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We introduce the notion of (𝜆, 𝜇)-product of 𝐿-subsets. We give a necessary and sufficient condition for (𝜆, 𝜇)-𝐿-subgroup of a
product of groups to be (𝜆, 𝜇)-product of (𝜆, 𝜇)-𝐿-subgroups.

1. Introduction

Starting from 1980, by the concept of quasi-coincidence of
a fuzzy point with a fuzzy set given by Pu and Liu [1], the
generalized subalgebraic structures of algebraic structures
have been investigated again. Using the concept mentioned
above, Bhakat and Das [2, 3] gave the definition of (𝛼, 𝛽)-
fuzzy subgroup, where 𝛼, 𝛽 are any two of {∈, 𝑞, ∈∨𝑞, ∈ ∧𝑞}
with 𝛼 ̸=∈∧𝑞. The (∈, ∈∨𝑞)-fuzzy subgroup is an important
and useful generalization of fuzzy subgroups that were laid
by Rosenfeld in [4]. After this, many other researchers used
the idea of the generalized fuzzy sets that give several charac-
terization results in different branches of algebra (see [5–10]).
In recent years,many researchersmake generalizationswhich
are referred to as (𝜆, 𝜇)-fuzzy substructures and (∈𝜆, ∈𝜆∨𝑞𝜇)-
fuzzy substructures on this topic (see [11–15]).

Identifying the subgroups of a Cartesian product of
groups plays an essential role in studying group theory. Many
important results on characterization of Cartesian product of
subgroups, fuzzy subgroups, and𝑇𝐿-fuzzy subgroups exist in
literature. Chon obtained a necessary and sufficient condition
for a fuzzy subgroup of a Cartesian product of groups to
be product of fuzzy subgroups under minimum operation
[16]. Later, some necessary and sufficient conditions for a
𝑇𝐿-subgroup of a Cartesian product of groups to be a 𝑇-
product of 𝑇𝐿-subgroups were given by Yamak et al. [17]. A
subgroup of a Cartesian product of groups is characterized
by subgroups in the same study. Consequently, it seems to be
interesting to extend this study to generalized 𝐿-subgroups.
In this paper, we introduce the notion of the (𝜆, 𝜇)-product

of 𝐿-subsets and investigate some properties of the (𝜆, 𝜇)-
product of 𝐿-subgroups. Also, we give a necessary and
sufficient condition for (𝜆, 𝜇)-𝐿-subgroup of a Cartesian
product of groups to be a product of (𝜆, 𝜇)-𝐿-subgroups.

2. Preliminaries

In this section, we start by giving some known definitions and
notations. Throughout this paper, unless otherwise stated, 𝐺
always stands for any given groupwith amultiplicative binary
operation, an identity 𝑒 and 𝐿 denote a complete lattice with
top and bottom elements 1, 0, respectively.

An 𝐿-subset of𝑋 is any function from𝑋 into 𝐿, which is
introduced by Goguen [18] as a generalization of the notion
of Zadeh’s fuzzy subset [19]. The class of 𝐿-subsets of 𝑋 will
be denoted by 𝐹(𝑋, 𝐿). In particular, if 𝐿 = [0, 1], then it is
appropriate to replace 𝐿-subset with fuzzy subset. In this case
the set of all fuzzy subsets of 𝑋 is denoted by 𝐹(𝑋). Let 𝐴
and 𝐵 be 𝐿-subsets of 𝑋. We say that 𝐴 is contained in 𝐵 if
𝐴(𝑥) ≤ 𝐵(𝑥) for every 𝑥 ∈ 𝑋 and is denoted by 𝐴 ≤ 𝐵. Then
≤ is a partial ordering on the set 𝐹(𝑋, 𝐿).

Definition 1 (see [20]). An 𝐿-subset of 𝐺 is called an 𝐿-
subgroup of 𝐺 if, for all 𝑥, 𝑦 ∈ 𝐺, the following conditions
hold:
(G1) 𝐴(𝑥) ∧ 𝐴(𝑦) ≤ 𝐴(𝑥𝑦).
(G2) 𝐴(𝑥) ≤ 𝐴(𝑥−1).
In particular, when 𝐿 = [0, 1], an 𝐿-subgroup of 𝐺 is

referred to as a fuzzy subgroup of 𝐺.
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Definition 2 (see [12]). Let 𝜆, 𝜇 ∈ 𝐿 and 𝜆 < 𝜇. Let 𝐴 be an
𝐿-subset of 𝐺. 𝐴 is called (𝜆, 𝜇)-𝐿-subgroup of 𝐺 if, for all
𝑥, 𝑦 ∈ 𝐺, the following conditions hold:

(i) 𝐴(𝑥𝑦) ∨ 𝜆 ≥ 𝐴(𝑥) ∧ 𝐴(𝑦) ∧ 𝜇.

(ii) 𝐴(𝑥−1) ∨ 𝜆 ≥ 𝐴(𝑥) ∧ 𝜇.

Denote by 𝐹𝑆(𝜆, 𝜇, 𝐺, 𝐿) the set of all (𝜆, 𝜇)-𝐿-subgroups of
𝐺. When 𝐿 = [0, 1], its counterpart is written as 𝐹𝑆(𝜆, 𝜇, 𝐺).

Unless otherwise stated, 𝐿 always represents any given
distributive lattice.

3. Product of (𝜆,𝜇)-𝐿-Subgroups

Definition 3 (see [16]). Let 𝐴 𝑖 be an 𝐿-subset of 𝐺𝑖 for each
𝑖 = 1, 2, . . . , 𝑛. Then product of 𝐴 𝑖 (𝑖 = 1, 2, . . . , 𝑛) denoted
by 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 is defined to be the 𝐿-subset of 𝐺1 ×
𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛 that satisfies

(𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛) (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= 𝐴1 (𝑥1) ∧ 𝐴2 (𝑥2) ∧ ⋅ ⋅ ⋅ ∧ 𝐴𝑛 (𝑥𝑛) .
(1)

Example 4. We define the fuzzy subsets𝐴 and 𝐵 ofZ andZ2,
respectively, as follows:

𝐴 (𝑥) =
{

{

{

0.5, 𝑥 ∈ 2Z,

0.3, otherwise,

𝐵 (𝑥) =
{

{

{

0.7, 𝑥 = 0,

0.2, 𝑥 = 1.

(2)

We obtain that

𝐴 × 𝐵 (𝑥) =

{{{{

{{{{

{

0.5, 𝑥 ∈ 2Z × {0} ,

0.3, 𝑥 ∈ Z − {2Z} × {0} ,

0.2, otherwise.

(3)

Theorem5. Let𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and⋁
𝑛

𝑖=1
𝜆𝑖 < ⋀

𝑛

𝑖=1
𝜇𝑖

such that𝐴 𝑖 is (𝜆𝑖, 𝜇𝑖)-𝐿-subgroup of𝐺𝑖 for each 𝑖 = 1, 2, . . . , 𝑛.
Then 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 is (⋁

𝑛

𝑖=1
𝜆𝑖, ⋀
𝑛

𝑖=1
𝜇𝑖)-𝐿-subgroup of

𝐺1 × 𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛.

Proof. Let (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝐺1×𝐺2×⋅ ⋅ ⋅×𝐺𝑛.
Then
𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 ((𝑥1, 𝑥2, . . . , 𝑥𝑛) ⋅ (𝑦1, 𝑦2, . . . , 𝑦𝑛))

∨

𝑛

⋁
𝑖=1

𝜆𝑖 = 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅

× 𝐴𝑛 (𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑛𝑦𝑛) ∨ 𝜆1 ∨

𝑛

⋁
𝑖=1

𝜆𝑖

= (𝐴1 (𝑥1𝑦1) ∧ 𝐴2 (𝑥2𝑦2) ∧ ⋅ ⋅ ⋅ ∧ 𝐴𝑛 (𝑥𝑛𝑦𝑛))

∨

𝑛

⋁
𝑖=1

𝜆𝑖 ≥ (𝐴1 (𝑥1𝑦1) ∨ 𝜆1) ∧ (𝐴2 (𝑥2𝑦2) ∨ 𝜆2)

∧ ⋅ ⋅ ⋅ ∧ (𝐴𝑛 (𝑥𝑛𝑦𝑛) ∨ 𝜆𝑛) ≥ 𝐴1 (𝑥1) ∧ 𝐴1 (𝑦1) ∧ 𝜇1

∧ 𝐴2 (𝑥2) ∧ 𝐴2 (𝑦2) ∧ 𝜇2 ∧ ⋅ ⋅ ⋅ ∧ 𝐴𝑛 (𝑥𝑛) ∧ 𝐴𝑛 (𝑦𝑛)

∧ 𝜇𝑛 = 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧ 𝐴1

× 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∧

𝑛

⋀
𝑖=1

𝜇𝑖.

(4)

Similarly, it can be shown that

𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 ((𝑥1, 𝑥2, . . . , 𝑥𝑛)
−1
) ∨

𝑛

⋁
𝑖=1

𝜆𝑖

≥ 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧

𝑛

⋀
𝑖=1

𝜇𝑖.

(5)

Corollary 6. If 𝐴1, 𝐴2, . . . , 𝐴𝑛 are (𝜆, 𝜇)-𝐿-subgroups of
𝐺1, 𝐺2, . . . , 𝐺𝑛, respectively, then 𝐴1 × 𝐴2 × ⋅ ⋅ ⋅ × 𝐴𝑛 is (𝜆, 𝜇)-
𝐿-subgroup of 𝐺1 × 𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛.

Theorem 7 (Theorem 2.9, [16]). Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be
groups, let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be identities, respectively, and let
𝐴 be a fuzzy subgroup in 𝐺1 × 𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛. Then
𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ≥ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 =
1, 2, . . . , 𝑘−1, 𝑘+1, . . . , 𝑛 if and only if𝐴 = 𝐴1×𝐴2×⋅ ⋅ ⋅×𝐴𝑛,
where 𝐴1, 𝐴2, . . . , 𝐴𝑛 are fuzzy subgroups of 𝐺1, 𝐺2, . . . , 𝐺𝑛,
respectively.

The following example shows that Theorem 7 may not be
true for any (𝜆, 𝜇)-𝐿-subgroup.

Example 8. Consider

𝐴 (𝑥) =

{{{{{{{

{{{{{{{

{

0.8, 𝑥 = (0, 0) ,

0.7, 𝑥 = (1, 0) ,

0.6, 𝑥 = (0, 1) ,

0.5, 𝑥 = (1, 1) .

(6)

It is easy to see that 𝐴 is (0, 0.5)-fuzzy subgroup of Z2 × Z2.
Since 𝐴(1, 0) ≥ 𝐴(1, 1) and 𝐴(0, 1) ≥ 𝐴(1, 1), 𝐴 satisfies the
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condition of Theorem 7, but there do not exist 𝐴1, 𝐴2 fuzzy
subgroups of Z2 × Z2 such that 𝐴 = 𝐴1 × 𝐴2.

In fact, suppose that there exist 𝐴1, 𝐴2 ∈ 𝐹𝑆(0, 0.5,Z2 ×
Z2) such that 𝐴 = 𝐴1 ×𝐴2. Since 𝐴(1, 0) = 0.7 and 𝐴(0, 1) =
0.6, we have 𝐴1(1) ≥ 0.7 and 𝐴2(1) ≥ 0.6. Hence

0.5 = 𝐴1 × 𝐴2 (1, 1) = 𝐴1 (1) ∧ 𝐴2 (1) ≥ 0.7 ∧ 0.6

= 0.6,

(7)

a contradiction.

Definition 9. Let 𝐴 𝑖 be an 𝐿-subset of 𝐺𝑖 for each 𝑖 =
1, 2, . . . , 𝑛.Then (𝜆, 𝜇)-product of𝐴 𝑖 (𝑖 = 1, 2, . . . , 𝑛) denoted
by 𝐴1×

𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛 is defined to be an 𝐿-subset of 𝐺1 ×

𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛 that satisfies

(𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛) (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= (𝐴1 (𝑥1) ∧ 𝐴2 (𝑥2) ∧ ⋅ ⋅ ⋅ ∧ 𝐴𝑛 (𝑥𝑛) ∧ 𝜇) ∨ 𝜆

= (

𝑛

⋀
𝑖=1

𝐴 𝑖 (𝑥𝑖) ∧ 𝜇) ∨ 𝜆.

(8)

Example 10. We define the fuzzy subsets 𝐴 and 𝐵 of Z and
Z2, respectively, as in Example 4. Then (0.4, 0.6)-product of
𝐴 and 𝐵 is as follows:

𝐴×
0.4

0.6
𝐵 (𝑥) =

{

{

{

0.5, 𝑥 ∈ 2Z × {0} ,

0.4, otherwise.
(9)

Lemma 11. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups. Then we have the
following:

(1) If 𝐴 is (𝜆, 𝜇)-𝐿-subgroup of 𝐺1 × 𝐺2×, . . . , 𝐺𝑛 and
𝐴 𝑖(𝑥) = 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥, 𝑒𝑖+1, . . . , 𝑒𝑛) for 𝑖 =

1, 2, . . . , 𝑛, then 𝐴 𝑖 is (𝜆, 𝜇)-𝐿-subgroup of 𝐺𝑖 for all
𝑖 = 1, 2, . . . , 𝑛.

(2) If 𝐴 𝑖 is (𝜆, 𝜇)-𝐿-subgroup of 𝐺𝑖 for all 𝑖 = 1, 2, . . . , 𝑛,
then 𝐴1×𝜆𝜇𝐴2×

𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛 is (𝜆, 𝜇)-𝐿-subgroup of 𝐺1 ×

𝐺2×, . . . , 𝐺𝑛.

Proof. (1) Let 𝑥, 𝑦 ∈ 𝐺𝑖. Since 𝐴 ∈ 𝐹𝑆(𝜆, 𝜇, 𝐺1 × 𝐺2×,

. . . , 𝐺𝑛, 𝐿), we have

𝐴 𝑖 (𝑥) ∧ 𝐴 𝑖 (𝑦) ∧ 𝜇

= 𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥, 𝑒𝑖+1, . . . , 𝑒𝑛)

∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑦, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ 𝜇

≤ 𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥 ⋅ 𝑦, 𝑒𝑖+1, . . . , 𝑒𝑛) ∨ 𝜆

= 𝐴 𝑖 (𝑥 ⋅ 𝑦) ∨ 𝜆.

(10)

Similarly, we can show that 𝐴 𝑖(𝑥) ∧ 𝜇 ≤ 𝐴 𝑖(𝑥
−1) ∨ 𝜆. Hence,

𝐴 𝑖 ∈ 𝐹𝑆(𝜆, 𝜇, 𝐺𝑖, 𝐿) by Definition 2 for 𝑖 = 1, 2, . . . , 𝑛.

(2) Let (𝑥1, 𝑥2, . . . , 𝑥𝑛), (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ 𝐺1×𝐺2×, . . . , 𝐺𝑛.
Then,

𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 ((𝑥1, 𝑥2, . . . , 𝑥𝑛) (𝑦1, 𝑦2, . . . , 𝑦𝑛))

∨ 𝜆 = 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑥1𝑦1, 𝑥2𝑦2, . . . , 𝑥𝑛𝑦𝑛)

∨ 𝜆 = (

𝑛

⋀
𝑖=1

𝐴 𝑖 (𝑥𝑖𝑦𝑖) ∧ 𝜇) ∨ 𝜆 = ((𝐴1 (𝑥1𝑦1) ∨ 𝜆)

∧ (𝐴2 (𝑥2𝑦2) ∨ 𝜆) ∧ ⋅ ⋅ ⋅ ∧ (𝐴𝑛 (𝑥𝑛𝑦𝑛) ∨ 𝜆) ∧ 𝜇)

∨ 𝜆 ≥ (𝐴1 (𝑥1) ∧ 𝐴1 (𝑦1) ∧ 𝜇 ∧ 𝐴2 (𝑥2) ∧ 𝐴2 (𝑦2)

∧ 𝜇 ∧ ⋅ ⋅ ⋅ ∧ 𝐴𝑛 (𝑥𝑛) ∧ 𝐴𝑛 (𝑦𝑛) ∧ 𝜇) ∨ 𝜆

= ((

𝑛

⋀
𝑖=1

𝐴 𝑖 (𝑥𝑖) ∧ 𝜇) ∨ 𝜆) ∧ ((

𝑛

⋀
𝑖=1

𝐴 𝑖 (𝑦𝑖) ∧ 𝜇)

∨ 𝜆) ∧ 𝜇 = 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

∧ 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∧ 𝜇.

(11)

Similarly, we can show that

𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 ((𝑥1, 𝑥2, . . . , 𝑥𝑛)

−1
) ∨ 𝜆

≥ 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧ 𝜇.

(12)

Hence, 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛 is (𝜆, 𝜇)-𝐿-subgroup of 𝐺1 ×

𝐺2×, . . . , 𝐺𝑛.

Theorem 12. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(𝜆, 𝜇,
𝐺1×𝐺2×⋅ ⋅ ⋅×𝐺𝑛, 𝐿).Then (𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)∧𝜇) ∨𝜆 = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛)

for 𝑖 = 1, 2, . . . , 𝑛 if and only if𝐴 = 𝐴1×𝜆𝜇𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛, where

𝐴 𝑖(𝑥) = 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥, 𝑒𝑖+1, . . . , 𝑒𝑛).

Proof. Suppose that (𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)∧ 𝐴(𝑥1,
𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆 = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for
𝑖 = 1, 2, . . . , 𝑛. Now, for any (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐺1×𝐺2×⋅ ⋅ ⋅×𝐺𝑛,
we have

𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛)

∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆

= (𝐴1 (𝑥1)

∧ ((𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑒2, 𝑥3, . . . , 𝑥𝑛) ∧ 𝜇)

∨ 𝜆) ∧ 𝜇) ∨ 𝜆
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= (𝐴1 (𝑥1) ∧ 𝐴2 (𝑥2) ∧ 𝐴 (𝑒1, 𝑒2, 𝑥3, . . . , 𝑥𝑛) ∧ 𝜇)

∨ 𝜆

...

= (𝐴1 (𝑥1) ∧ 𝐴2 (𝑥2) ∧ ⋅ ⋅ ⋅ ∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛) ∧ 𝜇)

∨ 𝜆

= 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

(13)

Hence we obtain that 𝐴 = 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛. Conversely,

assume that 𝐴 = 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇
⋅ ⋅ ⋅ ×𝜆
𝜇
𝐴𝑛. Then, we obtain

𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐴1×
𝜆

𝜇
𝐴2×
𝜆

𝜇

⋅ ⋅ ⋅ ×
𝜆

𝜇
𝐴𝑛 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= (𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ ⋅ ⋅ ⋅

∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆

≤ (𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ ⋅ ⋅ ⋅

∧ (𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛−1, 𝑥𝑛) ∨ 𝜆) ∧ 𝜇) ∨ 𝜆

= (𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ ⋅ ⋅ ⋅

∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛−1, 𝑥𝑛) ∧ 𝜇) ∨ 𝜆

...

≤ (𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆.

(14)

On the other hand, (𝐴(𝑥1, 𝑒2, . . . , 𝑒𝑛)∧𝐴(𝑒1, 𝑥2, . . . , 𝑥𝑛)∧𝜇)∨
𝜆 ≤ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆.

Since 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) ≥ 𝜆, (𝐴(𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, 𝑥2,
. . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆 ≤ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛).

Hence, 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝐴(𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, 𝑥2,
. . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆.

Similarly, we get (𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛)∧𝜇)∨ 𝜆 = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛)

for 𝑖 = 2, 3, . . . , 𝑛.

Lemma 13. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups, let 𝑒1, 𝑒2, . . . , 𝑒𝑛 be
identities of𝐺1, 𝐺2, . . . , 𝐺𝑛, respectively, and𝐴 ∈ 𝐹𝑆(𝜆, 𝜇, 𝐺1 ×
𝐺2 × ⋅ ⋅ ⋅ × 𝐺𝑛). If (𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ 𝜇) ∨ 𝜆 ≥
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛,
then (𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑘−1, 𝑥𝑘, 𝑒𝑘+1, . . . , 𝑒𝑛) ∧ 𝜇) ∨ 𝜆 ≥ 𝐴(𝑥1,

𝑥2, . . . , 𝑥𝑛).

Proof. By Definition 2, we observe that

(𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑘−1, 𝑥𝑘, 𝑒𝑘+1, . . . , 𝑒𝑛) ∧ 𝜇) ∨ 𝜆

= (𝐴 ((𝑥1, 𝑥2, . . . , 𝑥𝑛)

⋅ (𝑥
−1

1
, 𝑥
−1

2
, . . . , 𝑥

−1

𝑘−1
, 𝑒𝑘, 𝑥
−1

𝑘+1
, . . . , 𝑥

−1

𝑛
)) ∧ 𝜇) ∨ 𝜆

= (𝐴 ((𝑥1, 𝑥2, . . . , 𝑥𝑛)

⋅ (𝑥
−1

1
, 𝑥
−1

2
, . . . , 𝑥

−1

𝑘−1
, 𝑒𝑘, 𝑥
−1

𝑘+1
, . . . , 𝑥

−1

𝑛
)) ∨ 𝜆) ∧ 𝜇

≥ (𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

∧ 𝐴 (𝑥
−1

1
, 𝑥
−1

2
, . . . , 𝑥

−1

𝑘−1
, 𝑒𝑘, 𝑥
−1

𝑘+1
, . . . , 𝑥

−1

𝑛
) ∧ 𝜇) ∨ 𝜆

= (𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆)

∧ (𝐴 (𝑥
−1

1
, 𝑥
−1

2
, . . . , 𝑥

−1

𝑘−1
, 𝑒𝑘, 𝑥
−1

𝑘+1
, . . . , 𝑥

−1

𝑛
) ∨ 𝜆)

∧ 𝜇

≥ ((𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆)

∧ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑘−1, 𝑒𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆

= (𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆)

∧ (𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑘−1, 𝑒𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛) ∨ 𝜆) ∧ 𝜇

≥ ((𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆)

∧ (𝐴 (𝑒1, . . . , 𝑒𝑘−2, 𝑥𝑘−1, 𝑒𝑘, . . . , 𝑒𝑛)

∧ 𝐴 (𝑥1, . . . , 𝑒𝑘−1, 𝑒𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛) ∧ 𝜇)) ∨ 𝜆

= (𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆)

∧ (𝐴 (𝑥1, . . . , 𝑒𝑘−1, 𝑒𝑘, 𝑥𝑘+1, . . . , 𝑥𝑛) ∧ 𝜇) ∨ 𝜆

...

≥ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∨ 𝜆

≥ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

(15)

Lemma 14. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(0,

𝜇, 𝐺1×𝐺2×⋅ ⋅ ⋅×𝐺𝑛, 𝐿).Then𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)∧
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ∧ 𝜇 = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for
𝑖 = 1, 2, . . . , 𝑛 if and only if 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝜇 ≥ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛.

Proof. Now assume that 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ∧ 𝜇 = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for
𝑖 = 1, 2, . . . , 𝑛. Next, for any (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ 𝐺1×𝐺2×⋅ ⋅ ⋅×𝐺𝑛,
we have

𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

= 𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛)

∧ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) ∧ 𝜇

≤ 𝐴 (𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧ 𝜇.

(16)

Conversely, assume that 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝜇 ≥ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛. By
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Definition 2 and Lemma 11, we obtain that

𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

∧ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∧ ⋅ ⋅ ⋅ ∧ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

≤ 𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ ⋅ ⋅ ⋅

∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛) ∧ 𝜇

≤ 𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑒𝑛) ∧ ⋅ ⋅ ⋅

∧ 𝐴 (𝑒1, 𝑒2, . . . , 𝑥𝑛−1, 𝑥𝑛) ∧ 𝜇

...

≤ 𝐴 (𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴 (𝑒1, 𝑥2, . . . , 𝑥𝑛) ∧ 𝜇

≤ 𝐴 (𝑥1, 𝑥2, . . . , 𝑥𝑛) .

(17)

Hence, 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐴(𝑥1, 𝑒2, . . . , 𝑒𝑛) ∧ 𝐴(𝑒1, 𝑥2, . . . ,
𝑥𝑛) ∧ 𝜇. Similarly, we get 𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑖−1, 𝑒𝑖, 𝑥𝑖+1, . . . , 𝑥𝑛) = 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 =
2, 3, . . . , 𝑛.

As a consequence of Theorem 12 and Lemma 14, we have
the following corollary.

Corollary 15. Let 𝐺1, 𝐺2, . . . , 𝐺𝑛 be groups and 𝐴 ∈ 𝐹𝑆(0, 𝜇,
𝐺1 ×𝐺2 × ⋅ ⋅ ⋅ ×𝐺𝑛, 𝐿). Then𝐴(𝑒1, 𝑒2, . . . , 𝑒𝑖−1, 𝑥𝑖, 𝑒𝑖+1, . . . , 𝑒𝑛) ∧
𝜇 ≥ 𝐴(𝑥1, 𝑥2, . . . , 𝑥𝑛) for 𝑖 = 1, 2, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑛 if and
only if 𝐴 = 𝐴1×𝜇𝐴2×𝜇 ⋅ ⋅ ⋅ ×𝜇𝐴𝑛, where 𝐴 𝑖(𝑥) = 𝐴(𝑒1,

𝑒2, . . . , 𝑒𝑖−1, 𝑥, 𝑒𝑖+1, . . . , 𝑒𝑛).

The following example shows that Corollary 15 may not
be true when 𝜆 ̸= 0.

Example 16. Consider

𝐴 (𝑥) =

{{{{{{{

{{{{{{{

{

0.4, 𝑥 = (0, 0) ,

0.3, 𝑥 = (1, 0) ,

0.2, 𝑥 = (0, 1) ,

0.1, 𝑥 = (1, 1) .

(18)

𝐴 is (0.2, 0.5)-fuzzy subgroup of Z2 × Z2 and satisfies the
necessary condition of Corollary 15. But there is not any 𝐴1
and 𝐴2, (0.2, 0.5)-fuzzy subgroup of Z2 × Z2, which hold
𝐴 = 𝐴1×

0.2

0.5
𝐴2.

4. Conclusion

In this study, we give a necessary and sufficient condition for
(0, 𝜇)-𝐿-subgroup of a Cartesian product of groups to be a
product of (0, 𝜇)-𝐿-subgroups. The results obtained are not
valid for 𝜆 ̸= 0, and a counterexample is provided.
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