.

Corollary 3.18. [10] The only minimal Lorentz surfaces M immersed in E3
1

endowed with a canonical principal direction are given by the catenoids of the
3rd kind parametrized as:

L(x, y) =

(
m cos

t

m
cos y,m cos

t

m
sin y, x

)
,m ∈ R {0} .

4 Surfaces endowed with canonical

principal direction in Euclidean and
semi-Euclidean spaces

A surface in a semi-Euclidean space E3
r is said to be endowed with canonical prin-

cipal direction (CPD) if there exists a fixed direction k such that S(kT ) = k1k
T ,

where kT denote the tangential component of k. In [19], Munteanu and Nistor
studied surfaces with CPD in E3, while some classifications of such surfaces in
the Minkowski space E3

1 is obtained in [20] for some cases.

4.1 Surfaces in E3

Let M be a surface with CPD in E3. Note that by choosing an appropriate
rotation in E3, we may assume k = (0, 0, 1) and we denote U = kT /‖kT ‖. We
define θ by k = sin θU + cos θN . To eliminate trivial cases we consider a point
p ∈M with θ(p) /∈

{
0, π2

}
.

Note that if U is a principal direction, then we can choose a local coordinate
system (x, y) in a neighborhood of p so that ∂x is in the direction of U and the
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metric g has the form g = dx2 + β2(x, y)dy2. Further, the shape operator S is
given by

S =

(
θx 0

0 βx tan θ
β

)
.

Moreover, θ and β are related by βx

cos θ is independent of x and θy = 0, [19].
In [19] the following characterization theorem obtained.

Theorem 4.1. [19] Let M be a surface in E3 and θ /∈ 0 be the angle function.
Let (x, y) be local coordinates on M such that ∂x is the direction of U . Then,
U is a principal direction if and only if θy = 0.

Further, the classification of surfaces with CPD in E3 was given as following.

Theorem 4.2. [19] Let M be a surface isometrically immersed in E3 and let
θ /∈ 0, π2 be as before. Then, U is a canonical principal direction if and only if
M is given, up to isometries of E3, by one of the following cases:

• r : M → E3,

r(x, y) =

(
φ(x)(cos y, sin y) + γ(y),

∫ x

0

sin θ(τ)dτ

)
with

γ(y) =

(
−
∫ y

0

ψ(τ) sin(τ)dτ,

∫ y

0

ψ(τ) cos(τ)dτ

)
,

where ψ is a smooth function on a certain interval I.

• r : M → E3, r(x, y) =
(
φ(x) cos(y0), φ(x) sin(y0),

∫ y
0

sin θ(τ)dτ + y(v0)
)

with v0 = (− sin(y0), cos(y0), 0), y0 ∈ R. Notice that these surfaces are
cylinders. In both cases φ(x) denotes a primitive of cos θ.

Similar to Sect. 3, the classifications of minimal and flat surfaces follows
from the previous theorem.

Corollary 4.3. [19] Let M be a surface isometrically immersed in E3. Then
M is minimal surface with U a principal direction if and only if the immersion
is, up to isometries of the ambient space, given by

r(x, y) =
(√

x2 + c2 cos y,
√
x2 + c2 sin y, c log(x+

√
x2 + c2)

)
, c ∈ R.

Remark 4.4. [19] We notice that this surface can be obtained by rotating the
catenary around the z-axis. Hence, the only minimal surface in Euclidean 3-
space with canonical principal direction is the catenoid.

Corollary 4.5. [19] Let M be a surface isometrically immersed in E3 and let
θ /∈ 0, π2 be the angle function. Then M is a flat surface with U a principal
direction if and only if the immersion is, up to isometries of the ambient space,
given by

r(x, y) =

(
φ(x) cos(y0), φ(x) sin(y0),

∫ x

0

sin θ(τ)dτ

)
+ yv0

where v0 = (− sin y0, cos y0, 0), y0 ∈ R, and φ(x) represents a primitive of cos θ.
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4.2 Surfaces in E3
1

On the other hand, some classification results for surfaces endowed with canon-
ical principal direction in E3

1 were obtained in [20], where Nistor studied space-
like surfaces. In that paper, the author gave a classification of those surfaces by
assuming that the fixed direction is time-like and the fixed vector k is considered
to be k = (0, 0, 1).

Theorem 4.6. [20] Let M be a space-like surface in E3
1 and θ /∈ 0 be the

hyperbolic angle function. Let (x, y) be local coordinates on M such that ∂x is
the direction of U . Then, U is a principal direction if and only if θy = 0.

Theorem 4.7. [20] Let M immersed in E3
1 be a space-like surface and θ /∈ 0 be

the hyperbolic angle function. Then, M has a principal direction if and only if
M is parametrized in the last case of Theorem 3.14.

Consequently, we mention following two theorems related with minimality
and flatness.

Theorem 4.8. [20] The only maximal space-like surfaces in E3
1 with a canonical

principal direction are catenoids of the 1st kind, parametrized in local coordinates
(x, y) as

(x, y) 7→
(√

x2 − c2 cos y,
√
x2 − c2 sin y, c ln(x+

√
x2 − c2)

)
, c ∈ R {0} .

Theorem 4.9. [20] The only flat space-like surfaces in E3
1 with a canonical

principal direction are generalized cylinders, parametrized in local coordinates
(x, y) as

(x, y) 7→ σ(x) + v0y,

where σ(x) =
(
cos y0

∫ x
0

cosh θ(τ)dτ, sin y0
∫ x
0

cosh θ(τ)dτ,−
∫ x
0

sinh θ(τ)dτ
)
, v0 =

(− sin y0, cos y0, 0) , y0 ∈ R, and θ /∈ 0 denotes the hyperbolic angle function.

Remark 4.10. [20] The flat space-like surfaces endowed with a canonical prin-
cipal direction classified in Theorem 4.9 are given by the generalized cylinders
from the last case of Theorem 3.14. More precisely, these surfaces are cylinders
over space-like curves with space-like rulings orthogonal to k = (0, 0, 1).

5 New examples of surfaces in E3
1

In this section we would like to present some new examples of Lorentzian surface
endowed with CPD in the Minkowski 3-space. Before we proceed, we would like
to note that if M is space-like, then its shape operator S is diagonalizable,
i.e., there exists a local orthonormal frame field {e1, e2;N} such that Sei =
kiei, i = 1, 2, . . . , n. In this case, the vector field ei and smooth function ki
are called a principal direction and a principal curvature of M .

On the other hand, if M is Lorentzian, then its shape operator can be non-
diagonalizable. In this case, if all of the eigenvalues of S are real at any point
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of M , then the matrix representation of S with respect to a suitable pseudo-
orthonormal frame field {f1, f2;N} such that

〈fi, fj〉 = δij − 1, i, j = 1, 2

of the tangent bundle of M , the shape operator of a Lorentzian surface in E3
1

can be assumed to be one of canonical forms given by

Case 1. S = diag(k1, k2), Case 2. S =

(
k1 µ
0 k1

)
Case 3. S =

(
k1 µ
−µ k1

) (5.1)

for some smooth functions k1, k2 and a non-vanishing function µ, where the
frame field is chosen to be orthonormal in Case 1 and Case 3 and pseudo-
orthonormal in Case 2 (See for example [16]). We note that if the shape operator
of M is as given in Case 3 of (5.1), then S has no eigenvalue. So, we will consider
surfaces whose shape operator is as given in Case 1 or Case 2 of (5.1).

A null curve β(s) in E3
1 is said to have a Cartan frame if there exists vector

fields {A,B,C} on β such that 〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = −1, 〈A,C〉 =
〈B,C〉 = 0 and 〈C,C〉 = 1 with β′ = A, A′ = k1(s)C and B′ = k2C for a
constant k2 and a smooth function k1 which is vanishing only on a subset U
with intU = ∅. Then, the surface M given by

f(s, t) = β(s) + tB(s) (5.2)

is said to be a B-scroll. Note that in [16], M. Magid have proved that a surface
in E3

1 with non-diagonalizable shape operator is isoparametric if and only if it
is a B-scroll.

Example 5.1. [14] Consider the B-scroll given by

c(ŝ, t) =

(
ŝ2

2
+ t,

(2ŝ− 1)3/2

3
,
ŝ2

2
− ŝ+ t

)
. (5.3)

It turns out that the shape operator of this surface with respect to the pseudo-
orthonormal frame field {∂t, ∂s} is

S =

(
0 µ
0 0

)
Moreover, it is a surface endowed with a canonical principal direction relative
to k = (1, 0, 0).

Further, we have recently obtained the following result.

Proposition 5.2. A flat minimal surfaces in E3
1 endowed with a canonical

principal direction relative to a fixed direction is either an open part of a plane
or congruent to the surface given in (5.3).
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Remark 5.3. By considering the above example, the problem of considering sur-
faces with shape operator given in Case 2 of (5.1) in terms of having canonical
principal direction arises. Authors would like to announce that they have re-
cently completed the classification of such surfaces with a canonical principal
direction relative to a fixed direction in E3

1.

Example 5.4. [14] Consider the rotational surface with a light-like rotational
axis in E3

1 given by

x(s, t) =

(
1

2
st2 + s+ φ(s), st,

1

2
st2 + φ(s)

)
(5.4)

for a smooth function φ. It is well-kown that the principal directions of M are

e1 =
1√

ε1(−2φ′ − 1)
∂s, e2 =

1

s
∂t.

Further, we have
(1, 0, 1) = ψ(e1 −N)

for a smooth function ψ. Hence, the surface given by (5.4) is endowed with a
canonical principal direction relative to k = (1, 0, 1).

Remark 5.5. A direct computation yields that the surface given by (5.4) is
minimal if and only if

φ′′

(2φ′ + 1)
=

1

s

On the other hand, the surface given by (5.4) is flat if and only if φ is linear.

Remark 5.6. Authors also would like to announce that they have recently com-
pleted the classification of surfaces with a canonical principal direction relative
to a fixed light-like direction in E3

1.

6 Generalized constant ratio surfaces

in E3
1

Generalized constant ratio surfaces in Euclidean spaces are firstly investigated
in [9, 23]. By definition, let M be a surface in the ambient space, x its position
vector and θ denote the angle function between x and the unit normal vector
field N of M . If the tangential part of x is one of its principal directions, then
M is said to be a generalized constant ratio (in short, GCR surfaces). Note
that, we would like to remember two following definition. The time-like cone of
E3
1 is defined as the set of all time-like vectors of E3

1, that is,

T =
{
x ∈ E3

1 : 〈x, x〉 < 0
}
.

The space-like cone of E3
1 is defined as the set of all space-like vectors of E3

1,
that is,

S =
{
x ∈ E3

1 : 〈x, x〉 > 0
}
.
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In this section, we just would like to present classification of GCR surfaces
in Minkowski 3-space obtained in [9, 8, 24]. Note that in [8], authors studied
this surface independently from the paper at [24]. Fistly, we would like to give
results for this surface obtained in [9].

6.1 Lorentzian surfaces in E3
1

Most recently, Lorentzian GCR surfaces in the 3-dimensional Minkowski space
investigated by Fu and Yang in [11].

Theorem 6.1. [11] Let x : M → E3
1 be a surface immersed in the 3-dimensional

Minkowski space E3
1. If the immersion x lies in the space-like cone, then M is a

GCR surface if and only if the immersion x(M) is given by one of the following
eight statements holds:

• x(s, t) = s (cosu(s), sinu(s) cosh t, sinu(s) sinh t), where u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s (sinu(s), cosu(s) cosh t, cosu(s) sinh t), where u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s (cosu(s)f(t) + sinu(s)f(t)× f ′(t)), where f is a time-like unit

speed curve on S21 satisfying (f, f ′, f ′′) /∈ 0, u(s) =
∫ cot θ(s)

s ds;

• x(s, t) = s
2

(
−e−u(s) + eu(s)(t2 − 1), 2eu(s)t,−e−u(s) + eu(s)(t2 + 1)

)
, where

u(s) =
∫ coth θ(s)

s ds;

• x(s, t) = s
2

(
−eu(s) + e−u(s)(t2 − 1), 2e−u(s)t,−eu(s) + e−u(s)(t2 + 1)

)
, where

u(s) =
∫ coth θ(s)

s ds;

• x(s, t) = s (coshu(s) cos t, sinhu(s) sin t, sinhu(s)), where

u(s) =

∫
coth θ(s)

s
ds;

• x(s, t) = s (coshu(s), sinhu(s) sinh t, sinhu(s) cosh t), where

u(s) =

∫
coth θ(s)

s
ds;

• x(s, t) = s (coshu(s)f(t) + sinhu(s)f(t)× f ′(t)), where f is a time-like

unit speed curve on S21 satisfying (f, f ′, f ′′) /∈ 0, u(s) =
∫ coth θ(s)

s ds.

Further, if x lies in the time-like cone, the following classification theorem
was obtained.

Theorem 6.2. [11] Let x : M → E3
1 be a surface immersed in the 3-dimensional

Minkowski space. If the immersion x lies in the timelike cone, then M is a GCR
surface if and only if the immersion x(M) is given by one of the following five
statements holds:
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• x(s, t) = s
2

(
e−u(s) + eu(s)(t2 − 1), 2eu(s)t, e−u(s) + eu(s)(t2 + 1)

)
, where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s
2

(
eu(s) + e−u(s)(t2 − 1), 2e−u(s)t, eu(s) + e−u(s)(t2 + 1)

)
, where

u(s) =
∫ tanh θ(s)

s ds;

• x(s, t) = s (sinhu(s), coshu(s) sinh t, coshu(s) cosh t), where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s (sinhu(s) sin t, sinhu(s) cos t, coshu(s)), where

u(s) =

∫
tanh θ(s)

s
ds;

• x(s, t) = s (coshu(s)f(t) + sinhu(s)f(t)× f ′(t)), where f is a unit speed

curve on H2 satisfying 〈f ′′, f ′′〉 /∈ −〈f, f ′′〉2, u(s) =
∫ tanh θ(s)

s ds.

We would like to also note the following consequences of the previous theo-
rems.

Corollary 6.3. [11] A flat Lorentz GCR surface in E3
1 is an open part of a

plane or of a cylinder.

Corollary 6.4. [11] A Lorentzian GCR surface in E3
1 with constant mean cur-

vature is a surface of revolution.

6.2 Space-like GCR Surfaces in Minkowski 3-Space

In [8] and [24], the authors independently studied the space-like GCR surface
in Minkowski spaces. After, they independently obtained the complete classi-
fication of GCR surfaces in the Minkowski 3-space. All the following results
obtained for space-like GCR surfaces in Minkowski spaces were given in [8, 24].

Theorem 6.5. [8] Let M be a non-degenerated hypersurface in En+1
1 with po-

sition vector x. If M is GCR, then the tangential part of x is either space-like
or time-like.

Proposition 6.6. [8] Let M be an oriented hypersurface in the Minkowski space
En+1
1 and x its position vector. Consider a unit tangent vector field e1 in the

direction of xT . Then, M is a GCR hypersurface if and only if a curve α is a
geodesic of M whenever it is an integral curve of e1.

Proposition 6.7. [8, 24] Let M be a space-like hypersurface in the Minkowski
space En+1

1 and x : M → En+1
1 the position vector with the tangential component

xT . Then M is GCR hypersurface if and only if Y (θ) = 0, whenever 〈Y, xT 〉 = 0,
where θ is the angle function.
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First we assume that the surface is contained in the time-like cone.

Theorem 6.8. [8, 24] Let x : M → E3
1 be a space-like surface immersed in the

3-dimensional Minkowski space. Also, assume that M is lying in the time-like
cone of E3

1. Then, M is GCR if and only if it can be parametrized by

x(s, t) = s (coshu(s)ϕ(t) + sinhu(s)ϕ(t) ∧ ϕ′(t)) , (6.1)

where ϕ = ϕ(t) is an arc-length parametrized curve lying on H2(−1) and u =
u(s) is a smooth function. In this case, x can be decomposed as

x = −s (sinhθe1 + coshθN) (6.2)

for the function θ given by
coth θ = su′ (6.3)

Now, we will give the classification of space-like GCR surfaces in case the
image of the immersion x lies in the space-like cone.

Theorem 6.9. [8, 24] Let x : M → E3
1 be a space-like surface immersed in the

3-dimensional Minkowski space. Also, assume that M is lying in the space-like
cone of E3

1. Then, M is GCR if and only if it can be parametrized by

x(s, t) = s (coshu(s)ϕ(t) + sinhu(s)ϕ(t) ∧ ϕ′(t)) (6.4)

where ϕ = ϕ(t) is an arclength parametrized curve lying on S21(1) and u = u(s)
is a smooth function. In this case, x can be decomposed as

x = s (coshθe1 + sinhθN) (6.5)

for the function θ given by
tanh θ = su′. (6.6)

As a direct corollary of the previous theorems, we have

Corollary 6.10. [8] A space-like rotational surface given by

x(s, t) = (s coshu cosh t, s coshu sinh t, s sinhu) (6.7)

or
x(s, t) = (s coshu sinh t, s coshu cosh t, s sinhu) (6.8)

is a GCR surface, where u = u(s) is a non-vanishing smooth function.

Theorem 6.11. [8, 24] The flat space-like GCR surfaces immersed in E3
1 are

an open parts of a plane or of a cylinder.

Proposition 6.12. [24] The space-like GCR surfaces with constant mean cur-
vature immersed in E3

1 are surfaces of revolution.
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