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The transformation of a system from one state to another is often mediated by a bottleneck in the

system’s phase space. In chemistry, these bottlenecks are known as transition states through which the

system has to pass in order to evolve from reactants to products. The chemical reactions are usually

associated with configurational changes where the reactants and products states correspond, e.g., to two

different isomers or the undissociated and dissociated state of a molecule or cluster. In this Letter, we

report on a new type of bottleneck which mediates kinetic rather than configurational changes. The

phase space structures associated with such kinetic transition states and their dynamical implications are

discussed for the rotational vibrational motion of a triatomic molecule. An outline of more general related

phase space structures with important dynamical implications is given.
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Introduction.—Reaction-type dynamics is characterized
by the property that a system spends long times in one
phase space region (the region of the ‘‘reactants’’) and
occasionally finds its way through a bottleneck to another
phase space region (the region of the ‘‘products’’). The
main examples are chemical reactions where the bottle-
necks are induced by saddle points of the potential energy
surface which arises from a Born-Oppenheimer approxi-
mation and determines the interactions between the con-
stituent atoms or molecules involved in the reaction. The
reactions are then characterized by configurational changes
like, e.g., in an isomerization or dissociation reaction. In
this case, the bottleneck is referred to a transition state. The
main idea of transition state theory, which is the most
frequently used approach to compute reaction rates, is
then to define a surface in the transition state region and
compute the rate from the flux through this so-called
dividing surface. For getting the exact rate this way, it is
crucial to define the dividing surface in such a way that it is
crossed exactly once by reactive trajectories (trajectories
that evolve from reactants to products) and not crossed at
all by nonreactive trajectories (i.e., trajectories which stay
in the reactants or products region). In the 1970s, it has
been shown by Pechukas, Pollak, and others that, for
systems with 2 degrees of freedom, such a dividing surface
can be constructed from an unstable periodic orbit which
gives rise to the so-called periodic orbit dividing surface
[1,2]. It took several decades to understand how this idea
can be generalized to systems with 3 or more degrees of
freedom [3]. The object which replaces the periodic orbit is
a so-called normally hyperbolic invariant manifold
(NHIM) [4]. The NHIM not only allows for the construc-
tion of a dividing surface with the desired crossing prop-
erties, but it also has (like the unstable periodic orbit in the
2-degree-of-freedom case) stable and unstable manifolds

which have sufficient dimensionality to form separatrices
that channel the reactive trajectories from reactants to
products and separate them from the nonreactive ones
[5]. In this Letter, we show that for systems which are
not of the type ‘‘kinetic-plus-potential’’ there are saddle-
type equilibrium points which either instead of the bottle-
necks associated with configuration changes induce
bottlenecks of a kinetic nature or, more generally, do not
even induce bottlenecks but still give rise to NHIMs whose
stable and unstable manifolds govern the dynamics near
such equilibrium points.
The standard case.—For a system of the type kinetic-

plus-potential (so-called natural mechanical systems [6]),
saddle points of the potential lead to equilibrium points of
Hamilton’s equations near which the Hamiltonian can be
brought through a suitable choice of canonical coordinates
(so-called normal form coordinates [5,7]) into the form

H ¼ E0 þ �

2
ðp2

0 � q20Þ þ
Xn
k¼1

!k

2
ðp2

k þ q2kÞ þ h:o:t:; (1)

where f ¼ nþ 1 is the number of degrees of freedom
and E0 is the energy of the saddle of the potential.
The quadratic part of the Hamiltonian (1) consists of a
parabolic barrier in the first degree of freedom whose
steepness is characterized by � > 0 (the Lyapunov expo-
nent) and n harmonic oscillators with frequencies !k > 0,
k ¼ 1; . . . ; n.
Let us ignore the higher order terms for a moment and

rewrite the energy equation H ¼ E in the form

�

2
p2
0 þ

Xn
k¼1

!k

2
ðp2

k þ q2kÞ ¼ E� E0 þ �

2
q20: (2)

Then one sees that for E> E0 (i.e., for energies above the
energy of the saddle), each fixed value of the reaction
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coordinate q0 defines a (2f� 2)-dimensional sphere
S2f�2. The energy surface thus has the topology of a
‘‘spherical cylinder’’: S2f�2 � R. This cylinder has a
wide-narrow-wide geometry where the spheres S2f�2 are
‘‘smallest’’ when q0 ¼ 0 (see [8] for a more precise state-
ment). In fact, the (2f� 2)-dimensional sphere given by
setting q0 ¼ 0 on the energy surfaceH ¼ E> E0 defines a
dividing surface which separates the energy surface into a
reactants region q0 < 0 and a products region q0 > 0. All
forward reactive trajectories cross it with p0 > 0. All back-
ward reactive trajectories cross it with p0 < 0. The condi-
tion p0 ¼ 0 defines a (2f� 3)-dimensional sphere which
divides the dividing surface into the two hemispheres
which have p0 > 0 and p0 < 0 and hence can be viewed
as the ‘‘equator’’ of the diving surface. In fact, the equator
is a NHIM [4]. It can be identified with the transition state:
a kind of unstable ‘‘supermolecule’’ sitting between reac-
tants and products [7,9]. The NHIM has stable and unstable
manifolds S2f�2 � R. They thus have one dimension
less than the energy surface H ¼ E. They form the phase
space conduits for reaction [10]. The NHIM is of central
importance, because it dominates the dynamics in the
neighborhood of the saddle. An important aspect of the
theory of NHIMs is that they persist if the higher order
terms in (1) are taken into account and the energy is not too
far above E0 [4]. The phase space structures above persist
accordingly.

Kinetic transition states.—Let us now more generally
consider the case of an equilibrium point of a Hamiltonian
system which has one pair of real eigenvalues �� and n
complex conjugate pairs of imaginary eigenvalues �i!k,
k ¼ 1; . . . ; n. By choosing normal form coordinates near
such a so-called saddle-center-� � � -center equilibrium, the
Hamiltonian assumes the form (1). In fact, this general case
already formed the starting point in [3,5], and later works.
It covers, e.g., applications of transition state theory to the
ionization of hydrogen in a crossed field configuration
which due to magnetic terms is not a natural mechanical
system [11]. In all the studies based on the general starting
point, it has so far been assumed that the frequencies !k

are positive. The central point of this Letter is to report on
what happens if we give up this assumption. To this end, let
us for simplicity consider a system with f ¼ 2 degrees of
freedom with Hamiltonian function

H ¼ E0 þ �

2
ðp2

0 � q20Þ þ
!

2
ðp2

1 þ q21Þ (3)

with � > 0 and!< 0. In this case let us rewrite the energy
equation H ¼ E in the form

�

2
q20 �

!

2
ðp2

1 þ q21Þ ¼
�

2
p2
0 þ E0 � E: (4)

This is the same as (2), however with the role of q0 and p0

exchanged and E� E0 replaced by E0 � E. Accordingly
for E< E0, the right-hand side is positive for any p0 and
the energy surface has again the structure of a spherical

cylinder with a wide-narrow-wide geometry. The crucial
difference to the standard case of positive frequencies in
Eq. (2) is that the reaction coordinate is now p0 instead of
q0. The bottleneck is thus associated with kinetic rather
than configurational changes. As the following example
shows, such kinetic bottlenecks do indeed exist in many
important applications.
Example: Rotational vibrational motion of triatomic

molecules.—The Hamiltonian of a triatomic molecule is
given by [12,13]

H¼ 1

2

�
�2
1þ�2

2cos
2�

�2
1�

2
2sin

2�
J21 þ

2cos�

�2
1 sin�

J1J2

þ 1

�2
1

J22 þ
1

�2
1þ�2

2

J23 þp2
1þp2

2

þ�2
1þ�2

2

�2
1�

2
2

�
p�� �2

2

�2
1þ�2

2

J3

�
2
�
þVð�1;�2;�Þ: (5)

Here (�1, �2, �) are Jacobi coordinates defined as

�1 ¼ ks1k; �2 ¼ ks2k; s1 � s2 ¼ �1�2 cos�;

where s1 and s2 are the mass-weighted Jacobi vectors
(see Fig. 1)

s1 ¼ ffiffiffiffiffiffi
�1

p ðx1 � x3Þ; s2 ¼ ffiffiffiffiffiffi
�2

p �
x2 �m1x1 þm3x3

m1 þm3

�
;

(6)

computed from the position vectors xk of the atoms and the
reduced masses

�1 ¼ m1m3

m1 þm3

and �2 ¼ m2ðm1 þm3Þ
m1 þm2 þm3

: (7)

The momenta p1, p2, and p� in (5) are conjugate to �1, �2,

and�, respectively, and J ¼ ðJ1; J2; J3Þ is the body angular
momentum. The magnitude J of J is conserved under the
dynamics generated by the Hamiltonian (5).
Let us at first consider a rigid molecule (i.e., the values

of �1, �2, and � are fixed). The body-fixed frame can
then be chosen such that the moment of inertial tensor
becomes diagonal with the principal moments of inertia
M1 <M2 <M3 ordered by magnitude on the diagonal.
The Hamiltonian (5) then reduces to

H ¼ 1

2

�
J21
M1

þ J22
M2

þ J23
M3

�
: (8)

m 3

m 2

m 1

2

s1

φ

s

FIG. 1. Definition of Jacobi coordinates for a triatomic
molecule.
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As the magnitude J of J is conserved, the angular momen-
tum sphere J21 þ J22 þ J23 ¼ J2 can be viewed as the phase

space of the rigid molecule [13]. The solution curves of this
1-degree-of-freedom system are obtained from the level
sets of the Hamiltonian H on the angular momentum
sphere (see Fig. 2). The Hamiltonian H has local minima
at ðJ1; J2; J3Þ ¼ ð0; 0;�JÞ of energy J2=ð2M3Þ, local max-
ima at ðJ1; J2; J3Þ ¼ ð�J; 0; 0Þ of energy J2=ð2M1Þ, and
saddles at ðJ1; J2; J3Þ ¼ ð0;�J; 0Þ of energy J2=ð2M2Þ.
These correspond to the center equilibria of stable rotations
about the first and third principal axes and the saddle
equilibria of unstable rotations about the second principal
axis, respectively. A possible choice of canonical coordi-
nates (q, p) on the angular momentum sphere is [13]

J1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 �p2

q
cosq; J2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 �p2

q
sinq; J3 ¼ p:

(9)

Since ðJ1; J2; J3Þ ¼ ðJ; 0; 0Þ [respectively, ðq; pÞ ¼ ð0; 0Þ]
is a maximum of the Hamiltonian, the normal form of the
Hamiltonian at this equilibrium is H ¼ J2=ð2M1Þ þ
!ðp2

0 þ q20Þ=2þ h:o:t: with the negative frequency

! ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2M3ðM2 �M1ÞðM3 �M1Þ

p
=M1M2M3.

Let us now consider a (flexible) triatomic molecule. For
simplicity, we freeze �1 and �2 and consider the 2-degree-
of-freedom system consisting of pure bending coupled
with overall rotations. The potential V is then a function
of � only, and we choose it to be of the form shown in
Fig. 3. This potential has two minima at� ¼ 0 and� ¼ �,
which correspond to two different linear isomers which are
separated by a barrier at � ¼ �=2. This type of potential
occurs, e.g., in the HCN/CNH isomerization problem [10].
We consider the equilibrium which for a given magnitude J
of the angular momentum arises from the barrier at � ¼
�=2 coupled with rotations about the first principal axis. In
the absence of coupling between the bending and rotational
degrees of freedom, we would expect from the discussion
of the rigid molecule above that this equilibrium is a saddle

center with a negative frequency !< 0. In fact, also in the
presence of coupling between the bending motion and the
rotation, this remains to be the case (at least for a moderate
coupling strength). To illustrate the dynamical implication
of this equilibrium, we use the canonical coordinates (q, p)
defined in (9) on the angular momentum sphere J21 þ J22 þ
J23 ¼ J and construct a Poincaré surface of section with

section condition q ¼ 0mod 2�, _q > 0. Using the canoni-
cal pair (�, p�) as coordinates on the surface of section,

we obtain Fig. 4.
We see that, as expected, there appears to be a barrier

associated with the momentum reaction coordinate p�.

Near � ¼ �=2, no transitions are possible from the

1 JJ

J3

2

FIG. 2 (color online). Angular momentum sphere with con-
tours of the Hamiltonian in (8).
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FIG. 3. Potential V as a function of the Jacobi coordinate �.
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FIG. 4. Poincaré surface of section for the Hamiltonian (5)
with parameters J ¼ 0:2, �1 ¼ 1, and �2 ¼ 2 (see the text).
Each picture is generated from a single trajectory of energy
0.020 562 5 in (a) and 0.019 752 6 in (b), respectively.
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reactants region p� > 0 to the products region p� < 0 for

energies above the energy of the saddle, whereas for
energies below the energy of the saddle, transitions are
possible. The rotational-vibrational motion of the triatomic
molecule with the transition channel near � ¼ �=2 being
closed consists of unhindered bending motion between the
two isomers associated with � near 0 and �, respectively,
coupled with rotations. For motions with the channel near
� ¼ �=2 being open, p� can switch sign near � ¼ �=2,

which corresponds to a trajectory bouncing back to the
isomer it came from rather than switching to the other
isomer. It is important to note that the saddle-center
equilibrium studied here induces a local bottleneck for
transitions between p� > 0 and p� < 0. Globally, such

transitions always occur in the present example when a
trajectory passes close to the collinear configuration where
� is close to 0 or �. This explains how a single trajectory
can contribute points to the lower and the upper half
in Fig. 4(a) even though the local channel near � ¼ �=2
is closed.

More generally: Mixed positive and negative
frequencies.—Near a saddle-center-� � � -center equilib-
rium, the Hamiltonian of a system with f ¼ nþ 1 degrees
of freedom can always be brought into the form (1). The
NHIM at energy E is then obtained from the intersection
of the center manifold of the equilibrium given by q0 ¼
p0 ¼ 0 and the energy surface H ¼ E, i.e.,

Xn
k¼1

!k

2
ðp2

k þ q2kÞ þ h:o:t: ¼ E� E0: (10)

All studies on the geometric theory of reactions so far [14]
concern the case of positive frequencies !k. This corre-
sponds to the Hamiltonian restricted to the center manifold
having a minimum. If all frequencies are negative, then
the Hamiltonian restricted to the center manifold has a
maximum. In this case, the NHIM is again a (2f� 3)-
dimensional sphere. However, as opposed to the case of
positive frequencies, p0 rather than q0 is the reaction
coordinate as discussed in the present example for f ¼ 2.
Also, the case of mixed signs of the !k occurs in many
applications. It, e.g., also shows up in our example of the
rotational-vibrational motion of a triatomic molecule if we
take the other vibrational degrees of freedom into account
which we for simplicity considered to be frozen. In the case

of mixed signs of the !k, the NHIM is not a sphere but a
noncompact manifold. Although no bottleneck in the en-
ergy surface is induced in these cases, the NHIM has
important dynamical implications, as it has stable and
unstable manifolds which are of one dimension less than
the dimension of the energy surface and hence form im-
penetrable barriers. This bears some similarities to the case
of noncompact NHIMs that have recently been considered
for rank 2 and higher rank saddles [15,16]. The study of the
dynamical implications of saddle-center-� � � -center equi-
libria with mixed positive and negative frequencies forms
an interesting direction for future research.
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