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Abstract. In this work, we investigate a sequence of approximations converging to
the existing unique solution of a multi-point boundary value problem(BVP) given by
a linear fourth-order ordinary differential equation with variable coefficients involving
nonlocal integral conditions by using reproducing kernel method(RKM). Obtaining
the reproducing kernel of the reproducing kernel space by using the original condi-
tions given directly by RKM may be troublesome and may introduce computational
costs. Therefore, in these cases, initially considering more admissible conditions which
will allow the reproducing kernel to be computed more easily than the original ones
and then taking into account the original conditions lead us to satisfactory results.
This analysis is illustrated by a numerical example. The results demonstrate that
the method is still quite accurate and effective for the cases with both derivative
and integral conditions even if the accuracy is less compared to the cases with just
derivative conditions.
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boundary value problem, nonlocal boundary condition.
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1 Introduction

Nonlocal multi-point boundary value problems arise in applied mathematics,
physics, engineering and the various areas of mechanics such as theory of elas-
ticity, theory of elastic stability and theory of plates and shells [14]. The math-
ematical models for the vibrations of wires and bridges composed of many parts
of different densities involve such problems.
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Finding solutions analytically to multi-point boundary value problems rep-
resented by linear ordinary differential equations with variable coefficients in-
volving nonlocal boundary conditions can be based on determining of some
fundamental solutions such as Green’s function or Green’s functional [10, 11,
12, 13, 15]. On the other hand, the methods yielding effective approximate so-
lutions have started to become important and valuable with the development
of computation tools in recent years. One of these methods is RKM which
is based on reproducing kernel theory and Fourier method. The difference
between RKM and Fourier method emanates from the way different systems
of complete functions are generated for the solution of the problem by each
method.

Reproducing kernel theory has many potential applications in numerical
analysis of differential equations [1, 2, 3, 4, 5, 6, 7, 9, 17]. In this context, the
presented method in [16] for solving the problem represented by an ordinary
differential equation with only derivative conditions is implemented to obtain
the approximate solution to linear fourth-order multi-point BVP governed by
an ordinary differential equation with both derivative and integral conditions
in this work.

The problem for which the coefficients and right-hand side expressions are
chosen such that its unique solution will exist is as follows:

u(4)(x) +

3∑
i=0

Ai(x)u(i)(x) = f(x), 0 ≤ x ≤ 1, (1.1)

Viu ≡
3∑

j=0

αiju
(j)(βj) +

3∑
j=0

∫ 1

0

µij(s)u
(j)(s) ds = zi (i = 0, 1, 2, 3), (1.2)

where Ai(x) ∈ Ci[0, 1], f(x) ∈ W 1
2 [0, 1], u(x) ∈ W 5

2 [0, 1] and αij , zi, βj for
i, j = 0, 1, 2, 3 are real numbers such that 0 < β0 < β1 < β2 < β3 < 1. The
function µij (i, j = 0, 1, 2, 3) is defined on [0, 1] such that the product µiju

(j)

(i, j = 0, 1, 2, 3) is integrable on [0, 1]. Here u(i) for i = 1, 2, 3, 4 denotes the
derivative of order i for u with respect to its variable and u(0) = u. W 5

2 [0, 1]
and W 1

2 [0, 1] are the reproducing kernel spaces which are defined in Section 3.
As can be seen, form (1.2) for nonlocal conditions of the problem is a general
form of the linear conditions for the problem with such a fourth-order linear
ordinary differential equation. Many linear conditions arising in modelling of
many physical phenomena by such an equation are the specific forms of (1.2).

2 The Solution Algorithm for Problem (1.1)–(1.2)

The following steps derived from RKM may be used to avoid the computational
cost incurred from constructing the reproducing kernels of the spaces by using
given original conditions directly [16].
Step 1: Construct auxiliary boundary conditions as follows:

u(0) = γ0, u(1) = γ1, u′(0) = γ2, u′(1) = γ3, (2.1)

where γ0, γ1, γ2 and γ3 are constants to be determined in Step 3.
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Step 2: Solve the following two-point BVP by RKM:

u(4)(x) +

3∑
i=0

Ai(x)u(i)(x) = f(x), 0 ≤ x ≤ 1, (2.2)

u(0) = γ0, u(1) = γ1, u′(0) = γ2, u′(1) = γ3. (2.3)

In order to homogenize the conditions, a new unknown function v(x) =
u(x) − φ(x) where φ(x) is a third-order polynomial satisfying φ(0) = γ0,
φ(1) = γ1, φ′(0) = γ2 and φ′(1) = γ3 is considered. Thus,

φ(x) = (−1+x)2(1+2x)γ0+x
(
(3−2x)xγ1+(−1+x)

(
(−1+x)γ2+xγ3

))
. (2.4)

The next aim is to solve the reduced problem of obtaining a function v(x)
satisfying

v(4)(x) +

3∑
i=0

Ai(x)v(i)(x) = g(x, γ0, γ1, γ2, γ3), 0 ≤ x ≤ 1, (2.5)

v(0) = 0, v(1) = 0, v′(0) = 0, v′(1) = 0, (2.6)

where

g(x, γ0, γ1, γ2, γ3) = f(x)−
3∑

i=0

Ai(x)φ(i)(x).

By using the RKM [1,3], the solution and the n-approximation to the prob-
lem (2.5)–(2.6) can be obtained respectively:

v(x) =

∞∑
i=1

i∑
k=1

βikg(xk, γ0, γ1, γ2, γ3)ψi(x),

vn(x) =

n∑
i=1

i∑
k=1

βikg(xk, γ0, γ1, γ2, γ3)ψi(x), (2.7)

where βik, xk and ψi(x) are all given. The details can be seen in next section.
Thus, the solution and the n-approximation to the problem (2.2)–(2.3) can be
obtained respectively:

u(x) = φ(x) +

∞∑
i=1

i∑
k=1

βikg(xk, γ0, γ1, γ2, γ3)ψi(x),

un(x) = φ(x) +

n∑
i=1

i∑
k=1

βikg(xk, γ0, γ1, γ2, γ3)ψi(x). (2.8)

Step 3: When the original boundary conditions of (1.1)–(1.2) are implemented
for un(x) we have

3∑
j=0

αiju
(j)
n (βj) +

3∑
j=0

∫ 1

0

µij(s)u
(j)
n (s) ds = zi (i = 0, 1, 2, 3). (2.9)
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This last system is a system of four linear equations containing the unknowns
γ0, γ1, γ2 and γ3. Hence, these unknowns can be determined easily.
Step 4: The unknowns are substituted into un(x) in (2.8). Finally, the n-
approximate solution to the problem (1.1)–(1.2) can be obtained.

3 Solution to Problem (2.5)–(2.6) by the RKM

By [1,2, 3], we have the following definitions:

Definition 1. Let E and C be respectively a nonempty set and set of complex
numbers. A function R : E×E → C is a reproducing kernel of a Hilbert space
H if and only if

(a) R(·, t) ∈ H for ∀t ∈ E,

(b) 〈ϕ,R(·, t)〉 = ϕ(t) for ∀t ∈ E and ∀ϕ ∈ H.

Definition 2. A Hilbert space involving a reproducing kernel is called a re-
producing kernel Hilbert space or reproducing kernel space.

First, by using the RKM [3], the reproducing kernel space W 5
2 [0, 1] is con-

structed such that each of its elements complies with the boundary conditions in
(2.6). The space defined as W 5

2 [0, 1] = {u(x) | u(x), u′(x), u′′(x), u′′′(x), u(4)(x)
are absolutely continuous real valued functions, u(5)(x) ∈ L2[0, 1], u(0) = 0,
u(1) = 0, u′(0) = 0, u′(1) = 0} is a Hilbert space [3].

The inner product and norm in W 5
2 [0, 1] are defined respectively as follows:

〈
u(y), v(y)

〉
W 5

2
=

2∑
i=0

u(i)(0)v(i)(0) +

1∑
i=0

u(i)(1)v(i)(1) +

∫ 1

0

u(5)v(5) dy,

‖u‖W 5
2

=
√
〈u, u〉W 5

2
,

where u, v ∈W 5
2 [0, 1], u(0) = u and v(0) = v.

According to [3, 16], the reproducing kernel for W 5
2 [0, 1] is in the following

form

Rx(y) =

{
R11(x, y) for x ≥ y,
R12(x, y) for x < y,

where R11(x, y) = 1
362880 (x − 1)2y2(y(3y − 4)x7 + (19 − 12y)yx6 + 3y(3y −

10)x5 + 5y(6y+ 1)x4 + 5(8− 15y)yx3 + 3(y7− 6y6 + 12y5 + 30240y2− 60480y+
30240)x2 + y6(2y − 9)x+ y7) and R12(x, y) = R11(y, x).

Another similarly defined reproducing kernel space which is also a Hilbert
space is W 1

2 [0, 1] = {u(x) | u(x) is absolutely continuous real valued function,
u′(x) ∈ L2[0, 1]} [8]. The inner product and norm in W 1

2 [0, 1] are defined
respectively as follows:

〈
u(x), v(x)

〉
W 1

2
=

∫ 1

0

(
u(x)v(x) + u′(x)v′(x)

)
dx, ‖u‖W 1

2
=
√
〈u, u〉W 1

2
,
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where u(x), v(x) ∈W 1
2 [0, 1]. Its reproducing kernel [8] is

Rx(y) =
1

2 sinh(1)

[
cosh(x+ y − 1) + cosh

(
|x− y| − 1

)]
.

If (Lv)(x) ≡ v(4)(x) +
∑3

i=0Ai(x)v(i)(x) in (2.5), then L : W 5
2 [0, 1] →

W 1
2 [0, 1] is a bounded linear operator [3]. ϕi(x) = Rxi

(x) and ψi(x) = L∗ϕi(x)
where L∗ denotes the adjoint operator of L. The orthonormal system
{ψi(x)}∞i=1 in W 5

2 [0, 1] can be obtained from the system {ψi(x)}∞i=1 in W 5
2 [0, 1]

by using Gram-Schmidt orthonormalization method:

ψi(x) =

i∑
k=1

βikψk(x) (βii > 0, i = 1, 2, . . .),

where βik are the orthogonalization coefficients.
According to [1, 2, 3], we have the following theorems:

Theorem 1. For (2.5)–(2.6), if {xi}∞i=1 is dense on [0, 1], then {ψi(x)}∞i=1 is
a complete system in W 5

2 [0, 1] and ψi(x) = LyRx(y)|y=xi
where the operator

Ly denotes that the operator L applies to the function of y.

It can be deduced that ψi(x) = (L∗ϕi)(x) = 〈(L∗ϕi)(y), Rx(y)〉W 5
2

= 〈ϕi(y),

LyRx(y)〉W 1
2

= 〈Rxi(y), LyRx(y)〉W 1
2

= LyRx(y)|y=xi and ψi(x) ∈ W 5
2 [0, 1]

easily. If 〈v(x), ψi(x)〉W 5
2

= 0 (i = 1, 2, . . .) for each fixed v(x) ∈W 5
2 [0, 1], then〈

v(x), ψi(x)
〉
W 5

2
=
〈
v(x), (L∗ϕi)(x)

〉
W 5

2

=
〈
Lv(·), ϕi(·)

〉
W 1

2
=
〈
Lv(·), Rxi

(·)
〉
W 1

2

= (Lv)(xi) = 0.

Theorem 2. If {xi}∞i=1 is dense on [0, 1] and the exact solution v(x) of prob-
lem (2.5)–(2.6) exists and is unique, then it can be expanded in terms of a
Fourier series about orthonormal system {ψi(x)}∞i=1 as in (2.7) by noting that
〈w(x), Rxi

(x)〉W 1
2

= w(xi) for each w(x) ∈W 1
2 [0, 1]. The approximate solution

vn(x) is given as in (2.7) by taking finitely many terms. In other words, vn(x)
is n-truncation of the Fourier series corresponding to v(x).

4 A Numerical Example

We consider an illustrative example to demonstrate the accuracy of the pro-
posed method and to test its utility. All computations are performed by using
the Mathematica 7.0 software package.

Example 1. We investigate the approximate solution of the following nonlocal
BVP:

u(4)(x) + e2xu′′′(x) + e−xu′′(x)− e−3xu′(x) + exu(x)

=
(
1 + e−x + ex

)
cosh(x) +

(
e2x − e−3x

)
sinh(x), 0 ≤ x ≤ 1, (4.1)

Math. Model. Anal., 18(4):529–536, 2013.
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u
(1

5

)
+ 2u′

(2

5

)
− u′′

(3

5

)
+ 3u′′′

(4

5

)
+

∫ 1

0

(
u(s) + s2u′(s)− su′′(s) + esu′′′(s)

)
ds

= cosh
(1

5

)
− cosh

(3

5

)
+2 sinh

(2

5

)
+3 sinh

(4

5

)
− 15

4
+

3

e
+ e+

e2

4
, (4.2)

−2u
(1

5

)
− 3u′

(2

5

)
+ u′′

(3

5

)
+ u′′′

(4

5

)
+

∫ 1

0

(
s3u(s) + sesu′(s)− su′′′(s)

)
ds

= −2 cosh
(1

5

)
+ cosh

(3

5

)
− 3 sinh

(2

5

)
+ sinh

(4

5

)
+

1

8

(
47− 72

e
− 8e+ e2

)
, (4.3)

4u
(1

5

)
− u′′

(3

5

)
+ 2u′′′

(4

5

)
+

∫ 1

0

(
2su(s) + u′(s)− s3u′′(s) + su′′′(s)

)
ds

= 4 cosh
(1

5

)
− cosh

(3

5

)
+ 2 sinh

(4

5

)
− 5 +

7

e
+ e+ cosh(1), (4.4)

−3u′
(2

5

)
+ u′′

(3

5

)
− u′′′

(4

5

)
+

∫ 1

0

(
(s− 2)u(s) + (s− 1)2u′(s) + u′′(s)− u′′′(s)

)
ds

= cosh
(3

5

)
− 3 sinh

(2

5

)
− sinh

(4

5

)
− 1. (4.5)

The exact solution to the problem (4.1)–(4.5) is determined by u(x) =
cosh(x). In our computations, xi = i−1

n−1 (i = 1, 2, . . . , n) and n = 11, 21, 31.
The numerical results computed via the presented method are compared with
the exact solution of the example in Table 1.

Table 1. The numerical results for Example 1.

x u(x) u31(x) |u(x)− u11(x)| |u(x)− u21(x)| |u(x)− u31(x)|

0. 1. 0.999965 0.000317719 0.0000788556 0.0000349928
0.1 1.005 1.00496 0.000363112 0.0000898037 0.0000398235
0.2 1.02007 1.02002 0.000425385 0.000104835 0.000046457
0.3 1.04534 1.04528 0.000507836 0.000124769 0.0000552571
0.4 1.08107 1.08101 0.00061306 0.000150252 0.0000665104
0.5 1.12763 1.12755 0.000742959 0.000181756 0.0000804267
0.6 1.18547 1.18537 0.000898774 0.00021959 0.0000971431
0.7 1.25517 1.25505 0.00108114 0.000263914 0.000116731
0.8 1.33743 1.3373 0.00129018 0.000314757 0.000139203
0.9 1.43309 1.43292 0.00152555 0.000372039 0.000164523
1. 1.54308 1.54289 0.00178654 0.000435583 0.000192615

Furthermore, the graphs of the absolute error functions for several approx-
imations un(x) are displayed in Figure 1.
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0.2 0.4 0.6 0.8 1.0

x

0.0005

0.0010

0.0015

Absolute Error

for n=31

for n=21

for n=11

Figure 1. The graphs of the absolute error functions of the
approximations un(x) for Example 1.

5 Conclusions

As can be seen from the values of absolute errors in Table 1 and the graphs in
Figure 1, the numerical results verify that the algorithm used is highly accurate
for solving fourth-order multi-point boundary value problems modeled by the
linear ordinary differential equation involving nonlocal boundary conditions.

The method is still quite accurate and effective for the cases with both
derivative and integral boundary conditions even if its accuracy is less compared
to the cases with only derivative boundary conditions.

Clearly, the method has crucial advantages on determining the approximate
solutions to these problems modeled by the equations with principally variable
coefficients in considered form in this work and it can be used reliably. There-
fore, it might be useful to the researchers requiring the approximate solutions
of these model problems.
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