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Abstract

Recently, the phase space structures governing reaction dynamics in
Hamiltonian systems have been identified and algorithms for their explicit
construction have been developed. These phase space structures are induced
by saddle type equilibrium points which are characteristic for reaction type
dynamics. Their construction is based on a Poincaré–Birkhoff normal form.
Using tools from the geometric theory of Hamiltonian systems and their
reduction, we show in this paper how the construction of these phase space
structures can be generalized to the case of the relative equilibria of a rotational
symmetry reduced N -body system. As rotations almost always play an
important role in the reaction dynamics of molecules, the approach presented
in this paper is of great relevance for applications.

Mathematics Subject Classification: 70F10, 53C80, 37J25
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1. Introduction

From the perspective of dynamical systems theory a system shows reaction type dynamics
if its phase space possesses a bottleneck type geometry. The system spends a long time
in one phase space region before it finds its way through a bottleneck to another phase space
region. In the terminology of chemistry these phase space regions correspond to ‘reactants’ and
‘products’, respectively, and the bottleneck connecting the two is called a ‘transition state’. For
Hamiltonian systems, the phase space bottlenecks result from equilibrium points of a certain
stability type, namely equilibria for which the matrix associated with the linearization has one
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pair of real eigenvalues of opposite sign and f − 1 complex conjugate pairs of imaginary
eigenvalues, where f is the number of degrees of freedom. Such an equilibrium is called a
saddle× centre× · · · × centre, and we will refer to them as ‘saddle’ for short. Near a saddle
the energy surface (locally) bifurcates from an energy surface with two disjoint components
(the reactants and products) for energies below the energy of the saddle to an energy surface
consisting of a single connected component for energies above the energy of the saddle. The
single component energy surface has a wide-narrow-wide geometry, and the system has to pass
or ‘react’ through this bottleneck in order to evolve from reactants to products or vice versa. The
most widely used approach to compute reaction rates in chemistry is to place a dividing surface
in the bottleneck region and compute the rate from the flux through this dividing surface. This
forms the basis of Transition State Theory that was developed by Eyring, Polanyi andWigner in
the 1930s [1, 2]. For this approach to be useful the dividing surface needs to have the property
that it is crossed exactly once by all reactive trajectories (i.e. trajectories moving from reactants
to products or vice versa) and not crossed at all by the non-reactive trajectories (i.e. trajectories
staying on the reactants or products side). The construction of a dividing surface which solves
this so-called recrossing problem has posed a major difficulty in the development of transition
state theory. In the 1970s Pechukas, Pollak and others [3, 4] showed that for systems with
two degrees of freedom, a recrossing free dividing surface can be constructed from a periodic
orbit (the Lyapunov orbit associated with the saddle). The longstanding problem of how to
generalize this idea for systems with more than two degrees of freedom has been solved only
recently [5, 6], see also [7, 8]. Here the role of the Lyapunov orbit is taken over by a normally

hyperbolic invariant manifold (NHIM) [9, 10] which forms the anchor for the construction of a
dividing surface in the general case. The NHIM also gives a precise meaning of the transition
state. It can be viewed as the energy surface of an invariant subsystem with n − 1 degrees of
freedom, which as an unstable ‘super molecule’ [11] is located between reactants and products.
The NHIM is not only of central significance for the construction of a recrossing free dividing
surface, but also gives detailed information of the geometry and the mechanism of reactions.
This arises from the fact that the NHIM has stable and unstable manifolds which are of one
dimension less than the energy surface. They form the separatrices which separate the reactive
trajectories and non-reactive trajectories in the energy surface. In fact, they form tubes which
snake through the phase space and for a phase space point in the region of reactants to be
reactive (i.e. for a point leading to a reactive trajectory if it is taken as an initial condition
for Hamilton’ s equations) it has to be contained in a certain volume that is enclosed by the
stable manifold of the NHIM. Similarly, only points in the region of products can be reached
by reactive trajectories emanating from the reactants if they are contained in a certain volume
enclose by the unstable manifold of the NHIM. This information is crucial not only for the
study of state specific reactivities but also for the control of reactions. Most importantly for
applications, the dividing surface, the NHIM and the local pieces of its stable and unstable
manifolds can be explicitly constructed from a Poincaré–Birkhoff normal form expansion
about the saddle equilibrium point [6, 12]. The normal form gives a symplectic transformation
to a new set of phase space coordinates in terms of which one can give simple formulas for
the phase space structures. The inverse of the normal form transformation then allows one to
construct the phase space structures in the original (‘physical’) coordinates.

In this paper, we address the question of how the phase space structures can be constructed
for the relative equilibria of a rotational symmetry reduced N -body system. Here we have in
mind that the N bodies represent the N atoms that constitute a given molecule (described in
the Born–Oppenheimer approximation) but the theory presented also works for other N -body
systems like celestial N -body systems. For molecular reactions, the excitation of rotational
degrees of freedom almost always plays an important role. The phase space bottlenecks
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are then no longer associated with equilibrium points but with larger sets of phase space
points which however become again equilibria (so-called relative equilbibria) if considered
in the rotational symmetry reduced system. In this context the reduction is important for both
conceptual and computational reasons. We are particularly interested in a reduction which
facilitates the Poincaré–Birkhoff normal construction of the phase space structures around a
relative equilibrium in the same fashion as in the case of a usual saddle equilibrium. The theory
of reduction for N -body systems is well developed [13–18]. However, although the structure
of the reduced space is well known, the explicit choice of suitable coordinates for the reduced
space remains as a challenging problem [19]. If the angular momentum is zero, the reduced
space is symplectomorphic to the tangent bundle of the shape or internal space (see section 3).
For non-vanishing angular momentum however, this is no longer the case [13]. This makes it
difficult to apply classical techniques such as Poincaré–Birkhoff normal forms [20], and that
point is the motivation of our paper (see also [21, 22]). Amore canonical way of expressing the
equations of motion is useful, and we hope that the theory presented in this paper will also be
of interest for studies of N -body systems not only from the perspective of reaction dynamics
but also from other perspectives. For relevant applications, we refer to [23–40].

In our approach wemainly follow the account given by Littlejohn and Reinsch [17]. Their
reduction procedure can be viewed as a generalization of the free rigid body reduction scheme.
Namely, the Hamiltonian is written as the sum of rotational kinetic energy, vibrational kinetic
energy and the potential by passing to the body coordinates. The only remaining coordinates are
the body angular momentum, the shape or internal coordinates and the conjugate momenta of
the internal coordinates. However, using the body angular momentum the equations of motion
have a non-canonical form which is not so suitable for the local analysis near equilibrium
points [41–43]. Using the fact that the reduced space is locally a product of the body angular
momentum sphere and the cotangent bundle of the internal space a canonical form of the
equations of motions is obtained in this paper by choosing some suitable coordinates on the
body angular momentum sphere.

This paper is organized as follows. In sections 2 and 3 we review the phase space
structures governing reaction dynamics across saddle equilibrium points and the reduction
of the rotational symmetry of N -body systems, respectively. The main result of this paper
is contained in section 4 where we introduce a canonical coordinate system on the symmetry
reduced spacewhich facilitates Poincaré–Birkhoff normal form computations near equilibrium
points. The theory is illustrated for the limiting case of a rigid body and the example of a
triatomic molecule in section 5. Conclusions and an outlook are given in section 6.

2. Phase space structures governing reactions across saddles

In this section, we discuss the phase space structures governing reaction dynamics near saddle
equilibrium points. Before studying the case of a general (nonlinear) Hamiltonian vector field
it is useful to first consider the linear case. For the details we refer to [6, 12].

2.1. The linear case

Consider a linear Hamiltonian vector field with a saddle on the phase space R
f × R

f where
f > 2 (we comment on the case f = 1 at the end of this section). Consider the quadratic
Hamiltonian function

H2(q, p) =
λ

2
(p21 − q21 ) +

f
∑

k=2

ωk

2
(p2k + q2k ). (1)
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The corresponding linear Hamiltonian vector field has a saddle equilibrium point at the origin,
i.e. the matrix associated with the linear vector field has the pair of real eigenvalues ±λ and
f − 1 pairs of complex conjugate imaginary eigenvalues ±iωk , k = 2, . . . , f . We define the
constants of motion

I1 =
p21 − q21

2
, Ik =

p2k + q2k

2
, k = 2, . . . , f, (2)

which up to positive prefactors agree with the energies in the individual degrees of freedoms.
Consider a fixed energy E > 0, where 0 is the energy of the saddle. Rewriting the energy

equation H2(q, p) = E in the form

λ

2
p21 +

f
∑

k=2

ωk

2
(p2k + q2k ) = E +

λ

2
q21 (3)

one sees that each fixed q1 ∈ R defines a topological (2f −2)-dimensional sphere. The energy
surface

6E = {(q, p) ∈ R
2f : H2(q, p) = E} (4)

thus has the topology of a spherical cylinderR×S2f −2. The ‘radius’ of the family of (2f −2)-
dimensional sphere (3) becomes smallest for q1 = 0, and this in fact can be used to define a
recrossing free dividing surface (see the introduction). Setting q1 = 0 on the energy surface
gives the (2f − 2)-dimensional sphere

S
2f −2
DS = {(q, p) ∈ R

2f : H2(q, p) = E, q1 = 0}. (5)

The dividing surface S
2f −2
DS divides the energy surface into the two components which have

q1 < 0 (the ‘reactants’) and q1 > 0 (the ‘products’), respectively, and as q̇1 = ∂H2/∂p1 =
λp1 6= 0 for p1 6= 0 the dividing surface is everywhere transverse to the Hamiltonian flow
except for the submanifold where q1 = p1 = 0. For q1 = p1 = 0, the energy equation (3)
reduces to

∑f

k=2
ωk

2 (p2k + q2k ) = E. The submanifold thus is a (2f − 3)-dimensional sphere
which we denote by

S
2f −3
NHIM = {(q, p) ∈ R

2f : H2(q, p) = E, q1 = p1 = 0}. (6)

This is a so-called normally hyperbolic invariant manifold [9, 10] (NHIM for short), i.e. S2f −3
NHIM

is invariant (since q1 = p1 = 0 implies q̇1 = ṗ1 = 0) and the contraction and expansion rates
for motions on S

2f −3
NHIM are dominated by those components related to directions transverse to

S
2f −3
NHIM. The NHIM (6) can be considered to form the equator of the dividing surface (5) in
the sense that it divides it into two hemispheres which topologically are (2f − 2)-dimensional
balls. All forward reactive trajectories (i.e. trajectories moving from reactants to products)
cross one of these hemispheres, and all backward reactive trajectories (i.e. trajectories moving
from products to reactants) cross the other of these hemispheres. Note that a trajectory is
reactive only if it has I1 > 0 (i.e. if it has sufficient energy in the first degree of freedom).
Trajectories with I1 < 0 are non-reactive, i.e. they stay on the side of reactants or on the side
of products.

Due to its normal hyperbolicity the NHIM has stable and unstable manifolds which are
given by setting p1 = −q1 resp. p1 = q1 on the energy surface. Each of them have two
branches. We denote the branches of the stable manifold by

W s
NHIM;r = {(q, p) ∈ R

2f : H2(q, p) = E, p1 = −q1 > 0},
W s
NHIM;p = {(q, p) ∈ R

2f : H2(q, p) = E, p1 = −q1 < 0}, (7)
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where W s
r is located on the reactants side of the dividing surface and W s

p is located on the
product sides of the dividing surface. Similarly the unstable manifold has the two branches

W u
NHIM;r = {(q, p) ∈ R

2f : H2(q, p) = E, p1 = q1 < 0},
W u
NHIM;p = {(q, p) ∈ R

2f : H2(q, p) = E, p1 = q1 > 0}. (8)

The stable and unstable manifolds have the topology of spherical cylindersR×S2f −3. As they
are of co-dimension 1 in the energy surface they can act as separatrices, dividing the energy
surface into different components. In fact on the stable and unstable manifolds I1 is equal to
zero. They thus lie ‘between’ the non-reactive (I1 < 0) and reactive (I1 > 0) trajectories.
More precisely the forward reactive cylinder

Cf = W s
NHIM;r ∪ W u

NHIM;p (9)

encloses all forward reactive trajectories in the energy surface and separates them from all
other trajectories, and similarly the backward reactive cylinder

Cb = W s
NHIM;p ∪ W u

NHIM;r (10)

encloses all backward reactive trajectories in the energy surface and separates them from all
other trajectories. In this sense Cf and Cb form the phase space conduits of forward and
backward reactions, respectively [44].

Moreover, it is useful to define the lines

DRPf = {(q, p) ∈ R
2f : H2(q, p) = E, p1 > 0, pk = qk = 0, k = 2, . . . , f },

DRPb = {(q, p) ∈ R
2f : H2(q, p) = E, p1 < 0, pk = qk = 0, k = 2, . . . , f }. (11)

These lines form the centerlines of the volumes enclosed by the forward and backward reactive
cylinders Cf and Cb, respectively, and are therefore referred to as the forward and backward
dynamical reaction paths, respectively. All forward reactive trajectories spiral about DRPf ,
and all backward reactive trajectories spiral about DRBb. Note that in the limit E → 0+

the forward and backward reactive cylinders Cf and Cb shrink to the forward and backward
dynamical reaction paths, which in turn become the one-dimensional stable and unstable
manifolds of the saddle equilibrium point in this limit. More precisely, if

W s
saddle;r = {(q, p) ∈ R

2f : H2(q, p) = 0, p1 = −q1 > 0, pk = qk = 0, k = 2, . . . , f },
W s
saddle;p = {(q, p) ∈ R

2f : H2(q, p) = 0, p1 = −q1 < 0, pk = qk = 0, k = 2, . . . , f }
(12)

denote the reactants and product branches of the stable manifold of the saddle, and

W u
saddle;r = {(q, p) ∈ R

2f : H2(q, p) = 0, p1 = q1 < 0, pk = qk = 0, k = 2, . . . , f },
W u
saddle;p = {(q, p) ∈ R

2f : H2(q, p) = 0, p1 = q1 > 0, pk = qk = 0, k = 2, . . . , f }
(13)

denote the reactants and product branches of the unstable manifold of the saddle then
DRPf → W s

saddle;r ∪ W u
saddle;p and DRPb → W s

saddle;p ∪ W u
saddle;r for E → 0+.

For systems with f = 1 degree of freedom with a saddle, one can still separate the phase
space (or energy surface) in a reactants and a products region in a similar manner as described
above. However, most of the phase space structures defined above make no sense for f = 1.
The case of one degree of freedom is special since in this case the trajectories are given by the
level sets of the Hamiltonian. The question of whether a trajectory is reactive or not is thus
completely determined by the (total) energy of the trajectory.
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2.2. The general (nonlinear) case

For the general nonlinear case, consider a Hamiltonian function H which has an equilibrium
point (a ‘saddle’) at which the corresponding linearized vector field has the same disposition of
eigenvalues as in section 2.1. In the neighbourhood of the saddle the dynamics is thus similar to
that of the linear vector field described in section 2.1. In fact if follows from general principles
that all the phase structures discussed in section 2.1 persist in the neighbourhood of the saddle
(which in particular implies that one has to restrict to energies close to the energy of the saddle).
Moreover, these phase space structures can be constructed in an algorithmic fashion using a
Poincaré–Birkhoff normal form [6, 12]. Assuming that the eigenvalues ωk , k = 2, . . . , f , are
independent over the field of rational numbers (i.e. in the absence of resonances), the Poincaré–
Birkhoff normal form yields a symplectic transformation to new (normal form) coordinates
such that the transformed Hamiltonian function truncated at order n0 of its Taylor expansion
assumes the form

HNF(I1, I2, . . . , If ), (14)

where I1 and Ik , k = 2, . . . , f , are constants of motions which (when expressed in terms of
the normal form coordinates) have the same form as in (2), and HNF is a polynomial of order
n0/2 in I1 and Ik , k = 2, . . . , f (note that only even orders n0 of a normal form make sense).
The algorithm to compute this transformation is sketched in the appendix.

In terms of the normal form coordinates the phase space structures can be defined
in a manner which is virtually identical to the linear case by replacing H2(q, p) by
HNF(I1, I2, . . . , If ) in the definitions in section 2.1. Using then the inverse of the normal form
transformation allows one to construct the phase space structures in the original (‘physical’)
coordinates. The Poincaré–Birkhoff normal form is therefore of crucial importance for
the construction of the phase space structures governing reaction dynamics in a general
Hamiltonian system with a saddle equilibrium point.

3. Reduction of the N -body system

Wenowwant to study reaction type dynamics induced by the relative equilibria of a rotationally
reducedN -body system. We start by recalling the reduction procedure for theN -body system
following [17]. Let xi, i = 1, . . . , N , be the position vectors of N bodies in R

3. If a set of
mass-weighted Jacobi vectors si, i = 1, . . . , N−1, are chosen (for an example, see section 5.2)
and the centre of mass of the system is assumed to be the origin, then the three degrees of
freedom associated with overall translations are eliminated, and the kinetic energy takes the
diagonal form

K =
1

2

N
∑

i=1

ṡ2i . (15)

After a suitable choice of a body frame one can write si = R(θ1, θ2, θ3)ri for some
R(θ1, θ2, θ3) ∈ SO(3), where θ1, θ2, θ3 is some set of Euler angles, and ri , i = 1, . . . , N − 1,
are the mass-weighted Jacobi vectors in the body frame. The ri can be expressed in 3N − 6
coordinates qµ, called shape or internal coordinates and their space is called the shape or
internal space which we denote by M . Away from collinear configurations, as we will
assume throughout, the translation reduced space is a fibre bundle over the shape space. For a
conservative N -body system without external forces the potential energy can be viewed as a
function on the shape space (i.e. it is a function of the shape space coordinates only). The goal
now is to also express the kinetic energy (as far as possible) as a function of the shape space
coordinates. To this end we make the following definitions.
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Let R ∈ SO(3) denote the rotation from the centre of mass frame to the body frame and
L denote the angular momentum

L =
N

∑

i=1

si × ṡi . (16)

Then the body velocities and body angular momentum are defined, respectively, by

ṙi = RTṡi, (17)

and

J = RTL. (18)

The moment of inertia tensor M(q) of the N -body system has the components

Mij (q) =
N−1
∑

k=1

(r2kδij − rkirkj ), (19)

where rk = (rk1, rk2, rk3) in body coordinates. With the so-called gauge potential

Aµ(q) = M−1(q) ·
N

∑

i=1

(

ri ×
∂ri

∂qµ

)

(20)

and the metric

gµν =
∂rα

∂qµ

∂rα

∂qν

− Aµ ·M · Aν (21)

(where we here and in the following use the Einstein convention of summation over repeated
indices which run from 1 to 3N − 6) the kinetic energy becomes

K = 1
2 (ω +Aµq̇µ) ·M · (ω +Aν q̇ν)+ 12gµν q̇µq̇ν .

Here ω is the angular velocity which is the vector corresponding to the skew-symmetric matrix
RTṘ by the natural isomorphism





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 7→





ω1

ω2

ω3



 . (22)

Using the equation

J =
∂K

∂ω
= M(ω +Aµq̇µ), (23)

the conjugate momenta of the shape space coordinates are obtained by

pµ =
∂K

∂q̇µ

= gµν q̇ν + J · Aµ. (24)

The fully reduced Hamiltonian is then given by

H = 1
2J ·M−1 · J+ 12g

µν(pµ − J · Aµ)(pν − J · Aν) + V (q1, . . . , q3N−6). (25)

Here the first term is called rotational or centrifugal energy and the second one is called
vibrational kinetic energy.

The equations of motion are obtained to be

q̇µ = ∂H/∂pµ, ṗµ = −∂H/∂qµ, J̇ = J ×
∂H

∂J
(26)
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for µ = 1, . . . , 3N − 6, [42]. The last equation is equivalent to [41]
J̇a = {Ja, H }, a = 1, 2, 3, (27)

where J = (J1, J2, J3).

The theory underlying the reduction described above is the orbit reduction method of
Marle [45]. Let Q denote the translational reduced configuration space of non-collinear
configurations. Then the action of SO(3) on that space is free which implies that the lifted
action of SO(3) on T ∗Q is also free in addition to being symplectic. The angular momentum
can be considered as a map (a so called momentum map) J from T ∗Q to the dual space of
the Lie algebra of SO(3), so(3)∗, which is identified with R

3. After writing the Hamiltonian
in terms of a body fixed frame, it takes an SO(3)-invariant form as in (25). As the (space
fixed) angular momentum is constant, say ζ , and the modulus of the body angular momentum
is also conserved, the dynamics can be reduced to the inverse image of the body angular
momentum sphere Oζ = S2‖ζ‖ (which is the coadjoint orbit of the SO(3) action) under the
angular momentum map. Then (25) may be considered as a function on J−1(Oζ )/SO(3)
which is symplectomorphic to the Marsden–Weinstein space J−1(ζ )/SO(2), where SO(2) is
the isotropy subgroup of the coadjoint action of SO(3) on so(3)∗ [45].

4. Canonical coordinates on the reduced phase space

It can be seen by (25) that (qµ, pµ, Ja) are some coordinates on the reduced space where
µ = 1, . . . , 3N − 6 and Ja, a = 1, 2, 3, are the components of the body angular momentum
vector J . Note here that (qµ, pµ) are canonical variables whereas the Ja are not canonical. If
one uses coordinates vµ = pµ − J · Aµ in place of pµ, then (qµ, vµ) become non-canonical
too [17] but this way it is easy to see that the reduced space is locally diffeomorphic to the
product of the angular momentum sphere and the cotangent bundle of the internal space:
S2‖J‖ × T ∗M . This is in fact a general fact for cotangent bundle reduction, known as fibration

cotangent bundle reduction [45]. It is to be noted here that the symplectic structure on the
reduced space is the sum of ±1/‖J‖ times the volume form of the sphere, the canonical
symplectic structure on T ∗M and some magnetic terms [45]. The magnetic terms come from
the gauge potential, and are directly related to the non-Euclidean structure of the shape space.
The goal now is to use some canonical coordinates u, v on S2‖J‖ instead of the coordinates Ja .
The related symplectic structures on the coadjoint orbit S2r , where r = ‖J‖, are

w± = ±
1

r
dA, (28)

where dA is the volume form on the sphere. In terms of coordinates u, v the symplectic
structure on S2r is

w± = ±
1

r

√

det[guv]du ∧ dv, (29)

where [guv] is the matrix of the induced Riemannian metric on S2r by the Euclidean metric on
R
3. The canonical coordinates with respect to this symplectic structure are those that give

w± = ±du ∧ dv.

One possible choice to achieve this is [46]

J1 =
√

r2 − v2 cos u, J2 =
√

r2 − v2 sin u, J3 = v, (30)

where 0 6 u 6 2π, −r 6 v 6 r (see figure 1(a)). Let u, v be some canonical coordinates for
the positive signed symplectic structure w+ and qµ, pµ, 1 6 µ 6 3N − 6, be any choice of
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Figure 1. (u, v) coordinate lines on the angular momentum sphere for (a) the definition of (u, v)

in (30) and (b) the definition of (u, v) in (38).

shape coordinates and their conjugate momenta, respectively. In terms of these coordinates,
after relabelling u = q0, v = p0, and setting z = (zi) = (qi, pi), i = 0, . . . , 3N − 6, the
equations of motion read

żi = {zi, H } (31)

or equivalently

q̇i = ∂H/∂pi, ṗi = −∂H/∂qi (32)

for i = 0, . . . , 3N − 6, where the Poisson bracket on the reduced space has the standard form

{f, g} =
3N−6
∑

i=0

∂f

∂qi

∂g

∂pi

−
∂f

∂pi

∂g

∂qi

. (33)

This canonical form of the equations of motion has many advantages. Although the
coordinates pµ, µ = 1, . . . , 3N − 6, are gauge dependent, for examining the local behaviour
of the reduced system they can be used to study, for example, the stability of relative equilibria
[41, 42]. We will use the canonical equations of motion to construct the phase space structures
governing reaction type dynamics associated with saddle type relative equilbria in the reduced
system from a Poincaré–Birkhoff normal form in the same way as described in section 2.

Relative equilibria are trivial solutions of the equations ofmotion (26) or equivalently (32).
Using (26) one finds that the relative equilibria are the solutions of the reduced equations [42]

J × (M−1 · J) = 0, (34)

pµ = J · Aµ, (35)
∂

∂qµ

(J ·M−1 · J+V (q)) = 0. (36)

This implies that at relative equilibria the body angular momentum J is parallel to a principal
axis, i.e. the molecule is rotating about one of its principal axes. Using this fact the relative
equilibria can be found from the critical points of the effective potential

Veff(q) = J ·M−1 · J+V (q), (37)

whereJ is a fixed vector of a givenmodulus r parallel to a chosen principal axis. Some of these
relative equilibria are related to the equilibria of the system with zero angular momentum. In
fact for a triatomicmolecule without any discrete symmetries, six families of relative equilibria
are born out of any generic equilibrium if the modulus of the angular momentum is increased
from zero. Here ‘generic’ means that the rotations act on the equilibrium configuration freely
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(this excludes collinear configurations) [42]. We will follow this procedure to find relative
equilibria in the example given in section 5.2.

Given a relative equilibrium we can determine its (linear) stability using the equations of
motion (32). If the stability is of saddle type (as defined in the introduction) we can apply the
Poincaré–Birkhoff normal form procedure described in the appendix to the equations ofmotion
(32) in order to construct the phase structures governing reaction type dynamics as described
in section 2. To this end we note that (u, v) defined as in (30) are singular at the north pole and
south pole J = (0, 0, ±r) of the angular momentum sphere. The coordinates are therefore not
useful to study relative equilibria associated with rotations about the third principal axis [47].
In order to study these relative equilibria one can redefine (u, v) according to

J1 = v, J2 =
√

r2 − v2 sin u, J3 =
√

r2 − v2 cos u (38)

in which case the coordinate singularities are at the points J = (0, ±r, 0) on the angular
momentum sphere (see figure 1(b)).

5. Examples

In the following we illustrate the approach above for the limiting case of a rigid molecule and
the case of a triatomic molecule.

5.1. The limiting case of a rigid molecule

In the limiting case of a rigid molecule the internal degrees of freedom are frozen, i.e.
q̇µ = q̇µ = 0, 1 6 µ 6 3N − 6. In this case, one can neglect the potential in (25) and
the Hamiltonian reduces to

H = 1
2J ·M−1 · J (39)

which describes the free rotation of a rigid body. Choosing the body frame to coincide with
the principal axes, M (and its inverse M−1) becomes diagonal and (39) becomes

H =
1

2

(

J 21

M1
+

J 22

M2
+

J 23

M3

)

, (40)

whereM1,M2 andM3 are the principal moments of inertia. In this case the angular momentum
part of (26) become the classical Euler equations [15]. In terms of the coordinates (u, v) defined
in (30) these equations become

u̇ = ∂H/∂v, v̇ = −∂H/∂u. (41)

Here the role of v is seen to be that of a momentum conjugate to v but when we choose the
other symplectic form ω− = − 1

r
dA (see (28)), then the roles of u and v are reversed. If we

choose the coordinates (30), then the Hamiltonian becomes

H(u, v) =
1

2

(

(r2 − v2) cos2 u

M1
+

(r2 − v2) sin2 u

M2
+

v2

M3

)

.

So, by (41) the equations of motion are obtained to be

u̇ = −
v cos2 u

M1
−

v sin2 u

M2
+

v

M3
,

v̇ =
(r2 − v2) sin u cos u

M1
−

(r2 − v2) sin u cos u

M2
.
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u u

Figure 2. Contours of the reduced rigid body Hamiltonian in the (u, v) coordinate plane with
(u, v) defined according to (30) (a) and with (u, v) defined (38) (b). The energy increases from
light to dark shading. The bold lines and arrows indicate the eigenvectors and the corresponding
directions of the Hamiltonian flow for the saddles. The parameters areM1 = 1,M2 = 2,M3 = 3
and r = 1.

In the case of the Euler top where the moments of inertia are mutually different, i.e. where
we can assume without restriction thatM1 < M2 < M3, there are six relative equilibria given
by the points (±r, 0, 0), (0, ±r, 0) and (0, 0, ±r) on the J sphere. The dynamics near the
first two can be studied in terms of the coordinates (u, v) defined according to (30) where
they correspond to the points (0, 0) (for J = (r, 0, 0)), (π, 0) (for J = (−r, 0, 0)), (π/2, 0)
(for J = (0, r, 0)) and (3π/2, 0) (for J = (0, −r, 0)) (see figure 2(a)). The dynamics near
the relative equilibria J = (0, 0, ±r) (and again J = (0, ±r, 0)) can be studied in terms
of (u, v) defined according to (38) where they correspond to the points the points (0, 0) (for
J = (0, 0, r)), (π, 0) (for J = (0, 0, −r)), (π/2, 0) (for J = (0, r, 0)) and (3π/2, 0) (for
J = (0, −r, 0)) (see figure 2(b)). The reducedHamiltonian has localmaxima atJ = (±r, 0, 0)
which correspond to rotations in either direction about the principal axis with the smallest
moment of inertia, and minima at J = (0, 0, ±r) which correspond to rotations in either
direction about the principal axis with the largest moment of inertia. The rotations about the
principal axis with middle moment of inertia corresponding to J = (0, ±r, 0) are unstable.
The corresponding relative equilibria are of saddle type. The eigenvalues associated with the
linearized vector field are ±

√
M1M3(M2 − M1)(M3 − M2)/(M1M2M3). The eigenvectors

are shown in figure 2. Since the reduced rigid body motion has one degree of freedom
the reaction dynamics associated with these saddles is trivial (see the remarks at the end
of section 2.1). One can divide the phase space of the reduced system into the regions v < 0
and v > 0 in terms of the coordinates (30) or equivalently in the regions |u| < π/2 and
|u| > π/2 in terms of the coordinates (38) (where we used the periodicity of u in the last case;
see figure 2). For energies below r2/(2M2), which is the energy of the saddle, one cannot reach
one region from the other. For energies above r2/(2M2), however, this becomes possible.

5.2. Triatomic molecules: HCN

For a second example, we consider a triatomic molecule. We will use the so-called xxy gauge
and Dragt’s coordinates as follows [17]. Let x1, x3, x3 be the position vectors of 3 bodies in
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R
3. If mass-weighted Jacobi vectors s1, s2 are chosen as

s1 =
√

µ1(x1 − x3), s2 =
√

µ2

(

x2 −
m1x1 +m3x3

m1 +m3

)

, (42)

where

µ1 =
m1m3

m1 +m3
and µ2 =

m2(m1 +m3)

m1 +m2 +m3
(43)

are the reduced masses then the corresponding Jacobi coordinates (ρ1, ρ2, φ) are defined by

ρ1 = ‖s1‖, ρ2 = ‖s2‖, s1 · s2 = ρ1ρ2 cosφ,

where 0 6 φ 6 π . From the Jacobi coordinates one can define the coordinates

(w1, w2, w3) = (ρ21 − ρ22 , 2ρ1ρ2 cosφ, 2ρ1ρ2 sin φ), (44)

where w1, w2 ∈ R and w3 > 0. Dragt’s coordinates (ω, χ, ψ) are now polar coordinates in
the (w1, w2, w3) coordinate space:

(w1, w2, w3) = (ω cosχ cosψ, ω cosχ sinψ, ω sin χ), (45)

where ω > 0, 0 < χ 6 π/2, 0 6 ψ 6 2π. Note that ξ is the latitude, not the colatitude. The
inertia and metric tensors are diagonal in Dragt’s coordinates [17]:

M =









ω sin2
χ

2
0 0

0 ω cos2
χ

2
0

0 0 ω









(46)

and

[

gµν
]

=











4ω 0 0

0
4

ω
0

0 0
4

ω cos2 χ











. (47)

The gauge potential becomes

Aω = Aχ = (0, 0, 0), Aψ = (0, 0, − 1
2 sin χ). (48)

Hence, if the coordinates (30) are used then after relabelling u = q0, v = p0, ω = q1, χ =
q2, ψ = q3, the reduced Hamiltonian becomes

H(q, p) =
(r2 − p20) cos

2 q0

2q1 sin
2 q2

2

+
(r2 − p20) sin

2 q0

2q1 cos2
q2

2

+
p20

2q1
+ 2q1p

2
1 +

2p22
q1

+
(2p3 + p0 sin q2)

2

2q1 cos2 q2

+V (q1, q2, q3) ,

or if the coordinates (38) are used one has

H(q, p) =
p20

2q1 sin
2 q2

2

+
(r2 − p20) sin

2 q0

2q1 cos2
q2

2

+
(r2 − p20) cos

2 q0

2q1
+ 2q1p

2
1 +

2p22
q1

+
(2p3 +

√

r2 − p20 cos q0 sin q2)
2

2q1 cos2 q2
+ V (q1, q2, q3).

As a concrete example we consider the HCN molecule where we use the potential by
Murrell et al [48]. The molecule exists in the form of two isomers which correspond to the
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H

C N
φ

s

Figure 3. Definition of the Jacobi vectors s1 and s2 and the corresponding angle φ (see (42) and
(5.2)) for the HCN molecule. Carbon is associated with the first mass, nitrogen is associated with
the second mass and hydrogen is associated with the third mass.

collinear configurations HCN (hydrogen cyanide; the corresponding equilibrium has energy
−13.5914 eV) and CNH (hydrogen isocyanide; the corresponding equilibrium has energy
−13.1065 eV). For zero angular momentum, the reaction dynamics of the isomerization from
HCN to CNH or vice versa is induced by a saddle equilibrium point which corresponds to a
triangular (non-collinear) configuration (and has an energy of−12.0827 eV). The internuclear
distances corresponding to this saddle are

dCN = 1.1394Å, dCH = 1.1206Å, dNH = 1.4950Å. (49)

The eigenvalues of the matrix associated with the linearized vector field at this equilibrium
are ±589.31 i, ±418.69 i and ±213.08 (in units of inverse pico seconds) indicating that it is
of saddle× centre× centre stability type.

We assign the Dragt’s coordinates by identifying the first body with carbon, the second
body with nitrogen and the third body with hydrogen (see figure 3). The internuclear distances
are then given by

dCN =
1

√
2µ1

√
q1 + q1 cos q2 cos q3,

dCH =

√

µ1

2m2
1

(q1 + q1 cos q2 cos q3) +
1

2µ2
(q1 − q1 cos q2 cos q3) −

√
µ1

m1
√

µ2
q1 cos q2 sin q3,

dNH =

√

µ1

2m2
3

(q1 + q1 cos q2 cos q3) +
1

2µ2
(q1 − q1 cos q2 cos q3) +

√
µ1

m3
√

µ2
q1 cos q2 sin q3,

where m1, m2 and m3 are the masses of carbon, nitrogen and hydrogen, respectively, and µ1
and µ2 are the reduced masses defined according to (43). The internuclear distances can also
be viewed as coordinates on the shape space. The equipotential lines of the Murrell–Carter–
Halonen potential intersected with the plane dCN = 1.1394 (which contains the saddle) are
shown in figure 4(a). In figure 4(a) also the projection of the eigenvectors corresponding to
the real eigenvalues of the saddle are shown. Due to the time reversal symmetry of the system
without angular momentum they project to the same line.

For the zero angular momentum saddle, the moment of inertia tensor has the diagonal
elements [1.1645, 8.6470, 9.8115] (in the units of Å2×eV). Due to the similar masses of
carbon and nitrogen the values of the second and third moment of inertia are quite similar.
We consider the six relative equilibria resulting from this saddle as the modulus r of the
angular momentum is increased from zero (see section 4). Since the directions of rotations
about either principal axis are related by symmetry there are effectively three families. We
numerically compute these relative equilibria as a function of r from the critical points of the
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Figure 4. Potential energy lines (grey) of the Murrell et al [48] HCN potential in the section
dCN = 1.1394Å together with (a) the projection of the real eigenvectors of the saddle equilibrium
of the system with vanishing angular momentum and (b) the path traced by the relative equilibrium
under variation of r projected to this plane for rotations about the first (full line), second (dashed
line) and third (dotted line) principal axis.
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Figure 5. Energies of the relative equilibria as a function of the modulus of the angular momentum
r . The energy is measured in eV and r is measured in units of h̄. For fixed r , the relative equilibrium
involving rotations about the principal axis with smallest (highest) moment of inertia has highest
(smallest) energy.

effective potential Veff(q1, q2, q3) in (37) where the angular momentum J is (r, 0, 0), (0, r, 0)
or (0, 0, r), respectively, using a Newton procedure. We show the energies of these relative
equilibria as a function of r in figure 5. Since for a rigid body the rotation about the principal
axis with middle moment of inertia is unstable, it is to be expected that, at least for small
values of r , the two relative equilibria involving rotations about the first and the third principal
axis are saddle × centre × centre × centres and the relative equilibrium involving rotations
about the second principal axis is a saddle× saddle× centre× centre (which has two pairs of
real eigenvalues and two complex conjugate pairs of imaginary eigenvalues). Linearizing the
vector fields at the relative equilibria we find that this is indeed the case. In figure 6 we show
the disposition of the eigenvalues in the complex plane as a function of r for the three cases.
For r → 0, the eigenvalues reduce in each case to the eigenvalues of the equilibrium in the
system without angular momentum plus a double eigenvalue at zero.
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Figure 6. Paths traced by the eigenvalues (in units of inverse pico seconds) of the linearized vector
fields as the modulus of the angular momentum r is varied for rotations about the first principal
axis (left panel), the second principal axis (middle panel) and the third principal axis (right panel).
The ranges for r are about the same as in figure 5.

Figure 4 shows the projections of the paths traced by the relative equilibria under variation
of r to the (dCH, dNH) plane. One finds that in this projection the relative equilibrium
corresponding to rotations about the first principal axis is moving much faster than the other
two relative equilibria as r is varied. Note that the position of the relative equilibria on the
angular momentum sphere does not change under variation of r .

The saddle type relative equilibria corresponding to rotations about the first and the third
principal axis induce reaction type dynamics. The dynamics and its physical implications
will be discussed in another publication. We here restrict ourselves to a brief discussion
of the reaction paths in the limit where the energy approaches the energy of the relative
equilibrium from above (see the discussion in section 2). In this limit the reaction paths reduce
to the one-dimensional stable and unstable manifolds of the relative equilibria. At the relative
equilibria these lines are tangent to the eigenvectors corresponding to the real eigenvalues
of the linearization of the reduced system. We therefore show pictures of the pairs of real
eigenvectors of the relative equilibria in figure 7. For the rotation about the first principal
axis, the projections of the eigenvectors corresponding to positive and negative eigenvalues to
the (dCH, dNH) plane are almost identical (similar to the angular momentum zero case). Their
projections to the (u, v) plane, however, are quite different (see figures 7(a) and (b)). As the
example indicates the relative equilibrium (in its projection to the shape space) might be quite
far away from the position of the corresponding equilibrium of the system without angular
momentum, and hence the reaction paths change quite considerably as a function of r . In the
case of rotations about the third principal axis the projections of the eigenvectors of the two
real eigenvalues to the (dCH, dNH) plane are quite different whereas their projections to the
(u, v) plane is zero. The reason for the latter is related to the fact that in the case of rotation
about the third principal axis the motion is planar (in the xxy gauge we are using the angular
momentum vector is perpendicular to the plane spanned by the three bodies for rotations about
the third principal axis). In figure 8 a piece of a trajectory reacting from HCN to CNH through
the bottleneck induced by the relative equilibrium involving rotations about the third principal
axis is shown. The trajectory has an angular momentum of modulus r = 50 h̄ and an energy
of about 0.003 eV above the energy of the relative equilibrium. As indicated in figure 8(a)
the Jacobi angle φ for the first part of the trajectory is oscillating between zero and about 1
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Figure 7. Saddle type relative equilibria and the corresponding real eigenvectors projected to
the (u, v) plane and (dCH, dNH) plane, respectively for rotations about the first principal axis with
r = 33.5 h̄ ((a) and (b)), and for rotations about the third principal axis with r = 50 h̄ ((c) and (d)).

which corresponds to rotational-vibrational motion of an HCN isomer (see figure 3) whereas
after the isomerization reaction at about 0.5 ps the Jacobi angle φ is oscillating between about
1 and π which corresponds to the rotational-vibrational motion as a CNH isomer. Figure 8(b)
shows the projection of the same piece of the trajectory to the (dCH, dNH) plane. One again sees
the rotational-vibrational motion of the two isomers and the single transition between them.
The inset in figure 8(b) shows the trajectory in the neighbourhood of relative equilibrium
together with the real eigenvectors corresponding to the reaction in the direction from HCN to
CNH. Note that the relatively small energy of 0.003 eV about the energy of the saddle relative
equilibrium is still high enough to see oscillations transverse to the reaction path.

6. Conclusions and outlook

In this paper, we gave an explicit formalism to locally construct canonical coordinates in
rotational symmetry reduced N -body systems. This allows one to study relative equilibria in
such systems and use Poincaré–Birkhoff normal form to determine the phase space structures
that govern reaction type dynamics near relative equilibria of saddle stability type. We briefly
illustrated the formalism by applying it to the saddle relative equilibria which induce the
isomerization reaction dynamics of HCN/CNH with rotation. Here, we restricted ourselves
to the study of the reaction paths near the saddle relative equilibria. A more detailed study
of the isomerization dynamics which includes a Poincaré–Birkhoff normal computation will
be presented elsewhere. As an outlook we give a short list of open questions and future
directions related to the work presented in this paper. A question that we did not discuss is
the reconstruction problem, i.e. the study of what the corresponding motions of the reduced
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Figure 8. Piece of a reactive trajectory passing from HCN to CNH for r = 50 h̄ shown (a) as
the Jacobi coordinate φ versus time t (in pico seconds) and (b) in the projection to the (dCH, dNH)

plane. The inset in (b) shows a magnification of the part of the trajectory as it passes near the saddle
relative equilibrium in figure 7(d). The trajectory has an energy of about −11.5498 eV.

system are in the full original system. In particular, from the perspective of reaction dynamics
this is an interesting and important problem. The formalism introduced in this paper is not
restricted to the study of relative equilibria of saddle type. Recently also the relevance of
higher rank saddles for reaction type dynamics has been studied [49, 50]. In the HCN/CNH
isomerization problem with angular momentum a saddle × saddle × centre × centre relative
equilibrium (and its symmetric partner) is given by the rotation about the principal axis with
the middle moment of inertia (and the two directions of rotation). Interestingly, for a fixed
value of the modulus of the angular momentum, these rank 2 saddle relative equilibria are quite
close in energy to the saddle relative equilibria corresponding to motion about the principal
axis with the largest moment of inertia (see figure 5). It would be interesting to study the
interplay between the phase space structures associated with the rank two saddles and usual
saddles and their influence on the global dynamics. In [51–53] (see also [54]) a procedure
based on transition state theory to determine the microcanonical volume of initial conditions
that lead to reactive trajectories has been introduced. The formalism presented in this paper
allows one to study such reactive volumes for rotational symmetry reduced systems. An
interesting question for applications would be to study how this reactive volume changes
when the modulus of the angular momentum is varied. The formalism presented in this
paper at first only applies to relative equilibria of non-collinear configurations. We remark
however that it can be quite simply adapted to also include collinear configurations. For
this purpose, one can consider the Hamiltonian and coordinates in [42] and choose suitable
coordinates in place of the angular momentum. In this paper we did not discuss the quantum
reaction dynamics of rotating molecules. In [12, 55] the Weyl symbol calculus has been
used to develop a quantum mechanical analogue of the Poincaré–Birkhoff normal form which
provides an efficient procedure to compute quantum reaction rates and the related Gamov–
Siegert resonances. The same procedure can, in principle, also be applied to the relative
equilibria of rotational symmetry reduced molecules. However, the reduction of the quantum
N -body system has some differences to the classical case. For example, for the quantum
three-body problem one can separate rotations and vibrations whereas this is not possible in the
classical case [56]. It would be very interesting to study the quantum reduction problem from
the perspective of reaction dynamics. Finally we mention that shortly before the submission
of our paper a related paper on the phase space structures governing reactions in rotating
molecules was published [57]. That approach is based on a rovibrational Hamiltonian and its
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Taylor expansion about a critical point of the potential using a rigid body approximation which
is different from the approach in this paper where we start from an expansion about a relative
equilibrium. Also the normalization procedure in [57] is different and in particular treats the
body angular momentum in a non-canonical manner. It would be interesting to compare the
two approaches.

Acknowledgments
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Appendix. The normal form algorithm

Here we describe the algorithm to compute the Poincaré–Birkhoff normal form in the
neighbourhood of a saddle equilibrium point of the form described in section 2.2. The
implementation of this algorithm in a computer program is freely available [58].

Let H2 denote the quadratic Hamiltonian which gives the linearized Hamiltonian vector
field at the saddle. One says that a Hamiltonian H is in normal form if H Poisson commutes
with its quadratic part, i.e.

{H2, H } :=
f

∑

k=1

(

∂H2

∂qk

∂H

∂pk

−
∂H

∂qk

∂H2

∂pk

)

= 0. (50)

In generalH is not in normal form. However, for any given order n0 of the Taylor expansion of
H one can find a symplectic transformation to new phase space coordinates in terms of which
the transformed H truncated at order n0 is in normal form. This symplectic transformation is
constructed from a sequence of the form

(qi, pi) ≡ z ≡ z(0) 7→ z(1) 7→ z(2) 7→ z(3) 7→ · · · 7→ z(n0), (51)

where z(n) is obtained from z(n−1) by means of a symplectic transformation

z(n−1) 7→ z(n) = φWn
z(n−1). (52)

generated by a polynomialWn(z) of order n, i.e.

Wn ∈ W
n := span{qα1

1 . . . q
αf

f p
β1
1 . . . p

βf

f : |α| + |β| = n}. (53)

Here |α| =
∑f

k=1 αk , |β| =
∑f

k=1 βk . More precisely, the φWn
in (52) denote the time-one

maps of the flows generated by the Hamiltonian vector fields corresponding to the polynomials
Wn (see [12] for the details). The maximum order n0 in (51) is the desired order of accuracy
at which the expansion will be terminated and truncated.

Expressing theHamiltonianH in the coordinatesz(n), n = 1, . . . , n0, weobtain a sequence
of Hamiltonians H (n),

H ≡ H (0) → H (1) → H (2) → H (3) → · · · → H (n0), (54)

where for n = 1, . . . , n0, H (n)(z(n)) = H (n−1)(z(n−1)) = H (n−1)(φ−1
Wn

z(n)), i.e.

H (n) = H (n−1) ◦ φ−1
Wn

. (55)

To avoid a proliferation of notation we will in the following neglect the superscripts (n) for
the phase space coordinates.
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In the first transformation in (51) we shift the equilibrium point z0 to the origin, i.e.
z 7→ φW1(z) := z − z0. This gives

H (1)(z) = H (0)(z + z0). (56)

The next steps of the normal form procedure rely on the power series expansions of H (n),

H (n)(z) = E0 +
∞

∑

s=2

H (n)
s (z), (57)

where the H (n)
s are homogenous polynomials inW

n:

H (n)
s (z) =

∑

|α|+|β|=s

H
(n)
α1,...,αf ,β1,...,βf

α1! . . . αf !β1! . . . βf !
q

α1
1 . . . q

αf

f p
β1
1 . . . p

βf

f . (58)

For n = 1, the coefficients in (58) are given by the Taylor expansion of H (1) about the origin.

H
(1)
α1,...,αf ,β1,...,βf

=
f

∏

k,l=1

∂αk

∂q
αk

k

∂βl

∂p
βl

l

H (1)(z)

∣

∣

∣

∣

z=0

. (59)

For n > 3, the coefficients in (58) are obtained recursively. For n = 2, i.e. the second step
in the sequence of transformations (51), the coefficients in (58) are determined by a linear
transformation of the phase space coordinates according to

z 7→ φW2(z) := M z. (60)

Here,M is a symplectic 2f × 2f matrix which is chosen in such a way that the transformed
Hamiltonian function

H (2)(z) = H (1)(M−1z) (61)

assumes the same form as in (1). Section 2.3 of [12] provides an explicit procedure for
constructing the transformation matrixM .

For the first two steps in the sequence (51), we actually did not give explicit expressions
for the generating functionsW1 andW2. For conceptual reasons (and to justify the notation) it
is worth mentioning that such expression can be determined (see [12]). The next steps in (51)
though rely on the explicit computation of the generating functions Wn with n > 3. To this
end it is convenient to introduce the adjoint operator associated with a phase space functionA:

adA : B 7→ adAB ≡ {A, B}. (62)

The transformation (52) then leads to a transformation of the Hamilton functionH (n−1) toH (n)

with n > 3 which in terms of the adjoint operator reads

H (n) =
∞

∑

k=0

1

k!
[adWn

]kH (n−1). (63)

In terms of the Taylor expansion defined in equations (57)–(59) the transformation introduced
by equation (63) reads

H (n)
s =

b s
n−2 c
∑

k=0

1

k!
[adWn

]kH (n−1)
s−k(n−2), (64)

where b·c gives the integer part of a number, i.e., the ‘floor’-function.
Using equation (64) one finds that the transformation defined by (63) satisfies the following

important properties for n > 3. Firstly, at step n, n > 3, the terms of order less than n in the
power series of the Hamiltonian are unchanged, i.e.

H (n)
s = H (n−1)

s , for s < n, (65)
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so that, in particular, H (n)
2 = H

(2)
2 . Defining

D ≡ ad
H

(2)
2

= {H (2)
2 , ·} (66)

we obtain for the term of order n,

H (n)
n = H (n−1)

n − DWn. (67)

This is the so-called homological equation which will determine the generating functionsWn

for n > 3 from requiring DH (n)
n = 0, or equivalentlyH (n)

n to be in the kernel of the restriction
of D toW

n. In view of (67) this condition yields

H (n−1)
n − DWn ∈ KerD|Wn . (68)

Section 3.4.1 of [12] provides the explicit procedure of finding the solution of equation (68). In
the generic situation where the linear frequenciesω2, . . . , ωf in (1) are rationally independent,
i.e.m2ω2+ · · ·+mf ωf = 0 impliesm2 = . . . = mf = 0 for all integersm2, . . . , mf , it follows
that for odd n, H (n)

n = 0, and for even n,

H (n)
n ∈ span

{

I
α1I

α2
2 I

α3
3 . . . I

αf

f : |α| = n/2
}

, (69)

where I = (p21 − q21 )/2 and Ik = (q2k + p2k)/2, with k = 2, . . . , f .
Applying the transformation (63), with the generating function defined by (67), for

n = 3, . . . , n0, and truncating the resulting power series at order n0 one arrives at the
Hamiltonian H

(n0)
NF corresponding to the nth0 order normal form (NF) of the Hamiltonian H :

H
(n0)
NF (z) = E0 +

n0
∑

s=2

H (n0)
s (z). (70)

We stress that H
(n0)
NF represents an nth0 order approximation of the original Hamiltonian H

obtained from expressing H in terms of the normal form coordinates zNF which in turn are
obtained from the symplectic transformation of the original coordinates z = (qi, pi)

zNF = φ(z) = (φWn0
◦ φWn0−1

◦ · · · ◦ φW2 ◦ φW1)(z). (71)

This is why it is legitimate to use H
(n0)
NF instead of H in analysing the dynamics in the

neighbourhood of the saddle.
We emphasize that the full procedure to computeH

(n0)
NF and the corresponding coordinate

transformation is algebraic in nature, and can be implemented on a computer. A computer
program is freely available from [58].
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