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Abstract: In this study, we present invariant subspaces (subideals) for a class
of operators (positive operators) related to M-weakly and L-weakly compact
operators. Principally, these invariant subspaces can be conceivable for all
operators that commutes with any M-weakly or L-weakly compact operator.
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1. Introduction

The invariant subspace problem can be described by “when does a bounded op-
erator on a Banach space of dimensional at least two have a non-trivial closed
invariant subspace?”. Suppose that X is a Banach space and T is a bounded
operator defined on X. A subspace W of X is called non-trivial invariant sub-
space under T if W 6= {0}, W 6= X and T (W ) ⊆ W . There is a great deal
of literature about invariant subspace problem. The problem was solved for
compact operators, or for operators related to compact operators, and other
some classes of operators on Banach spaces or on Banach lattices, see [1],[3],[4].
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The aim of our investigations is whether or not all L−weakly andM−weakly
compact operators and some bounded operator classes related to these operator
classes defined on Banach lattices have a non-trivial closed invariant subspace
(or subideal). These two classes of bounded operators are subclasses of weakly
compact operators but they need not be compact operator and vice versa.
L−weakly and M−weakly compact operators were introduced by P. Meyer-
Nieberg in [5].

In this study, we shall prove that everyM−weakly compact operator defined
on Banach lattice E such that the prepolar ◦E′

a of the order continuous part
of the norm dual space E′ does not equal to {0} have a non-trivial closed
common invariant subideal. Depending on this result, under same conditions we
shall show all bounded operators that commutes with any M−weakly compact
operator have a non-trivial closed invariant subspace. Following this, we shall
give similar results for all bounded operators that commutes with any L−weakly
or M−weakly compact operator defined on Banach lattice E if E or its norm
dual space E′ have a sublattice such that lattice isomorphic to L1 (µ), µ is a
measure without atom. Furthermore, as an analogous to these results, we shall
see that all positive operators that commutes with a positive M−weakly or
L−weakly compact operator on a Banach lattice E under same conditions have
a non-trivial closed invariant subideal.

2. Preliminaries

Before we present our results, let us mention about definitions and notations,
used in this paper. Throughout this paper, unless otherwise state, E will denote
an infinite dimensional separable real Banach lattice with norm dual space E′.
In the rest of this article, by the term “an operator” between two Banach
lattices, we shall mean “ a linear norm bounded operator ” and all operators
that we are looking for its invariant subspaces will be assumed to be non-
scalar, non-zero, one-to-one and have dense range. An operator T from the
Banach lattice E into the Banach lattice F is called positive if T (E+) ⊆ F+.
TS means composition of the operators T and S. So, for k ∈ N+ Sk means
composition of the operator S with itself k times. We refer to [2], [6] and [8]
for any unexplained terms from Banach lattice theory and for further details
on the theory of invariant subspaces see [1], [7].

Recall that a non-empty bounded subset A of the Banach lattice E is said to
be L−weakly compact if ‖xn‖ → 0 for every disjoint sequence (xn) in the solid
hull of A. A bounded linear operator T from a Banach space X into E is called
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L−weakly compact if T (BX) is L−weakly compact in E, where BX denotes the
closed unit ball of X. A bounded linear operator from E into X is M−weakly
compact if ‖Txn‖ → 0 as n → ∞ for every disjoint sequence (xn) in BE . In
[5], P. Meyer-Nieberg showed that an operator defined between two Banach
lattice is L−weakly (M−weakly) compact if and only if its adjoint operator
is M−weakly (L−weakly) compact and also that L−weakly and M−weakly
compact operators are weakly compact operators. It is known that

Ea = {x ∈ E : every monotone sequence in [0, |x|] is convergent}

is the maximal closed order ideal in E on which the induced norm is order
continuous and that any L−weakly compact subset is contained in Ea ([6],
page 92 and page 212). Recall that a Banach lattice E is said to have an
order continuous norm if xα ↓ 0 in E implies ‖xα‖ ↓ 0. For example the Ba-
nach lattices L1 [0, 1] , ℓ1, c0 have order continuous norm but the Banach lattices
L∞ [0, 1] , ℓ∞, c does not have order continuous norm.

Let E be a Riesz space. A linear functional f : E → R is said to be positive
whenever f (x) ≥ 0 holds for each x ∈ E+. Also, a linear functional f is called
order bounded if f maps order bounded subsets of E onto bounded subsets of
R. The vector space E∼ of all order bounded linear functionals on E is called
the order dual of E. A positive functional f on E is order continuous if and
only if xα ↓ 0 in E implies f (xα) ↓ 0. All order continuous linear functionals
on E are denoted by E∼

n . Clearly, we have E∼
n ⊆ E∼ ([2], Page 56).

Let E be a Banach lattice. If A is a subset of E, then its polar A◦ is
defined by A◦ = {x′ ∈ E′ : |x′ (x)| ≤ 1 for every x ∈ A}. A◦ is a convex, cir-
cled and σ (E′, E)−closed subset. If B is a subset of the dual space E′ then
we call prepolar ◦B defined by ◦B = {x ∈ E : |x′ (x)| ≤ 1 for every x′ ∈ B}.
If B ⊆ E′ is an ideal, then prepolar ◦B is an ideal and we see that ◦B =
{x ∈ E : x′ (x) = 0 for every x′ ∈ B} . Then, according to definitions we have
A ⊆ ◦ (A◦) and B ⊆ (◦B)◦ ([2], page 140).

3. Main Results

We know that the maximal ideal Ea is non-trivial closed common invariant
subideal for all non-zero L-weakly compact operators defined on Banach lattice
E without order continuous norm. As a dual version of this result, we can
consider the following result.

Proposition 1. Let E be a Banach lattice such that the prepolar ◦E′
a

of the order continuous part of the norm dual space E′ does not equal to {0}.
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Then, for every non-zeroM−weakly compact operator defined on E there exists

a non-trivial closed common invariant subideal.

Proof. Assume that ◦E′
a 6= {0} holds and the operator T : E → E is any

non-zero M−weakly compact operator. Then, the adjoint operator T ′ : E′ →
E′ is a L−weakly compact operator. Hence, we get T ′ (BE′) ⊆ E′

a, where BE′

denotes the closed unit ball of dual space E′ since any L−weakly compact set
of E′ is contained in E′

a. Since we assume ◦E′
a 6= {0} let us take any x ∈ ◦E′

a

such that x 6= 0. For all non-zero element f in BE′ , f (Tx) = T ′f (x) = 0 since
T ′f ∈ E′

a. It means that for all elements x in ◦E′
a, Tx = 0 holds. Therefore,

◦E′
a is T -invariant. Furthermore, ◦E′

a is norm closed subideal since ◦E′
a is

σ (E,E′)-closed, convex and E′
a is a ideal in E′ ([2], Page 140 and 171). On the

other hand, suppose that ◦E′
a = E. Then, E′

a ⊆ (◦E′
a)

◦ = E◦ = {0} implies
E′

a = {0}. Hence, from the inclusion T ′ (BE′) ⊆ E′
a, we obtain that T ′ = 0 and

so T = 0. This is a contradiction. Then, ◦E′
a 6= E must be. We already know

that ◦E′
a 6= {0} by the hypothesis. Therefore, the operator T have a non-trivial

closed invariant subideal.

There are some situations that the prepolar ◦E′
a does not equal to {0} for

the Banach lattice E. If the inclusion E′
a ⊆ E∼

n holds and E′
a is not order dense

in E∼
n , then

◦E′
a 6= {0} holds ([10], Corollary 105.12). It is well known if E

have order continuous norm then E′ = E∼
n holds. For instance, the Banach

lattice E = L1 [0, 1] ⊕ c0 have order continuous norm. On the other hand,
E′ = L∞ [0, 1] ⊕ ℓ1 does not have order continuous norm and E′

a = ℓ1 is not
order dense in E′. On the contrary, the ideal (ℓ′

1)
a = c0 is order dense in

(ℓ1)
′ = ℓ∞ ([10], Page 433).

We can extend the result mentioned above with the help of any non-zero
M−weakly compact operator defined on a Banach lattice.

Theorem 2. Let E be a Banach lattice such that the prepolar ◦E′
a does

not equal to {0} and let the operator T : E → E be a non-zero M−weakly

compact operator. Then, every bounded operator S : E → E defined on E

such that TSk is a M−weakly compact operator for each k = 1, 2, ... have a

non-trivial closed invariant subspace.

Proof. Assume that the dual space ◦E′
a 6= {0} holds, the operator T : E →

E is a non-zero M−weakly compact operator and the operator S : E → E is
a bounded operator such that TSk is M−weakly compact operator for each
k = 1, 2, .... Let us choose a non-zero element x0 in ◦E′

a since we assume
◦E′

a 6= {0}. Again, as we have seen in Proposition 1, it is clear that TSkx0 = 0
holds for each k = 1, 2, .... Since we assume that S is one-to-one we have
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Skx0 6= 0 for each k = 1, 2, .... Let W denote the non-zero subspace generated
by the set

{

x0, Sx0, S
2x0, ...

}

. Obviously, S
(

W
)

⊆ W holds. On the other
hand, there exists a non-zero linear functional f0 in E′ such that T ′f0 6= 0 since
T ′ 6= 0. Hence, T ′f0

(

Skx0
)

= f0
(

TSkx0
)

= f0 (0) = 0 for each k = 1, 2, ....
So, we see that the non-zero linear functional T ′f0 is zero on W . It means
that W 6= E holds. Clearly, W 6= {0}. Therefore, W is a non-trivial closed
S-invariant subspace, as desired.

Let E be a Banach lattice, let the operator T : E → E is a M−weakly
compact and let the bounded operator S : E → E commutes with T . We
know that lim ‖Txn‖ = 0 for every disjoint sequence (xn) in BE because of the
M−weakly compactness of T . Hence, SkT is a M−weakly compact operator
for each k = 1, 2, ... since the inequality

∥

∥SkT (xn)
∥

∥ ≤
∥

∥Sk
∥

∥ ‖Txn‖ holds. On
the other hand, TSk = SkT holds for each k = 1, 2, .... Therefore, TSk is a
M−weakly compact operator for each k = 1, 2, .... Similarly, if the bounded
operator S : E → E is a operator that preserves disjointness then for each
k = 1, 2, ... TSk : E → E is a M−weakly compact operator where the operator
T is M−weakly compact. Thus, we obtain next result pursuant to the theorem
1.

Corollary 3. Let E be a Banach lattice such that the prepolar ◦E′
a does

not equal to {0}. Then, every bounded operator that commutes with any non-

zero M−weakly compact operator have a non-trivial closed invariant subspace.

For the Banach lattice E, if the maximal ideal E′
a 6= {0} it can be defined

a M−weakly compact operator on E. Indeed, if E′
a 6= {0} we can consider the

operator T : E → E defined by T (x) = f (x) y for each x ∈ E where the element
f ∈ (E′

a)+ and the element y in B+
E . Hence, the adjoint operator T ′ : E′ → E′

is given by T ′ (g) = g (y) f for each g ∈ E′. By Theorem 12.12 of [2], T ′ is
a L−weakly compact operator. Clearly, T is a M−weakly compact operator.
Similarly, if the maximal ideal Ea 6= {0} then there exists an L−weakly compact
operator defined on E. Let choose an element y ∈ Ea

+ and an element f in B+
E′ .

Define an operator T : E → E by T (x) = f (x) y for each x ∈ E where the
element y is in Ea

+ and the element f is in B+
E′ . Since T (BE) ⊆ ‖f‖ [−y, y]

holds the operator T is L−weakly compact by Theorem 12.12 of [2]. If the
Banach lattice E does not have order continuous norm then the ideal Ea is
non-trivial closed common invariant subideal for non-zero L−weakly compact
operators and we can find non-trivial closed invariant subspaces for bounded
operators on E that commutes with any non-zero L−weakly compact operator.

As an analogous of Theorem 1, we get the next result, describes positive
operators having non-trivial closed invariant subideals.
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Theorem 4. Let E be a Banach lattice such that the prepolar ◦E′
a does

not equal to {0}, let the operator T : E → E be a positive M−weakly compact

and let the operator S : E → E be any positive operator. If for each k = 1, 2, ...
TSk is aM−weakly compact operator then S have a non-trivial closed invariant

subideal.

Proof. Assume that the operator T : E → E is a positive M−weakly
compact and the operator S : E → E is positive such that for each k = 1, 2, ...
TSk is a M−weakly compact operator. Let us choose a non-zero positive
element x0 in

◦E′
a since we assume ◦E′

a 6= {0}. According to proof of Proposition
1, we know that for non-zero element x0 in

◦E′
a and for each k = 1, 2, ... TSkx0 =

0 holds. Since we assume that the operator S : E → E is one-to-one, we have
Skx0 6= 0 for each k = 1, 2, .... Let W denote the non-zero subideal by the set
{

x0, Sx0, S
2x0, ...

}

. It means that

W =







y ∈ E : ∃i ∈ N and ∃λ1, λ2, ..., λn ∈ R+ with |y| ≤

n
∑

j=1

λjS
i+jx0







.

Hence,

|Sy| ≤ S |y| ≤ S





n
∑

j=1

λjS
i+jx0



 =

n
∑

j=1

λjS
i+1+jx0.

It follows that the ideal W is a S−invariant ideal. At the same time, it implies
S
(

W
)

⊆ W . Since T ′ 6= 0, there exists a positive linear functional f0 in E′

such that T ′f0 6= 0. Hence, T ′f0
(

Skx0
)

= f0
(

TSkx0
)

= f0 (0) = 0 for each
k = 1, 2, .... Then, we see that the positive linear functional T ′f0 is zero on
W . It means that W 6= E holds. Obviously, W 6= {0}. Therefore, W is a
non-trivial closed S−invariant subideal.

To prove our next result, note that the maximal ideal Ea of a Banach lattice
E includes all L−weakly compact sets. If µ is a measure without atom then
(L∞ (µ))a = {0} ([10], Page 318). So, the following theorem concerns Banach
lattices with a sublattice such that lattice isomorphic to L1 (µ) , µ is a measure
without atom.

Theorem 5. Let E be a Banach lattice which have a sublattice such that

lattice isomorphic to L1 (µ) , µ is a measure without atom and let the operator

T : E → E be a non-zero M-weakly compact operator. Then every bounded

operator S : E → E such that TSk is a M−weakly compact operator for each

k = 1, 2, ... have a non-trivial closed invariant subspace.
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Proof. Let W denote sublattice of E such that lattice isomorphic to L1 (µ) ,
µ is a measure without atom (we can show like that W ∼= L1 (µ)). If the oper-
ator T : E → E is a M−weakly compact operator then the restricted opera-
tor T|W : W ∼= L1 (µ) → E is M−weakly compact. So, the adjoint operator
(

T|W

)′
: E′ → W ′ is L−weakly compact. On the other hand, since all L−weakly

compact sets is contained in (W ′)a ∼= (L∞ (µ))a we obtain that

(

T|W

)′
(BE′) ⊆

(

W ′
)a ∼= (L∞ (µ))a = {0} .

Thus
(

T|W

)′
= 0, so T is zero operator onW . Similarly, since the operator TSk :

E → E is aM−weakly compact operators, for each k = 1, 2, ... TSk (x0) = 0, for
any non-zero element x0 in W . Let V denote the non-zero subspace generated
by the set

{

x0, Sx0, S
2x0, ...

}

. Clearly, S
(

V
)

⊆ V holds. Note that Skx0 6= 0
holds for each k = 1, 2, ... since we assume that S is one to one operator. On the
other hand, there exists a non-zero linear functional f0 in E′ satisfies T ′f0 6= 0
since T ′ 6= 0. Therefore, we obtain that T ′f0

(

Skx0
)

= f0
(

TSkx0
)

= f0 (0) = 0.
Hence, the non-zero linear functional T ′f0 is zero on V . It follows V 6= E.

Clearly, V 6= {0}. Therefore, V is non-trivial closed S−invariant subspace
which we are looking for.

As an example for Banach lattices in Theorem 3, we can give non-discrete
AL-spaces.

Theorem 6. Let E be a Banach lattice which have a sublattice such that

lattice isomorphic to L1 (µ) , µ is a measure without atom and let the operator

T : E → E be a positive M-weakly compact operator. Then, every positive

operator S : E → E such that TSk is M -weakly compact operator for each

k = 1, 2, ... have a non-trivial closed invariant subideal.

Proof. By using technique in the proof of theorem 2 and theorem 3, it is
enough to consider that the closed ideal generated by the set

{

x0, Sx0, S
2x0, ...

}

for a non-zero positive element x0 in sublattice W of E such that lattice iso-
morphic to L1 (µ) , µ is a measure without atom.

We can state a similar theorem to the previous theorem in consideration of
L−weakly compact operators.

Theorem 7. Let E be a Banach lattice such that its dual space E′ have a

sublattice such that lattice isomorphic to L1 (µ) , µ is a measure without atom

and let the operator T : E → E be a non-zero L−weakly compact operator.

Then, every bounded operator S : E → E such that SkT is a L−weakly com-

pact operator for each k = 1, 2, ... have a non-trivial closed invariant subspace.



302 C. Tonyalı, E. Bayram

Proof. Assume that the operator T : E → E is non-zero L−weakly com-
pact, the operator S : E → E is any bounded operator such that SkT is a
L−weakly compact operator for each k = 1, 2, ... and the norm dual space E′

have a sublattice W such that lattice isomorphic to L1 (µ) , µ is a measure
without atom (we can show like that W ∼= L1 (µ)) . If the operator T : E → E

is a L−weakly compact operator then the adjoint operator T ′ : E′ → E′ is
a M−weakly compact operator. Also, the restricted operator T ′

|W
: W ∼=

L1 (µ) → E′ is a M−weakly compact operator. Again, the adjoint operator
(

T ′
|W

)′
: E′′ → W ′ is a L−weakly compact operator. Since all L−weakly

compact sets is contained in (W ′)a ∼= (L∞ (µ))a = {0} we have

(

T ′
|W

)′
(BE′′) ⊆

(

W ′
)a ∼= (L∞ (µ))a = {0} .

Hence,
(

T ′
|W

)′
= 0 holds and it follows that the adjoint operator T ′ is zero on

W . Similarly, since SkT : E → E is L−weakly compact operator for each k =
1, 2, ...we have T ′

(

Sk
)′
(f0) = 0 for each k = 1, 2, ...and for non zero element f0

inW . Let us pick a non-zero element x0 in E such that T (x0) 6= 0. We note that
SkT (x0) 6= 0 for each k = 1, 2, ...since we assume that the operator S is one-
to-one. Let V denote subspace generated by the set

{

Tx0, STx0, S
2Tx0, ...

}

.
Hence, we obtain that

〈

SkT (x0) , f0

〉

=

〈

x0, T
′
(

Sk
)′

(f0)

〉

= 〈x0, 0〉 = 0

for each k = 1, 2, .... It follows that f0 (y) = 0 for every y ∈ V . Thus, V 6= E

holds and it can be seen that V is a non-trivial S−invariant closed subspace.

We can consider the Banach lattice E = ℓ∞�c0 as an example for Theorem
5. Although ℓ1 is isomorphic to a subspace of E as a Banach space, E does
not have any sublattice such that lattice isomorphic to ℓ1. Because E is order
isometric to the Banach lattice C (βN\N) , βN is Stone-Cech compactification
([9], Remarks 2). So, E′ does not have any sublattice such that lattice isomor-
phic to c0 ([6], Theorem 2.4.14). Thus, we see that the dual space E′ have a
sublattice such that lattice isomorphic to L1 [0, 1] ([6], Theorem 5.4.14).

Theorem 8. Let E be a Banach lattice such that its dual space E′ have a

sublattice such that lattice isomorphic to L1 (µ) , µ is a measure without atom

and let the operator T : E → E be a positive L-weakly compact operator.

Then, every positive operator S : E → E such that SkT is L−weakly compact

operator for each k = 1, 2, ... have a non-trivial closed invariant subideal.
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Proof. By using technique in the proof of theorem 2 and theorem 5, it is
enough to consider that the closed ideal generated by the set {Tx0, STx0, S

2Tx0,
...} for a non-zero positive element x0 in E such that T (x0) 6= 0.
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