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Abstract. In this work, we investigate a linear completely nonhomogeneous nonlo-
cal multipoint problem for an m-order ordinary differential equation with generally
variable nonsmooth coefficients satisfying some general properties such as p-integra-
bility and boundedness. A system of m + 1 integro-algebraic equations called the
special adjoint system is constructed for this problem. Green’s functional is a so-
lution of this special adjoint system. Its first component corresponds to Green’s
function for the problem. The other components correspond to the unit effects of the
conditions. A solution to the problem is an integral representation which is based on
using this new Green’s functional. Some illustrative implementations and compar-
isons are provided with some known results in order to demonstrate the advantages
of the proposed approach.
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1 Introduction

Linear nonhomogeneous boundary value problems for an ordinary differential
equation with generally variable coefficients involving nonlocal multipoint con-
ditions of derivative or integral type arise in applied mathematics, physics,
engineering and the various areas of mechanics such as theories of elasticity,
elastic stability, plates and shells [28]. For example, the vibrations of wires and
bridges composed of many parts of different densities can mathematically be
modeled by such problems. Therefore, some demands and requirements for the
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construction of a solution to these problems in such areas make linear opera-
tor theory and generalized functions’ theory valuable in mathematical analysis.
Green’s solution for such problems is an analytical solution which is principally
based on these theories of mathematical analysis [14, 16, 24, 25].

The existence and uniqueness of solutions to nonlocal multipoint problems
for an m-order ordinary differential equation have been studied in [9, 10, 15].
Green’s function is a helpful tool for determining the existence and uniqueness
of solutions to boundary value problems. Its construction for problems involv-
ing nonclassical conditions is an area which is recently improved. The problems
in [4, 17, 18, 20, 21, 22, 23, 27] can be considered as relevant and valuable ex-
amples in this area. On the other hand, in [26], a second-order Sturm-Liouville
problem with two nonlocal boundary conditions has been investigated and the
condition for existence Green’s function in the space of parameters has been
obtained.

Some classical methods exist in literature to construct Green’s function.
However, these methods can cause serious difficulties in a problem, concen-
trated by this work, in case of existence of nonsmooth coefficients and non-
classical conditions, or in case of nonexistence of formal adjoint operator for
the equation’s operator, or in case of existence of any extension for the equa-
tion’s operator only on a space of distributions. In order to minimize these
difficulties, in this work, a representative solution to a linear completely non-
homogeneous nonlocal multipoint problem for an m-order ordinary differential
equation with generally variable nonsmooth coefficients satisfying some gen-
eral properties such as p-integrability and boundedness is constructed by using
Green’s functional approach [5]. This approach is based on [1, 2, 6] and some
methods of functional analysis, and it is principally different from the classi-
cal methods [25]. A special adjoint system corresponding to the problem is
constructed in accordance with this approach. The structure of this system
depends on the operators not on the homogeneity in the problem. Fredholm
alternative is utilized for derivation of solvability conditions of the problem.

Another useful analytical method which minimizes these difficulties on the
construction of Green’s function is based on variation of parameters for ordinary
differential equations [29]. Green’s functions for some nonlocal problems have
been obtained by using this method in [20, 21, 22, 27]. But, an investigation
extended to an m-order ordinary differential equation in these four papers does
not exist except for [20] in which an extension to the problem involving nonlocal
and local conditions of two Samarskii-Bitsadze-type and m − 2 classical-type
has been presented. Therefore, in our work, we principally aim to extend
the approach in [5, 6] to an m-order linear ordinary differential equation with
complicated nonlocal boundary conditions in order to construct its Green’s
solution.

The rest of our work is organized as follows: In Section 2, the main problem
considered throughout the work is stated in detail. In Sections 3 and 4, the
adjoint space of the solution space and the adjoint system of integro-algebraic
equations are introduced respectively. In Section 5, the solvability conditions
for the completely nonhomogeneous problem are concentrated. In Section 6,
Green’s functional and the special adjoint system are defined. In Section 7,
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some applications and comparisons are provided. In Section 8, the conclusions
and some advantages are emphasized.

2 Statement of the Problem

Let R be the set of real numbers. Let G = (x0, x1) be a bounded open interval
in R. Let Lp(G) with 1 ≤ p <∞ be the space of p-integrable functions on G.
Let L∞(G) be the space of measurable and essentially bounded functions on G,

and let W
(m)
p (G) with 1 ≤ p ≤ ∞ be the space of all functions u = u(x) ∈

Lp(G) having derivatives dku/dxk ∈ Lp(G), where k = 1, 2, . . . ,m. The norm

on the space W
(m)
p (G) is defined as

‖u‖
W

(m)
p (G)

=

m∑
k=0

∥∥∥∥dkudxk

∥∥∥∥
Lp(G)

.

The other structural properties of the space Wp = W
(m)
p (G) are given in the

next sections. We consider the nonlocal multipoint boundary value problem
which can be transformed into the m-order linear ordinary differential equation

(Vmu)(x) ≡ u(m)(x) +

m−1∑
i=0

Ai(x)u(i)(x) = zm(x), x ∈ G, (2.1)

subject to the following generally nonlocal boundary conditions

Vm−1u ≡
m−1∑
i=0

aim−1u
(i)(x0) +

∫ x1

x0

gm−1(ξ)u(m)(ξ) dξ = zm−1,

Vm−2u ≡
m−1∑
i=0

aim−2u
(i)(x0) +

∫ x1

x0

gm−2(ξ)u(m)(ξ) dξ = zm−2,

· · ·

V1u ≡
m−1∑
i=0

ai1u
(i)(x0) +

∫ x1

x0

g1(ξ)u(m)(ξ) dξ = z1,

V0u ≡
m−1∑
i=0

ai0u
(i)(x0) +

∫ x1

x0

g0(ξ)u(m)(ξ) dξ = z0, (2.2)

where u(j) denotes the derivative of order j for u with respect to its vari-
able and u(0) = u. We investigate a solution, which is given as an integral
representation, to problem (2.1)–(2.2) in the space Wp. Furthermore, we as-
sume that the following conditions are satisfied: Ai ∈ Lp(G) and gi ∈ Lq(G)
for i = 0, 1, . . . ,m − 1 are given functions; aim−1, a

i
m−2, . . . , a

i
1, a

i
0 for i =

0, 1, . . . ,m − 1 are given real numbers; zm ∈ Lp(G) is a given function and
zi for i = 0, 1, . . . ,m− 1 are given real numbers.

Problem (2.1)–(2.2) is a linear completely nonhomogeneous problem which
can be considered as an operator equation:

V u = z, (2.3)
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with the linear operator V = (Vm, Vm−1, . . . , V0) and z = (zm(x), zm−1, . . . , z0).
The conditions given above guarantee that V is bounded from Wp into the

Banach space
Ep ≡ Lp(G)× R× · · · × R︸ ︷︷ ︸

m times

of (m+ 1)-tuples z = (zm(x), zm−1, . . . , z0) with

‖z‖Ep
= ‖zm‖Lp(G) + |zm−1|+ · · ·+ |z0|, 1 ≤ p ≤ ∞.

If, for a given z ∈ Ep, the problem (2.1)–(2.2) has a unique solution u ∈ Wp

with ‖u‖Wp
≤ c0‖z‖Ep

, then this problem is called a well-posed problem, where
c0 is a constant independent of z. Problem (2.1)–(2.2) is well-posed if and only
if V : Wp → Ep is a (linear) homeomorphism.

3 Adjoint Space of the Solution Space

Problem (2.1)–(2.2) is investigated by means of a new concept of the adjoint
problem. This concept is introduced in the papers [2, 6] by the adjoint oper-
ator V ∗ of V . Furthermore, some isomorphic decompositions of the space Wp

of solutions and its adjoint space W ∗p are employed. Any function u ∈Wp can
be represented as

u(x) =

m−1∑
i=0

u(i)(α)
(x− α)i

i!
+

∫ x

α

(x− ξ)m−1

(m− 1)!
u(m)(ξ) dξ, (3.1)

where α is a given point in G which is the set of closure points for G. Fur-
thermore, the trace or value operators D0u = u(γ), D1u = u′(γ), . . . , Dm−1u =
u(m−1)(γ) are bounded and surjective from Wp onto R for a given point γ of G.
In addition, the values u(α), u′(α), . . . , u(m−1)(α) and the derivative u(m)(x)
are unrelated elements of the function u ∈ Wp in the following sense: for any
real numbers ν0, ν1, . . . , νm−1 and any function νm ∈ Lp(G), there exists one
and only one u ∈ Wp such that u(α) = ν0, u

′(α) = ν1, . . . , u
(m−1)(α) = νm−1

and u(m)(x) = νm(x). Therefore, there exists a linear homeomorphism between
Wp and Ep. In other words, the space Wp has the isomorphic decomposition

Wp = Lp(G)× R× · · · × R︸ ︷︷ ︸
m times

.

Theorem 1. If 1 ≤ p < ∞, then any linear bounded functional F ∈ W ∗p can
be represented as

F (u) =

∫ x1

x0

u(m)(x)ϕm(x) dx+

m−1∑
i=0

u(i)(x0)ϕi (3.2)

with a unique element ϕ = (ϕm(x), ϕm−1, ϕm−2, . . . , ϕ0) ∈ Eq where p+q = pq.
Any linear bounded functional F ∈W ∗∞ can be represented as

F (u) =

∫ x1

x0

u(m)(x) dϕm +

m−1∑
i=0

u(i)(x0)ϕi (3.3)
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with a unique element ϕ = (ϕm(e), ϕm−1, ϕm−2, . . . , ϕ0) ∈ Ê1 = (BA(
∑
, µ))×

R × · · · × R where µ is the Lebesgue measure on R,
∑

is σ-algebra of the µ-
measurable subsets e ⊂ G and BA(

∑
, µ) is the space of all bounded additive

functions ϕm(e) defined on
∑

with ϕm(e) = 0 when µ(e) = 0 [12]. The inverse
is also valid, that is, if ϕ ∈ Eq, then (3.2) is bounded on Wp for 1 ≤ p < ∞
and p+ q = pq. If ϕ ∈ Ê1, then (3.3) is bounded on W∞.

Proof. The operator Nu ≡ (u(m)(x), u(m−1)(x0), . . . , u(x0)) : Wp → Ep is
bounded and has a bounded inverse N−1 represented by

u(x) =
(
N−1h

)
(x) ≡

∫ x

x0

(x− ξ)m−1

(m− 1)!
hm(ξ) dξ +

m−1∑
i=0

hi
(x− x0)i

i!
,

h =
(
hm(x), hm−1, . . . , h0

)
∈ Ep. (3.4)

The kernel KerN of N is trivial and the image ImN of N is equal to Ep.
Hence, there exists a bounded adjoint operator N∗ : E∗p →W ∗p with KerN∗ =
{0} and ImN∗ = W ∗p . In other words, for a given F ∈W ∗p there exists a unique
ψ ∈ E∗p such that

F = N∗ψ or F (u) = ψ(Nu), u ∈Wp. (3.5)

If 1 ≤ p <∞, then E∗p = Eq in the sense of an isomorphism [12]. Therefore,
the functional ψ can be represented by

ψ(h) =

∫ x1

x0

ϕm(x)hm(x) dx+

m−1∑
i=0

ϕihi, h ∈ Ep, (3.6)

with a unique element ϕ = (ϕm(x), ϕm−1, . . . , ϕ0) ∈ Eq. By expressions (3.5)
and (3.6), any F ∈ W ∗p can uniquely be represented by (3.2). For a given
ϕ ∈ Eq, the functional F represented by (3.2) is bounded on Wp. Hence,
(3.2) is a general form for the functional F ∈W ∗p .

The proof for the case p =∞ can be shown similarly. ut

Theorem 1 guarantees that W ∗p = Eq for all 1 ≤ p < ∞, and W ∗∞ =

E∗∞ = Ê1. The space E1 can also be considered as a subspace of the space Ê1.

4 Adjoint System of Integro-Algebraic Equations

Investigating an explicit form for the adjoint operator V ∗ of V is taken into
consideration in this section. To this end, any f = (fm(x), fm−1, . . . , f0) ∈ Eq
is taken as a linear bounded functional on Ep and also

f(V u) ≡
∫ x1

x0

fm(x)(Vmu)(x) dx+

m−1∑
i=0

fi(Viu), u ∈Wp, (4.1)

Math. Model. Anal., 17(4):571–588, 2012.
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can be supposed. By substituting expressions (2.1) and (2.2), and expres-
sion (3.1) (for α = x0) of u ∈Wp into (4.1), we have

f(V u) ≡
x1∫
x0

fm(x)

[
u(m)(x) +Am−1(x)

{
u(m−1)(x0) +

∫ x

x0

u(m)(ξ) dξ
}

+Am−2(x)
{
u(m−2)(x0) + u(m−1)(x0)(x− x0) +

∫ x

x0

(x− ξ)u(m)(ξ) dξ
}

+ · · ·+A1(x)

{
m−1∑
i=1

u(i)(x0)
(x− x0)i−1

(i− 1)!
+

∫ x

x0

(x− ξ)m−2

(m− 2)!
u(m)(ξ) dξ

}

+A0(x)

{
m−1∑
i=0

u(i)(x0)
(x− x0)i

i!
+

∫ x

x0

(x− ξ)m−1

(m− 1)!
u(m)(ξ) dξ

}]
dx

+

m−1∑
i=0

fi


m−1∑
j=0

ajiu
(j)(x0) +

∫ x1

x0

gi(ξ)u
(m)(ξ) dξ

 . (4.2)

After some arrangements, we can obtain

f(V u) ≡
∫ x1

x0

fm(x)(Vmu)(x) dx+

m−1∑
i=0

fi(Viu)

=

∫ x1

x0

(wmf)(ξ)u(m)(ξ) dξ +

m−1∑
i=0

(wif)u(i)(x0)

≡ (wf)(u), ∀f ∈ Eq, ∀u ∈Wp, 1 ≤ p ≤ ∞, (4.3)

where

(wmf)(ξ) = fm(ξ) +

m−1∑
j=0

fjgj(ξ) +

∫ x1

ξ

fm(s)

{
m−1∑
i=0

Ai(s)
(s− ξ)m−1−i

(m− 1− i)!

}
ds,

wlf=

m−1∑
j=0

fja
l
j+

∫ x1

x0

fm(s)

{
l∑
i=0

Ai(s)
(s−x0)l−i

(l − i)!

}
ds, l = 0, 1, . . . ,m−1. (4.4)

The operators wm, wm−1, . . . , w0 are linear and bounded from the space Eq
of (m+ 1)-tuples f = (fm(x), fm−1, . . . , f0) into the spaces Lq(G),R,R, . . . ,R
respectively. Therefore, the operator w = (wm, wm−1, . . . , w0) : Eq → Eq
represented by wf = (wmf, wm−1f, . . . , w0f) is linear and bounded. By (4.3)
and Theorem 1, the operator w is an adjoint operator for the operator V
when 1 ≤ p < ∞, in other words, V ∗ = w. When p = ∞, w : E1 → E1 is
bounded; in this case, the operator w is the restriction of the adjoint operator
V ∗ : E∗∞ →W ∗∞ of V onto E1 ⊂ E∗∞.

(2.3) can be reduced to the following equivalent equation

V Sh = z, (4.5)
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with an unknown h = (hm, hm−1, . . . , h0) ∈ Ep by the transformation u = Sh
where S = N−1. If u = Sh, then u(m)(x) = hm(x), u(m−1)(x0) = hm−1,
u(m−2)(x0) = hm−2, . . . , u(x0) = h0. Hence, (4.3) can be rewritten as

f(V Sh) ≡
∫ x1

x0

fm(x)(VmSh)(x) dx+

m−1∑
i=0

fi(ViSh)

=

∫ x1

x0

(wmf)(ξ)hm(ξ) dξ +

m−1∑
i=0

(wif)hi

≡ (wf)(h), ∀f ∈ Eq, ∀h ∈ Ep, 1 ≤ p ≤ ∞. (4.6)

Therefore, one of the operators V S and w becomes an adjoint operator for the
other one. Consequently, the equation

wf = ϕ, (4.7)

with an unknown function f = (fm(x), fm−1, . . . , f1, f0) ∈ Eq and a given
function ϕ = (ϕm(x), ϕm−1, . . . , ϕ1, ϕ0) ∈ Eq can be considered as an adjoint
equation of (4.5) (or of (2.3)) for all 1 ≤ p ≤ ∞. (4.7) can be written in explicit
form as the system of equations

(wmf)(ξ) = ϕm(ξ), ξ ∈ G,
wm−1f = ϕm−1, · · · w0f = ϕ0. (4.8)

By the expressions (4.4), the first equation in (4.8) is an integral equation for
fm(ξ) and includes fm−1, fm−2, . . . , f0 as parameters; on the other hand, the
other equations in (4.8) constitute a system of m algebraic equations for the
unknowns fm−1, fm−2, . . . , f0 and they include some integral functionals de-
fined on fm(ξ). In other words, (4.8) is a system of m + 1 integro-algebraic
equations. This system called the adjoint system for (4.5) (or (2.3)) is con-
structed by using (4.3) which is actually a formula of integration by parts in
a nonclassical form. The traditional type of an adjoint problem is defined by
the classical Green’s formula of integration by parts [25], therefore, has a sense
only for some restricted class of problems.

5 Solvability Conditions for Completely Nonhomogene-
ous Problem

The operator Q = w− Iq is considered where Iq is the identity operator on Eq,
i.e. Iqf = f for all f ∈ Eq. This operator can also be defined as Q =
(Qm, Qm−1, . . . , Q0) with

(Qmf)(ξ) = (wmf)(ξ)− fm(ξ), ξ ∈ G,
Qif = wif − fi, i = 0, 1, . . . ,m− 1. (5.1)

By the expressions (4.4) and the conditions imposed on Ai and gi for i =
0, 1, . . . ,m− 1, Qm : Eq → Lq(G) is a compact operator, and also Qi : Eq → R

Math. Model. Anal., 17(4):571–588, 2012.
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for i = 0, 1, . . . ,m − 1 are compact operators where 1 < p < ∞. That is,
Q : Eq → Eq is a compact operator, and therefore has a compact adjoint op-
erator Q∗ : Ep → Ep. Since w = Q + Iq and V S = Q∗ + Ip, where Ip = I∗q ,
(4.5) and (4.7) are canonical Fredholm type equations, and S is a right regu-
larizer of (2.3) [13]. Consequently, we have the following theorem:

Theorem 2. If 1 < p <∞, then V u = 0 has either only the trivial solution or
a finite number of linearly independent solutions in Wp:

(1) If V u = 0 has only the trivial solution in Wp, then also wf = 0 has
only the trivial solution in Eq. Then, the operators V : Wp → Ep and
w : Eq → Eq become linear homeomorphisms.

(2) If V u = 0 has n linearly independent solutions u1, u2, . . . , un in Wp, then
wf = 0 has also n linearly independent solutions

f?1?=
(
f?1?m (x),f?1?m−1, . . . , f

?1?
0

)
, . . . , f?n?=

(
f?n?m (x), f?n?m−1, . . . , f

?n?
0

)
in Eq. In this case, (2.3) and (4.7) have solutions u ∈ Wp and f ∈ Eq
for given z ∈ Ep and ϕ ∈ Eq if and only if the conditions∫ x1

x0

f?i?m (ξ)zm(ξ) dξ +

m−1∑
j=0

f?i?j zj = 0, i = 1, 2, . . . , n, (5.2)

∫ x1

x0

ϕm(ξ)u
(m)
i (ξ) dξ +

m−1∑
j=0

ϕju
(j)
i (x0) = 0, i = 1, 2, . . . , n (5.3)

are satisfied, respectively.

6 Green’s Functional and the Special Adjoint System

Consider the following equation given in the form of a functional identity

(wf)(u) = u(x), ∀u ∈Wp, (6.1)

where f = (fm(ξ), fm−1, fm−2, . . . , f0) ∈ Eq is an unknown (m+ 1)-tuple and
x ∈ G is a parameter.

Definition 1. Suppose that f(x) = (fm(ξ, x), fm−1(x), fm−2(x), . . . , f0(x)) ∈
Eq is a (m+ 1)-tuple with parameter x ∈ G. If f = f(x) is a solution of (6.1)
for a given x ∈ G, then f(x) is called a Green’s functional of V (or of (2.3)).

Since the operator IWp,C of the imbedding of Wp into the space C(G) of

continuous functions on G is bounded, the linear functional θ(x) defined by
θ(x)(u) = u(x) is bounded on Wp for a given x ∈ G. On the other hand,
(wf)(u) = (V ∗f)(u). Thus, (6.1) can also be written as [3, 6]

(V ∗f) = θ(x).

In other words, (6.1) can be considered as a special case of the adjoint equation
V ∗f = ψ when ψ = θ(x).
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By substituting α = x0 into (3.1) and using (4.3), we can rewrite (6.1) as∫ x1

x0

(wmf)(ξ)u(m)(ξ) dξ +

m−1∑
i=0

(wif)u(i)(x0) =

∫ x

x0

(x− ξ)m−1

(m− 1)!
u(m)(ξ) dξ

+

m−1∑
i=0

u(i)(x0)
(x− x0)i

i!
, ∀f ∈ Eq, ∀u ∈Wp. (6.2)

The components u(m)(ξ) ∈ Lp(G), u(m−1)(x0) ∈ R, . . . , u(x0) ∈ R of the func-
tion u ∈Wp are unrelated. Thus, we can construct the following system

(wmf)(ξ) =
(x− ξ)m−1

(m− 1)!
H(x− ξ), ξ ∈ G,

(wif) =
(x− x0)i

i!
, i = m− 1,m− 2, . . . , 0, (6.3)

where H(x− ξ) is a Heaviside function on R.
(6.1) is equivalent to the system (6.3) which is a special case for the adjoint

system (4.8) when

ϕm(ξ) =
(x− ξ)m−1

(m− 1)!
H(x− ξ), ϕm−1 =

(x− x0)m−1

(m− 1)!
, . . . , ϕ0 = 1.

Therefore, f(x) is a Green’s functional if and only if f(x) is a solution of the
system (6.3) for an arbitrary x ∈ G. For a solution u ∈ Wp of (2.3) and a
Green’s functional f(x), we can rewrite (4.3) as∫ x1

x0

fm(ξ, x)zm(ξ) dξ +

m−1∑
i=0

fi(x)zi =

∫ x1

x0

(x− ξ)m−1

(m− 1)!
H(x− ξ)u(m)(ξ) dξ

+

m−1∑
i=0

u(i)(x0)
(x− x0)i

i!
. (6.4)

Due to the fact that the right hand side of (6.4) is equal to u(x), we can express
the following theorem:

Theorem 3. If (2.3) has at least one Green’s functional f(x), then any solu-
tion u ∈Wp of (2.3) can be represented by

u(x) =

∫ x1

x0

fm(ξ, x)zm(ξ) dξ +

m−1∑
i=0

fi(x)zi. (6.5)

Additionally, V u = 0 has only the trivial solution.

Since one of the operators V : Wp → Ep and w : Eq → Eq is a homeo-
morphism, so is the other, and, there exists a unique Green’s functional, where
1 ≤ p ≤ ∞. Necessary and sufficient conditions for the existence of a Green’s
functional can be stated in the following theorem for 1 < p <∞.

Math. Model. Anal., 17(4):571–588, 2012.
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Theorem 4. If there exists a Green’s functional, then it is unique. Addition-
ally, a Green’s functional exists if and only if V u = 0 has only the trivial
solution.

The proof of this theorem follows from Theorems 2 and 3.

Remark 1. If V u = 0 has a nontrivial solution, then a Green’s functional cor-
responding to V u = z does not exist due to Theorem 3. In this case, V u = z
usually has no solution unless z is of a specific type. For example, V u = z has
no solution unless ∫ x1

x0

fm(ξ)zm(ξ) dξ +

m−1∑
i=0

fizi = 0 (6.6)

for at least one solution f = (fm(ξ), fm−1, . . . , f0) of the homogeneous adjoint
system wf = 0. Therefore, a representation of the existing solution of V u = z
can be constructed by a concept of the generalized Green’s functional [5, 6].

7 Some Applications and Comparisons

In this section, we describe some applications of our method for problems
involving complicated nonlocal multipoint boundary conditions in order to
demonstrate the advantages of the proposed approach.

Example 1. Firstly, we investigate the following problem, which has been con-
sidered in [20], and whose special forms have been discussed in [8, 11]:

u(m)(x) = f(x), x ∈ G = (0, 1), (7.1)

u(0) = βu(α), u(1)(0) = · · · = u(m−2)(0) = 0, u(1) = γu(η), (7.2)

where f(x) ∈ Lp(G), α, η ∈ G and β, γ ∈ R. We can rewrite this problem as

(Vmu)(x) ≡ u(m)(x) = f(x) = zm(x), x ∈ G = (0, 1),

Vm−1u ≡ u(1)− γu(η) = 0 = zm−1,

Vm−2u ≡ u(m−2)(0) = 0 = zm−2, . . . , V1u ≡ u(1)(0) = 0 = z1,

V0u ≡ u(0)− βu(α) = 0 = z0.

Hence, we have

aim−1 =
1− γηi

i!
, gm−1(ξ) =

(1− ξ)m−1 − γ(η − ξ)m−1H(η − ξ)
(m− 1)!

,

aim−2 =

{
1, for i = m− 2,
0, for i 6= m− 2,

gm−2(ξ) = 0,

aim−3 =

{
1, for i = m− 3,
0, for i 6= m− 3,

gm−3(ξ) = 0,
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ai1 =

{
1, for i = 1,
0, for i 6= 1,

g1(ξ) = 0,

a00 = 1− β, aj0 = −βα
j

j!
, g0(ξ) = −β (α− ξ)m−1

(m− 1)!
H(α− ξ),

and Ai(x) = 0 for i = 0, 1, . . . ,m− 1 and j = 1, . . . ,m− 1, where H(η− ξ) and
H(α− ξ) are Heaviside functions on R.

Consequently, the special adjoint system (6.3) corresponding to this problem
can be constructed in the following form

fm(ξ) + fm−1

{
(1− ξ)m−1 − γ(η − ξ)m−1H(η − ξ)

(m− 1)!

}
+f0

{
−β (α− ξ)m−1

(m− 1)!
H(α− ξ)

}
=

(x− ξ)m−1

(m− 1)!
H(x− ξ),

fm−1

{
1− γηm−1

(m− 1)!

}
+ f0

{
−β αm−1

(m− 1)!

}
=

xm−1

(m− 1)!
, (7.3)

fm−1

{
1− γηm−2

(m− 2)!

}
+ fm−2 + f0

{
−β αm−2

(m− 2)!

}
=

xm−2

(m− 2)!
, (7.4)

fm−1

{
1− γηm−3

(m− 3)!

}
+ fm−3 + f0

{
−β αm−3

(m− 3)!

}
=

xm−3

(m− 3)!
, (7.5)

· · · · · · · · ·

fm−1

{
1− γη2

2!

}
+ f2 + f0

{
−βα

2

2!

}
=
x2

2!
, (7.6)

fm−1(1− γη) + f1 + f0(−βα) = x, (7.7)

fm−1(1− γ) + f0(1− β) = 1, (7.8)

where ξ ∈ (0, 1). First, we determine fm−1 and f0 by using only (7.3) and (7.8)
under the condition ∆ = (1 − β)(1 − γηm−1) + (1 − γ)βαm−1 6= 0 in order to
solve (7.3)–(7.8), and then the others. Thus, we have

fm−1 =
1

∆

{
(1− β)xm−1 + βαm−1

}
,

fi =
xi

i!
+ f0β

αi

i!
− fm−1

{
1− γηi

i!

}
for i = 1, 2, . . . ,m− 2,

f0 =
1

∆

{
1− γηm−1 − (1− γ)xm−1

}
.

After substituting fm−1 and f0 into the first equation from which fm(ξ) will
be obtained, fm(ξ) can be written as

fm(ξ) =
(x− ξ)m−1

(m− 1)!
H(x− ξ)

+
1

∆

{
1− γηm−1 − (1− γ)xm−1

}{
β

(α− ξ)m−1

(m− 1)!
H(α− ξ)

}
− 1

∆

{
(1− β)xm−1 + βαm−1

}{ (1− ξ)m−1 − γ(η − ξ)m−1H(η − ξ)
(m− 1)!

}
.
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Thus, Green’s functional f(x) = (fm(ξ, x), fm−1(x), fm−2(x), . . . , f0(x)) for the
problem has been determined. The first component fm(ξ, x) = fm(ξ) is Green’s
function for the problem. After substituting ξ = s for notational compatibility,
it can be seen easily that fm(ξ, x) is equal to Green’s function constructed
in [20] for the problem. By (6.5) in Theorem 3, the representative solution to
the problem can be given as

u(x) =

∫ 1

0

[
(x− ξ)m−1

(m− 1)!
H(x− ξ) +

1

∆

{
1− γηm−1 − (1− γ)xm−1

}
×
{
β

(α− ξ)m−1

(m− 1)!
H(α− ξ)

}
− 1

∆

{
(1− β)xm−1 + βαm−1

}
×
{

(1− ξ)m−1 − γ(η − ξ)m−1H(η − ξ)
(m− 1)!

}]
f(ξ) dξ.

Example 2. Now, we consider the following problem whose special form has
been studied in [21]:

u(m)(x) = f(x), x ∈ G = (0, 1), (7.9)

u(1) = γ1

∫ 1

0

u(t) dt, (7.10)

u(k)(0) = 0 for k = 1, 2, . . . ,m− 2, (7.11)

u(0) = γ0

∫ 1

0

(1 + t)u(t) dt, (7.12)

where f(x) ∈ Lp(G) and γ0, γ1 ∈ R. We can rewrite this problem as

(Vmu)(x) ≡ u(m)(x) = f(x) = zm(x), x ∈ G = (0, 1),

Vm−1u ≡ u(1)− γ1
∫ 1

0

u(t) dt = 0 = zm−1,

Vku ≡ u(k)(0) = 0 = zk for k = 1, 2, . . . ,m− 2,

V0u ≡ u(0)− γ0
∫ 1

0

(1 + t)u(t) dt = 0 = z0.

Hence, we have Ai(x) = 0 and

aim−1 =
1

i!

(
1− γ1

i+ 1

)
, gm−1(ξ) =

(1− ξ)m−1

(m− 1)!

{
1− γ1(1− ξ)

m

}
,

air =

{
1, for i = r,
0, fori 6= r,

gr(ξ) = 0 for r = 1, 2, . . . ,m− 2,

a00 = 1− 3γ0
2
, aj0 = −γ0(2j + 3)

(j + 2)!
, g0(ξ) = −γ0(1− ξ)m(1 + 2m+ ξ)

(m+ 1)!
,

for i = 0, 1, . . . ,m − 1 and j = 1, . . . ,m − 1. In this case, the special adjoint
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system (6.3) corresponding to this problem becomes in the following form

fm(ξ) + fm−1
(1− ξ)m−1

(m− 1)!

{
1− γ1(1− ξ)

m

}
− f0

γ0(1− ξ)m(1 + 2m+ ξ)

(m+ 1)!
=

(x− ξ)m−1

(m− 1)!
H(x− ξ),

fm−1
1

(m− 1)!

(
1− γ1

m

)
− f0

γ0(2m+ 1)

(m− 1)!m(m+ 1)
=

xm−1

(m− 1)!
, (7.13)

fm−1
1

k!

(
1− γ1

k + 1

)
+ fk − f0

γ0(2k + 3)

k!(k + 1)(k + 2)
=
xk

k!
for k = 1, 2, . . . ,m− 2,

fm−1(1− γ1) + f0

(
1− 3γ0

2

)
= 1, (7.14)

where ξ ∈ (0, 1). Similarly, we firstly find the unknowns fm−1 and f0 by using
only (7.13) and (7.14) under the condition

∆ =
(

1− γ1
m

)(
1− 3γ0

2

)
+

(1− γ1)γ0(2m+ 1)

m(m+ 1)
6= 0

in order to solve (7.13)–(7.14), and then the others. Thus, we obtain

fm−1 =
1

∆

{(
1− 3γ0

2

)
xm−1 +

γ0(2m+ 1)

m(m+ 1)

}
,

fk =
xk

k!
+

f0γ0(2k + 3)

k!(k + 1)(k + 2)
− fm−1

k!

(
1− γ1

k + 1

)
for k = 1, 2, . . . ,m− 2,

f0 =
1

∆

{
1− γ1

m
− (1− γ1)xm−1

}
.

After substituting fm−1 and f0 into the first equation from which fm(ξ) will
be identified, fm(ξ) can be derived as

fm(ξ) =
(x− ξ)m−1

(m− 1)!
H(x− ξ)

+
1

∆

{
1− γ1

m
− (1− γ1)xm−1

}
γ0(1− ξ)m(1 + 2m+ ξ)

(m+ 1)!

− 1

∆

{(
1− 3γ0

2

)
xm−1 +

γ0(2m+ 1)

m(m+ 1)

}
(1− ξ)m−1

(m− 1)!

{
1− γ1(1− ξ)

m

}
.

As a result, Green’s functional f(x) = (fm(ξ, x), fm−1(x), fm−2(x), . . . , f0(x))
for the problem has been determined. The first component fm(ξ, x) = fm(ξ)
is Green’s function for the problem. After substituting ξ = s and m = 2
into the statement fm(ξ, x) for notational compatibility, it can be seen easily
that fm(ξ, x) is the negative one of Green’s function constructed in [21] for
the special case m = 2 of the problem. Because we consider the operator
Vmu ≡ u(m) instead of Vmu ≡ −u(m). By (6.5) in Theorem 3, the representative
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solution to the general problem can be given as

u(x) =

∫ 1

0

[
(x− ξ)m−1

(m− 1)!
H(x− ξ) +

1

∆

{
1− γ1

m
− (1− γ1)xm−1

}
× γ0(1− ξ)m(1 + 2m+ ξ)

(m+ 1)!
− 1

∆

{(
1− 3γ0

2

)
xm−1 +

γ0(2m+ 1)

m(m+ 1)

}
× (1− ξ)m−1

(m− 1)!

{
1− γ1(1− ξ)

m

}]
f(ξ) dξ.

Example 3. Finally, we consider a nonlinear problem for which and whose spe-
cial form Green’s functions have been presented in [7, 19] respectively:

u(m)(x) = −a(x)f
(
u(x)

)
, x ∈ G = (0, 1), (7.15)

u(1) =

n−2∑
i=1

αiu(ηi), u(k)(0) = 0 for k = 0, 1, . . . ,m− 2, (7.16)

where αi > 0 for i = 1, 2, . . . , n − 2 are real numbers, a(x) : G → [0,∞) is
a continuous function (∈ C(G)), f(u(x)) : [0,∞) → [0,∞) is a continuous
function and 0 < η1 < η2 < · · · < ηn−2 < 1. We can rewrite this problem by
our notation as

(Vmu)(x) ≡ u(m)(x) = −a(x)f
(
u(x)

)
= zm(x), x ∈ G = (0, 1),

Vm−1u ≡ u(1)−
n−2∑
i=1

αiu(ηi) = 0 = zm−1,

Vku ≡ u(k)(0) = 0 = zk for k = 0, 1, . . . ,m− 2. (7.17)

Hence, we have Ar(x) = 0 and arm−1 = (1−
∑n−2
i=1 αiη

r
i )/r!,

gm−1(ξ) =
1

(m− 1)!

[
(1− ξ)m−1 −

n−2∑
i=1

αi(ηi − ξ)m−1H(ηi − ξ)
]
,

ark =

{
1, for r = k,
0, for r 6= k,

gk(ξ) = 0 for k = 0, 1, . . . ,m− 2, (7.18)

for r = 0, 1, . . . ,m − 1. In this case, the special adjoint system (6.3) corre-
sponding to this problem becomes in the following form

fm(ξ) + fm−1
1

(m− 1)!

[
(1− ξ)m−1

−
n−2∑
i=1

αi(ηi − ξ)m−1H(ηi − ξ)
]

=
(x− ξ)m−1

(m− 1)!
H(x− ξ),

fm−1
(m− 1)!

(
1−

n−2∑
i=1

αiη
m−1
i

)
=

xm−1

(m− 1)!
, (7.19)

fm−1
k!

(
1−

n−2∑
i=1

αiη
k
i

)
+ fk =

xk

k!
for k = 0, 1, . . . ,m− 2, (7.20)
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where ξ ∈ (0, 1). Similarly, we firstly determine the unknown fm−1 from (7.19)

under the condition 1−
∑n−2
i=1 αiη

m−1
i 6= 0 in order to solve (7.19)–(7.20), and

then the others. Thus, we obtain

fm−1 =
xm−1

1−D
, fk =

xk

k!
− xm−1

(1−D)k!

(
1−

n−2∑
i=1

αiη
k
i

)
for k = 0, 1, . . . ,m− 2,

where D =
∑n−2
i=1 αiη

m−1
i . After substituting fm−1 into the first equation from

which fm(ξ) will be identified, fm(ξ) can be derived as

fm(ξ) =
(x− ξ)m−1

(m− 1)!
H(x− ξ)

− xm−1

(1−D)(m− 1)!

[
(1− ξ)m−1 −

n−2∑
i=1

αi(ηi − ξ)m−1H(ηi − ξ)
]
.

Consequently, Green’s functional f(x) = (fm(ξ, x), fm−1(x), fm−2(x), . . . ,
f0(x)) for the problem has been determined. Its first component fm(ξ, x) =
fm(ξ) is Green’s function for the problem. After substituting ξ = s into
the statement fm(ξ, x) for notational compatibility, it can be seen easily that
fm(ξ, x) is equal to Green’s function constructed in [19]. By (6.5) in Theorem 3,
we have

u(x) = −
∫ 1

0

{
(x− ξ)m−1

(m− 1)!
H(x− ξ)− xm−1

(1−D)(m− 1)!

[
(1− ξ)m−1

−
n−2∑
i=1

αi(ηi − ξ)m−1H(ηi − ξ)
]}
a(ξ)f

(
u(ξ)

)
dξ (7.21)

for the representative solution to the problem. As can be noticed, (7.21) is a
nonlinear integral equation for u(x). In other words, a solution u(x) ∈ Wp to
the problem is equivalent to the solution of integral equation (7.21) in C(G).

Henceforth the solution to this integral equation can be investigated under
the considered assumptions by using the following iteration

uN+1(x) = (AuN )(x) for N = 0, 1, . . .

where

(AuN )(x) = −
∫ 1

0

{
(x− ξ)m−1

(m− 1)!
H(x− ξ)− xm−1

(1−D)(m− 1)!

[
(1− ξ)m−1

−
n−2∑
i=1

αi(ηi − ξ)m−1H(ηi − ξ)
]}
a(ξ)f

(
uN (ξ)

)
dξ

and u0(x) is an appropriate initial approximation. If A is a contraction opera-
tor, then u(x) = limN→∞ uN (x) by Banach fixed point theorem.
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8 Conclusions

As can be seen from the theoretical presentation and illustrative applications,
the proposed approach principally differs from the known classical methods
used for the construction of Green’s function, it is based on the usage of the
structural properties of the space of solutions instead of the classical Green’s
formula of integration by parts, it minimizes the difficulties emphasized in the
introduction, and it has a natural and constructive property which can be
easily applied to a very wide class of linear and some nonlinear boundary value
problems involving linear nonlocal nonclassical multipoint conditions with also
integral-type terms. Because of these properties, it is one of the scarce methods
which are focused on the derivation of a solution to such problems by reducing
to an integral equation in general.

Green’s function for the m-order problem in the focus of the work is a
special form of Green’s functional for same problem. Moreover, the introduced
special adjoint system corresponding to that problem allows us to get an idea
about the existence and uniqueness of the solutions for the problem such that
a unique solution to the special adjoint system exists if and only if Green’s
function uniquely exists subject to the solvability conditions of the problem.

Finally, the proposed approach can successfully be employed also for the
problems resulting from the addition of some delayed or loaded (forced) terms
to the operator Vm as long as the linearity for the operator is conserved.
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