Calculation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition

Erdoğan Şen*, Azad Bayramov
Department of Mathematics, Faculty of Arts and Sciences, Namık Kemal University, Tekirdağ, Turkey

A R T I CLE INFO

Article history:

Received 11 May 2011
Accepted 27 July 2011

Keywords:

Differential equation with retarded argument
Transmission conditions
Asymptotics of eigenvalues and eigenfunctions

Abstract

In this work, a discontinuous boundary-value problem with retarded argument which contains a spectral parameter in the boundary condition and with transmission conditions at the point of discontinuity is investigated. We obtained asymptotic formulas for the eigenvalues and eigenfunctions.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary value problems for differential equations of the second order with retarded argument were studied in [1-5], and various physical applications of such problems can be found in [2].

The asymptotic formulas for the eigenvalues and eigenfunctions of the boundary problem of Sturm-Liouville type for the second order differential equation with retarded argument were obtained in [5].

The asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm-Liouville problem with the spectral parameter in the boundary condition were obtained in [6].

In this paper, we study the eigenvalues and eigenfunctions of the discontinuous boundary value problem with retarded argument and a spectral parameter in the boundary condition. Namely, we consider the boundary value problem for the differential equation

$$
\begin{equation*}
p(x) y^{\prime \prime}(x)+q(x) y(x-\Delta(x))+\lambda y(x)=0 \tag{1}
\end{equation*}
$$

on $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$, with boundary conditions

$$
\begin{align*}
& a_{1} y(0)+a_{2} y^{\prime}(0)=0 \tag{2}\\
& y^{\prime}(\pi)+\mathrm{d} \lambda y(\pi)=0 \tag{3}
\end{align*}
$$

and transmission conditions

$$
\begin{align*}
& \gamma_{1} y\left(\frac{\pi}{2}-0\right)=\delta_{1} y\left(\frac{\pi}{2}+0\right) \tag{4}\\
& \gamma_{2} y^{\prime}\left(\frac{\pi}{2}-0\right)=\delta_{2} y^{\prime}\left(\frac{\pi}{2}+0\right) \tag{5}
\end{align*}
$$

[^0]where $p(x)=p_{1}^{2}$ if $x \in\left[0, \frac{\pi}{2}\right)$ and $p(x)=p_{2}^{2}$ if $x \in\left(\frac{\pi}{2}, \pi\right]$, the real-valued function $q(x)$ is continuous in $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$ and has a finite limit $q\left(\frac{\pi}{2} \pm 0\right)=\lim _{x \rightarrow \frac{\pi}{2} \pm 0} q(x)$, the real valued function $\Delta(x) \geq 0$ is continuous in $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$ and has a finite limit $\Delta\left(\frac{\pi}{2} \pm 0\right)=\lim _{x \rightarrow \frac{\pi}{2} \pm 0} \Delta(x), x-\Delta(x) \geq 0$, if $x \in\left[0, \frac{\pi}{2}\right) ; x-\Delta(x) \geq \frac{\pi}{2}$, if $x \in\left(\frac{\pi}{2}, \pi\right]$; λ is a real spectral parameter; $p_{1}, p_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2}, a_{1}, a_{2}$, d are arbitrary real numbers; $\left|a_{1}\right|+\left|a_{2}\right| \neq 0$ and $\left|\gamma_{i}\right|+\left|\delta_{i}\right| \neq 0$ for $i=1$, 2. Also $\gamma_{1} \delta_{2} p_{1}=\gamma_{2} \delta_{1} p_{2}$ holds.

It must be noted that some problems with transmission conditions which arise in mechanics (thermal condition problem for a thin laminated plate) were studied in [7].

Let $w_{1}(x, \lambda)$ be a solution of Eq. (1) on $\left[0, \frac{\pi}{2}\right]$, satisfying the initial conditions

$$
\begin{equation*}
w_{1}(0, \lambda)=a_{2}, \quad w_{1}^{\prime}(0, \lambda)=-a_{1} \tag{6}
\end{equation*}
$$

The conditions (6) define a unique solution of Eq. (1) on $\left[0, \frac{\pi}{2}\right]$ ([2, p. 12]).
After defining the above solution we shall define the solution $w_{2}(x, \lambda)$ of Eq. (1) on $\left[\frac{\pi}{2}, \pi\right]$ by means of the solution $w_{1}(x, \lambda)$ by the initial conditions

$$
\begin{equation*}
w_{2}\left(\frac{\pi}{2}, \lambda\right)=\gamma_{1} \delta_{1}^{-1} w_{1}\left(\frac{\pi}{2}, \lambda\right), \quad \omega_{2}^{\prime}\left(\frac{\pi}{2}, \lambda\right)=\gamma_{2} \delta_{2}^{-1} \omega_{1}^{\prime}\left(\frac{\pi}{2}, \lambda\right) . \tag{7}
\end{equation*}
$$

The conditions (7) are defined as a unique solution of Eq. (1) on $\left[\frac{\pi}{2}, \pi\right]$.
Consequently, the function $w(x, \lambda)$ is defined on $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$ by the equality

$$
w(x, \lambda)= \begin{cases}\omega_{1}(x, \lambda), & x \in\left[0, \frac{\pi}{2}\right) \\ \omega_{2}(x, \lambda), & x \in\left(\frac{\pi}{2}, \pi\right]\end{cases}
$$

is such a solution of Eq. (1) on $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$, which satisfies one of the boundary conditions and both transmission conditions.

Lemma 1. Let $w(x, \lambda)$ be a solution of Eq. (1) and $\lambda>0$. Then the following integral equations hold:

$$
\begin{align*}
w_{1}(x, \lambda)= & a_{2} \cos \frac{s}{p_{1}} x-\frac{a_{1} p_{1}}{s} \sin \frac{s}{p_{1}} x-\frac{1}{s} \int_{0}^{x} \frac{q(\tau)}{p_{1}} \sin \frac{s}{p_{1}}(x-\tau) w_{1}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau(s=\sqrt{\lambda}, \lambda>0), \tag{8}\\
w_{2}(x, \lambda)= & \frac{\gamma_{1}}{\delta_{1}} w_{1}\left(\frac{\pi}{2}, \lambda\right) \cos \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right)+\frac{\gamma_{2} p_{2} w_{1}^{\prime}\left(\frac{\pi}{2}, \lambda\right)}{s \delta_{2}} \sin \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) \\
& -\frac{1}{s} \int_{\pi / 2}^{x} \frac{q(\tau)}{p_{2}} \sin \frac{s}{p_{2}}(x-\tau) w_{2}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau(s=\sqrt{\lambda}, \lambda>0) . \tag{9}
\end{align*}
$$

Proof. To prove this, it is enough to substitute $-\frac{s^{2}}{p_{1}^{2}} \omega_{1}(\tau, \lambda)-\omega_{1}^{\prime \prime}(\tau, \lambda)$ and $-\frac{s^{2}}{p_{2}^{2}} \omega_{2}(\tau, \lambda)-\omega_{2}^{\prime \prime}(\tau, \lambda)$ instead of $-\frac{q(\tau)}{p_{1}^{2}} \omega_{1}(\tau-$ $\Delta(\tau), \lambda)$ and $-\frac{q(\tau)}{p_{2}^{2}} \omega_{2}(\tau-\Delta(\tau), \lambda)$ in the integrals in (8) and (9) respectively and integrate by parts twice.

Theorem 1. The problem (1)-(5) can have only simple eigenvalues.
Proof. Let $\tilde{\lambda}$ be an eigenvalue of the problem (1)-(5) and

$$
\tilde{u}(x, \tilde{\lambda})= \begin{cases}\tilde{u}_{1}(x, \tilde{\lambda}), & x \in\left[0, \frac{\pi}{2}\right), \\ \tilde{u}_{2}(x, \tilde{\lambda}), & x \in\left(\frac{\pi}{2}, \pi\right]\end{cases}
$$

be a corresponding eigenfunction. Then from (2) and (6) it follows that the determinant

$$
W\left[\tilde{u}_{1}(0, \tilde{\lambda}), w_{1}(0, \tilde{\lambda})\right]=\left|\begin{array}{ll}
\tilde{u}_{1}(0, \tilde{\lambda}) & a_{2} \\
\widetilde{u}_{1}(0, \tilde{\lambda}) & -a_{1}
\end{array}\right|=0
$$

and by Theorem 2.2.2 in [2], the functions $\tilde{u}_{1}(x, \tilde{\lambda})$ and $w_{1}(x, \tilde{\lambda})$ are linearly dependent on $\left[0, \frac{\pi}{2}\right]$. We can also prove that the functions $\tilde{u}_{2}(x, \tilde{\lambda})$ and $w_{2}(x, \tilde{\lambda})$ are linearly dependent on $\left[\frac{\pi}{2}, \pi\right]$. Hence

$$
\begin{equation*}
\tilde{u}_{1}(x, \tilde{\lambda})=K_{i} w_{i}(x, \tilde{\lambda}) \quad(i=1,2) \tag{10}
\end{equation*}
$$

for some $K_{1} \neq 0$ and $K_{2} \neq 0$. We must show that $K_{1}=K_{2}$. Suppose that $K_{1} \neq K_{2}$. From the equalities (4) and (10), we have

$$
\begin{aligned}
\gamma_{1} \tilde{u}\left(\frac{\pi}{2}-0, \tilde{\lambda}\right)-\delta_{1} \tilde{u}\left(\frac{\pi}{2}+0, \tilde{\lambda}\right) & =\gamma_{1} \tilde{u_{1}}\left(\frac{\pi}{2}, \tilde{\lambda}\right)-\delta_{1} \tilde{u_{2}}\left(\frac{\pi}{2}, \tilde{\lambda}\right) \\
& =\gamma_{1} K_{1} w_{1}\left(\frac{\pi}{2}, \tilde{\lambda}\right)-\delta_{1} K_{2} w_{2}\left(\frac{\pi}{2}, \tilde{\lambda}\right) \\
& =\gamma_{1} K_{1} \delta_{1} \gamma_{1}^{-1} w_{2}\left(\frac{\pi}{2}, \tilde{\lambda}\right)-\delta_{1} K_{2} w_{2}\left(\frac{\pi}{2}, \tilde{\lambda}\right) \\
& =\delta_{1}\left(K_{1}-K_{2}\right) w_{2}\left(\frac{\pi}{2}, \tilde{\lambda}\right) .
\end{aligned}
$$

Since $\delta_{1}\left(K_{1}-K_{2}\right) \neq 0$ it follows that

$$
\begin{equation*}
w_{2}\left(\frac{\pi}{2}, \tilde{\lambda}\right)=0 \tag{11}
\end{equation*}
$$

By the same procedure from equality (5) we can derive that

$$
\begin{equation*}
w_{2}^{\prime}\left(\frac{\pi}{2}, \tilde{\lambda}\right)=0 \tag{12}
\end{equation*}
$$

From the fact that $w_{2}(x, \tilde{\lambda})$ is a solution of the differential equation (1) on $\left[\frac{\pi}{2}, \pi\right]$ and satisfies the initial conditions (11) and (12) it follows that $w_{1}(x, \widetilde{\lambda})=0$ identically on $\left[\frac{\pi}{2}, \pi\right]$ (cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

$$
w_{1}\left(\frac{\pi}{2}, \tilde{\lambda}\right)=w_{1}^{\prime}\left(\frac{\pi}{2}, \tilde{\lambda}\right)=0
$$

From the latter discussions of $w_{2}(x, \tilde{\lambda})$ it follows that $w_{1}(x, \tilde{\lambda})=0$ identically on $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$. But this contradicts (6), thus completing the proof.

2. An existence theorem

The function $\omega(x, \lambda)$ defined in Section 1 is a nontrivial solution of Eq. (1) satisfying conditions (2), (4) and (5). Putting $\omega(x, \lambda)$ into (3), we get the characteristic equation

$$
\begin{equation*}
F(\lambda) \equiv \omega^{\prime}(\pi, \lambda)+\mathrm{d} \lambda \omega(\pi, \lambda)=0 \tag{13}
\end{equation*}
$$

By Theorem 1 the set of eigenvalues of the boundary-value problem (1)-(5) coincides with the set of real roots of Eq. (13). Let $q_{1}=\frac{1}{p_{1}} \int_{0}^{\pi / 2}|q(\tau)| \mathrm{d} \tau$ and $q_{2}=\frac{1}{p_{2}} \int_{\pi / 2}^{\pi} q(\tau) \mathrm{d} \tau$.

Lemma 2. (1) Let $\lambda \geq 4 q_{1}^{2}$. Then for the solution $w_{1}(x, \lambda)$ of Eq. (8), the following inequality holds:

$$
\begin{equation*}
\left|w_{1}(x, \lambda)\right| \leq \frac{1}{q_{1}} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}, \quad x \in\left[0, \frac{\pi}{2}\right] . \tag{14}
\end{equation*}
$$

(2) Let $\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}\right\}$. Then for the solution $w_{2}(x, \lambda)$ of Eq. (9), the following inequality holds:

$$
\begin{equation*}
\left|w_{2}(x, \lambda)\right| \leq \frac{2}{q_{1}} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}\left\{\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{1}}\right|\right\}, \quad x \in\left[\frac{\pi}{2}, \pi\right] \tag{15}
\end{equation*}
$$

Proof. Let $B_{1 \lambda}=\max _{\left[0, \frac{\pi}{2}\right]}\left|w_{1}(x, \lambda)\right|$. Then from (8), it follows that, for every $\lambda>0$, the following inequality holds:

$$
B_{1 \lambda} \leq \sqrt{a_{2}^{2}+\frac{p_{1}^{2} a_{1}^{2}}{s^{2}}}+\frac{1}{s} B_{1 \lambda} q_{1} .
$$

If $s \geq 2 q_{1}$ we get (14). Differentiating (8) with respect to x, we have

$$
\begin{equation*}
w_{1}^{\prime}(x, \lambda)=-\frac{s a_{2}}{p_{1}} \sin \frac{s}{p_{1}} x-a_{1} \cos \frac{s}{p_{1}} x-\frac{1}{p_{1}^{2}} \int_{0}^{x} q(\tau) \cos \frac{s}{p_{1}}(x-\tau) w_{1}(\tau-\Delta(\tau)) \mathrm{d} \tau \tag{16}
\end{equation*}
$$

From (16) and (14), it follows that, for $s \geq 2 q_{1}$, the following inequality holds:

$$
\left|w_{1}^{\prime}(x, \lambda)\right| \leq \sqrt{\frac{s^{2} a_{2}^{2}}{p_{1}^{2}}+a_{1}^{2}}+\frac{1}{p_{1}} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}
$$

Hence

$$
\begin{equation*}
\frac{\left|w_{1}^{\prime}(x, \lambda)\right|}{s} \leq \frac{1}{p_{1} q_{1}} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}} . \tag{17}
\end{equation*}
$$

Let $B_{2 \lambda}=\max _{\left[\frac{\pi}{2}, \pi\right]}\left|w_{2}(x, \lambda)\right|$. Then from (9), (14) and (17) it follows that, for $s \geq 2 q_{1}$, the following inequalities hold:

$$
\begin{aligned}
& B_{2 \lambda} \leq \frac{1}{q_{1}}\left|\frac{\gamma_{1}}{\delta_{1}}\right| \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}+\left|p_{2}\right|\left|\frac{\gamma_{2}}{\delta_{2}}\right| \frac{1}{\left|p_{1} q_{1}\right|} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}+\frac{1}{2 q_{2}} B_{2 \lambda} q_{2}, \\
& B_{2 \lambda} \leq \frac{2}{q_{1}} \sqrt{4 q_{1}^{2} a_{2}^{2}+p_{1}^{2} a_{1}^{2}}\left\{\left|\frac{\gamma_{1}}{\delta_{1}}\right|+\left|\frac{p_{2} \gamma_{2}}{p_{1} \delta_{1}}\right|\right\} .
\end{aligned}
$$

Hence if $\lambda \geq \max \left\{4 q_{1}^{2}, 4 q_{2}^{2}\right\}$ we get (15).
Theorem 2. The problem (1)-(5) has an infinite set of positive eigenvalues.
Proof. Differentiating (9) with respect to x, we get

$$
\begin{align*}
w_{2}^{\prime}(x, \lambda)= & -\frac{s \gamma_{1}}{p_{2} \delta_{1}} w_{1}^{\prime}\left(\frac{\pi}{2}, \lambda\right) \sin \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right)+\frac{\gamma_{2} w_{1}^{\prime}\left(\frac{\pi}{2}, \lambda\right)}{\delta_{2}} \cos \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right) \\
& -\frac{1}{p_{2}^{2}} \int_{\pi / 2}^{x} q(\tau) \cos \frac{s}{p_{2}}(x-\tau) w_{2}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau . \tag{18}
\end{align*}
$$

From (8), (9), (13), (16) and (18), we get

$$
\begin{align*}
& -\frac{s \gamma_{1}}{p_{2} \delta_{1}}\left(a_{2} \cos \frac{s \pi}{2 p_{1}}-\frac{a_{1}}{s} \sin \frac{s \pi}{2 p_{1}}-\frac{1}{s p_{1}} \int_{0}^{\frac{\pi}{2}} q(\tau) \sin \frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right) \omega_{1}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau\right) \sin \frac{s \pi}{2 p_{2}} \\
& +\frac{\gamma_{2}}{\delta_{2}}\left(-\frac{s a_{2}}{p_{1}} \sin \frac{s \pi}{2 p_{1}}-a_{1} \cos \frac{s \pi}{2 p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{\frac{\pi}{2}} q(\tau) \cos \frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right) \omega_{1}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau\right) \\
& \times \cos \frac{s \pi}{2 p_{2}}-\frac{1}{p_{2}^{2}} \int_{\pi / 2}^{\pi} q(\tau) \cos \frac{s}{p_{2}}(\pi-\tau) \omega_{2}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau \\
& +\lambda d\left(\frac{\gamma_{1}}{\delta_{1}}\left[a_{2} \cos \frac{s \pi}{2 p_{1}}-\frac{a_{1} p_{1}}{s} \sin \frac{s \pi}{2 p_{1}}-\frac{1}{s p_{1}} \int_{0}^{\frac{\pi}{2}} q(\tau) \sin \frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right) \omega_{1}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau\right] \cos \frac{s \pi}{2 p_{2}}\right. \\
& +\frac{\gamma_{2} p_{2}}{\delta_{2} s}\left[-\frac{s a_{2}}{p_{1}} \sin \frac{s \pi}{2 p_{1}}-a_{1} \cos \frac{s \pi}{2 p_{1}}-\frac{1}{p_{1}^{2}} \int_{0}^{\frac{\pi}{2}} q(\tau) \cos \frac{s}{p_{1}}\left(\frac{\pi}{2}-\tau\right) \omega_{1}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau\right] \\
& \left.\times \sin \frac{s \pi}{2 p_{2}}-\frac{1}{s p_{2}} \int_{\frac{\pi}{2}}^{\pi} q(\tau) \sin \frac{s}{p_{2}}(\pi-\tau) \omega_{2}(\tau-\Delta(\tau), \lambda) \mathrm{d} \tau\right) . \tag{19}
\end{align*}
$$

There are two possible cases: (1) $a_{2} \neq 0$, (2) $a_{2}=0$. In this paper, we shall consider only case (1). The other cases may be considered analogically. Let λ be sufficiently large. Then, by (14) and (15), Eq. (19) may be rewritten in the form

$$
\begin{equation*}
s \cos s \pi \frac{p_{1}+p_{2}}{2 p_{1} p_{2}}+O(1)=0 . \tag{20}
\end{equation*}
$$

Obviously, for large s Eq. (20) has an infinite set of roots. Thus the theorem is proved.

3. Asymptotic formulas for eigenvalues and eigenfunctions

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following we shall assume that s is sufficiently large. From (8) and (14), we get

$$
\begin{equation*}
\omega_{1}(x, \lambda)=O(1) \quad \text { on }\left[0, \frac{\pi}{2}\right] \tag{21}
\end{equation*}
$$

From (9) and (15), we get

$$
\begin{equation*}
\omega_{2}(x, \lambda)=O(1) \quad \text { on }\left[\frac{\pi}{2}, \pi\right] . \tag{22}
\end{equation*}
$$

The existence and continuity of the derivatives $\omega_{1 s}^{\prime}(x, \lambda)$ for $0 \leq x \leq \frac{\pi}{2},|\lambda|<\infty$, and $\omega_{2 s}^{\prime}(x, \lambda)$ for $\frac{\pi}{2} \leq x \leq \pi,|\lambda|<\infty$, follow from Theorem 1.4.1 in [2].

$$
\begin{equation*}
\omega_{1 s}^{\prime}(x, \lambda)=O(1), \quad x \in\left[0, \frac{\pi}{2}\right] \quad \text { and } \quad \omega_{2 s}^{\prime}(x, \lambda)=O(1), \quad x \in\left[\frac{\pi}{2}, \pi\right] \tag{23}
\end{equation*}
$$

Theorem 3. Let n be a natural number. For each sufficiently large n, in case (1), there is exactly one eigenvalue of the problem (1)-(5) near $\frac{p_{1}^{2} p_{2}^{2}}{\left(p_{1}+p_{2}^{2}\right)}(2 n+1)^{2}$.

Proof. We consider the expression which is denoted by O (1) in Eq. (20). If formulas (21)-(23) are taken into consideration, it can be shown by differentiation with respect to s that for large s this expression has bounded derivative. It is obvious that for large s the roots of Eq. (20) are situated close to entire numbers. We shall show that, for large n, only one root (20) lies near to each $\frac{p_{1}^{2} p_{2}^{2}}{\left(p_{1}+p_{2}\right)^{2}}(2 n+1)^{2}$. We consider the function $\phi(s)=s \cos s \pi \frac{p_{1}+p_{2}}{2 p_{1} p_{2}}+O(1)$. Its derivative, which has the form $\phi^{\prime}(s)=\cos s \pi \frac{p_{1}+p_{2}}{2 p_{1} p_{2}}-s \pi \frac{p_{1}+p_{2}}{2 p_{1} p_{2}} \sin s \pi \frac{p_{1}+p_{2}}{2 p_{1} p_{2}}+O(1)$, does not vanish for s close to n for sufficiently large n. Thus our assertion follows by Rolle's theorem.

Let n be sufficiently large. In what follows we shall denote by $\lambda_{n}=s_{n}^{2}$ the eigenvalue of the problem (1)-(5) situated near $\frac{p_{1}^{2} p_{2}^{2}}{\left(p_{1}+p_{2}\right)^{2}}(2 n+1)^{2}$. We set $s_{n}=\frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}+\delta_{n}$. From (20) it follows that $\delta_{n}=O\left(\frac{1}{n}\right)$. Consequently

$$
\begin{equation*}
s_{n}=\frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}+O\left(\frac{1}{n}\right) \tag{24}
\end{equation*}
$$

The formula (24) makes it possible to obtain asymptotic expressions for the eigenfunction of the problem (1)-(5). From (8), (16) and (21), we get

$$
\begin{align*}
& \omega_{1}(x, \lambda)=a_{2} \cos \frac{s}{p_{1}} x+O\left(\frac{1}{s}\right) \tag{25}\\
& \omega_{1}^{\prime}(x, \lambda)=-\frac{s a_{2}}{p_{1}} \sin \frac{s}{p_{1}} x+O(1) \tag{26}
\end{align*}
$$

From (9), (22), (25) and (26), we get

$$
\begin{equation*}
\omega_{2}(x, \lambda)=\frac{\gamma_{1} a_{2}}{\delta_{1}} \cos s\left(\frac{\pi\left(p_{2-} p_{1}\right)}{2 p_{1} p_{2}}+\frac{x}{p_{2}}\right)+O\left(\frac{1}{s}\right) \tag{27}
\end{equation*}
$$

By putting (24) in (25) and (27), we derive that

$$
\begin{aligned}
& u_{1 n}=w_{1}\left(x, \lambda_{n}\right)=a_{2} \cos \frac{p_{2}(2 n+1)}{p_{1}+p_{2}} x+O\left(\frac{1}{n}\right) \\
& u_{2 n}=w_{2}\left(x, \lambda_{n}\right)=\frac{\gamma_{1} a_{2}}{\delta_{1}} \cos \left(\frac{\pi\left(p_{2}-p_{1}\right)(2 n+1)}{2\left(p_{1}+p_{2}\right)}+\frac{p_{1}(2 n+1)}{p_{1}+p_{2}} x\right)+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

Hence the eigenfunctions $u_{n}(x)$ have the following asymptotic representation:

$$
u_{n}(x)=\left\{\begin{array}{l}
a_{2} \cos \frac{p_{2}(2 n+1)}{p_{1}+p_{2}} x+O\left(\frac{1}{n}\right) \quad \text { for } x \in\left[0, \frac{\pi}{2}\right) \\
\frac{\gamma_{1}}{\delta_{1}} \cos \left(\frac{\pi\left(p_{2}-p_{1}\right)(2 n+1)}{2\left(p_{1}+p_{2}\right)}+\frac{p_{1}(2 n+1)}{p_{1}+p_{2}} x\right)+O\left(\frac{1}{n}\right) \quad \text { for } x \in\left(\frac{\pi}{2}, \pi\right]
\end{array}\right.
$$

Under some additional conditions, more exact asymptotic formulas which depend upon the retardation may be obtained. Let us assume that the following conditions are fulfilled:
(a) The derivatives $q^{\prime}(x)$ and $\Delta^{\prime \prime}(x)$ exist and are bounded in $\left[0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \pi\right]$ and have finite limits $q^{\prime}\left(\frac{\pi}{2} \pm 0\right)=\lim _{x \rightarrow \frac{\pi}{2} \pm 0}$ $q^{\prime}(x)$ and $\Delta^{\prime \prime}\left(\frac{\pi}{2} \pm 0\right)=\lim _{x \rightarrow \frac{\pi}{2} \pm 0} \Delta^{\prime \prime}(x)$, respectively.
(b) $\Delta^{\prime}(x) \leq 1$ in $\left[0, \frac{\pi}{2}\right) \bigcup\left(\frac{\pi}{2}, \pi\right], \Delta(0)=0$ and $\lim _{x \rightarrow \frac{\pi}{2}+0} \Delta(x)=0$.

By using (b), we have

$$
\begin{equation*}
x-\Delta(x) \geq 0, \quad \text { for } x \in\left[0, \frac{\pi}{2}\right) \quad \text { and } \quad x-\Delta(x) \geq \frac{\pi}{2}, \quad \text { for } x \in\left(\frac{\pi}{2}, \pi\right] \tag{28}
\end{equation*}
$$

From (25), (27) and (28) we have

$$
\begin{align*}
& w_{1}(\tau-\Delta(\tau), \lambda)=a_{2} \cos \frac{s}{p_{1}}(\tau-\Delta(\tau))+O\left(\frac{1}{s}\right) \tag{29}\\
& w_{2}(\tau-\Delta(\tau), \lambda)=\frac{\gamma_{1} a_{2}}{\delta_{1}} \cos s\left(\frac{\pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}}+\frac{\tau-\Delta(\tau)}{p_{2}}\right)+O\left(\frac{1}{s}\right) . \tag{30}
\end{align*}
$$

Putting these expressions into (19), we have

$$
\begin{align*}
0= & \frac{s \mathrm{~d} a_{2} \gamma_{1}}{\delta_{1}} \cos \frac{s \pi\left(p_{1}+p_{2}\right)}{2 p_{1} p_{2}}-\frac{\gamma_{1}}{\delta_{1}}\left(\mathrm{~d} a_{1} p_{1}+\frac{a_{2}}{p_{2}}\right) \sin \frac{s \pi\left(p_{1}+p_{2}\right)}{2 p_{1} p_{2}} \\
& -\frac{\mathrm{d} a_{2} \gamma_{1}}{\delta_{1}}\left[\frac{1}{p_{1}} \sin \frac{s \pi\left(p_{1}+p_{2}\right)}{2 p_{1} p_{2}} \int_{0}^{\pi / 2} \frac{q(\tau)}{2}\left[\cos \frac{s \Delta(\tau)}{p_{1}}+\cos \frac{s}{p_{1}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau\right. \\
& -\frac{1}{p_{1}} \cos \frac{s \pi\left(p_{1}+p_{2}\right)}{2 p_{1} p_{2}} \int_{0}^{\pi / 2} \frac{q(\tau)}{2}\left[\sin \frac{s \Delta(\tau)}{p_{1}}+\sin \frac{s}{p_{1}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau \\
& +\frac{1}{p_{2}} \cos \frac{s \pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}} \sin \frac{s \pi}{p_{2}} \int_{\pi / 2}^{\pi} \frac{q(\tau)}{2}\left[\cos \frac{s \Delta(\tau)}{p_{2}}+\cos \frac{s}{p_{2}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau \\
& -\frac{1}{p_{2}} \cos \frac{s \pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}} \cos \frac{s \pi}{p_{2}} \int_{\pi / 2}^{\pi} \frac{q(\tau)}{2}\left[\sin \frac{s \Delta(\tau)}{p_{2}}+\sin \frac{s}{p_{2}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau \\
& -\frac{1}{p_{2}} \sin \frac{s \pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}} \sin \frac{s \pi}{p_{2}} \int_{\pi / 2}^{\pi} \frac{q(\tau)}{2}\left[\sin \frac{s \Delta(\tau)}{p_{2}}-\sin \frac{s}{p_{2}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau \\
& \left.-\frac{1}{p_{2}} \sin \frac{s \pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}} \cos \frac{s \pi}{p_{2}} \int_{\pi / 2}^{\pi \pi} \frac{q(\tau)}{2}\left[\cos \frac{s \Delta(\tau)}{p_{2}}-\cos \frac{s}{p_{2}}(2 \tau-\Delta(\tau))\right] \mathrm{d} \tau\right]+0\left(\frac{1}{s}\right) . \tag{31}
\end{align*}
$$

Let

$$
\begin{equation*}
A(x, s, \Delta(\tau))=\frac{1}{2} \int_{0}^{x} q(\tau) \sin \frac{s}{p_{1}} \Delta(\tau) \mathrm{d} \tau, \quad B(x, s, \Delta(\tau))=\frac{1}{2} \int_{0}^{x} q(\tau) \cos \frac{s}{p_{1}} \Delta(\tau) \mathrm{d} \tau \tag{32}
\end{equation*}
$$

It is obvious that these functions are bounded for $0 \leq x \leq \pi, 0<s<\infty$. Let

$$
\begin{equation*}
C(x, s, \Delta(\tau))=\frac{1}{2} \int_{\pi / 2}^{x} q(\tau) \sin \frac{s}{p_{2}} \Delta(\tau) \mathrm{d} \tau, \quad D(x, s, \Delta(\tau))=\frac{1}{2} \int_{\pi / 2}^{x} q(\tau) \cos \frac{s}{p_{2}} \Delta(\tau) \mathrm{d} \tau . \tag{33}
\end{equation*}
$$

It is obvious that these functions are bounded for $\frac{\pi}{2} \leq x \leq \pi, 0<s<\infty$.
Under the conditions (a) and (b) the following formulas

$$
\begin{array}{ll}
\int_{0}^{x} q(\tau) \cos \frac{s}{p_{1}}(2 \tau-\Delta(\tau)) \mathrm{d} \tau=O\left(\frac{1}{s}\right), & \int_{0}^{x} q(\tau) \sin \frac{s}{p_{1}}(2 \tau-\Delta(\tau)) \mathrm{d} \tau=O\left(\frac{1}{s}\right) \\
\int_{\pi / 2}^{x} q(\tau) \cos \frac{s}{p_{2}}(2 \tau-\Delta(\tau)) \mathrm{d} \tau=O\left(\frac{1}{s}\right), & \int_{\pi / 2}^{x} q(\tau) \sin \frac{s}{p_{2}}(2 \tau-\Delta(\tau)) \mathrm{d} \tau=O\left(\frac{1}{s}\right) \tag{34}
\end{array}
$$

can be proved by the same technique in Lemma 3.3.3 in [2]. From (31)-(34) and $s_{n}=\frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}+\delta_{n}$, we have

$$
\begin{aligned}
\cot \left(\frac{\pi}{2}(2 n+1)+\frac{\pi\left(p_{1}+p_{2}\right) \delta_{n}}{2 p_{1} p_{2}}\right)= & \frac{p_{1}+p_{2}}{(2 n+1) p_{1} p_{2}}\left[\frac{\mathrm{~d}}{p_{2}} D\left(\pi, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)\right. \\
& \left.+\frac{\mathrm{d} a_{1} p_{1}}{a_{2}}+\frac{1}{p_{2}}+\frac{\mathrm{d}}{p_{1}} B\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)\right]+O\left(\frac{1}{n^{2}}\right)
\end{aligned}
$$

and finally

$$
\begin{align*}
s_{n}= & \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}-\frac{2}{\pi(2 n+1)}\left[\frac{\mathrm{d}}{p_{2}} D\left(\pi, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)\right. \\
& \left.+\frac{\mathrm{d} a_{1} p_{1}}{a_{2}}+\frac{1}{p_{2}}+\frac{\mathrm{d}}{p_{1}} B\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)\right]+O\left(\frac{1}{n^{2}}\right) . \tag{35}
\end{align*}
$$

Thus, we have proven the following theorem.

Theorem 4. If conditions (a) and (b) are satisfied, then the positive eigenvalues $\lambda_{n}=s_{n}^{2}$ of the problem (1)-(5) have the (35) asymptotic representation for $n \rightarrow \infty$.

We now may obtain a sharper asymptotic formula for the eigenfunctions. From (8) and (29)

$$
\begin{aligned}
w_{1}(x, \lambda)= & a_{2} \cos \frac{s}{p_{1}} x-\frac{a_{1} p_{1}}{s} \sin \frac{s}{p_{1}} x \\
& -\frac{a_{2} p_{1}}{s} \int_{0}^{x} q(\tau) \sin \frac{s}{p_{1}}(x-\tau) \cos \frac{s}{p_{1}}(\tau-\Delta(\tau)) \mathrm{d} \tau+O\left(\frac{1}{s^{2}}\right) .
\end{aligned}
$$

Thus, from (32)-(34)

$$
\begin{align*}
w_{1}(x, \lambda)= & a_{2} \cos \frac{s}{p_{1}} x\left[1+\frac{A\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{s p_{1}}\right] \\
& -\frac{\sin \frac{s}{p_{1}} x}{s}\left[a_{1} p_{1}+\frac{a_{2}}{p_{1}} B(x, s, \Delta(\tau))\right]+O\left(\frac{1}{s^{2}}\right) . \tag{36}
\end{align*}
$$

Replacing s by s_{n} and using (35), we have

$$
\begin{align*}
u_{1 n}(x)= & a_{2} \cos \frac{p_{2}(2 n+1)}{p_{1}+p_{2}} x\left[1+\frac{\left(p_{1}+p_{2}\right) A\left(x, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1} p_{2}(2 n+1)}\right] \\
& +a_{2} \sin \frac{p_{2}(2 n+1)}{p_{1}+p_{2}} x\left[\frac { 2 x } { \pi (2 n + 1) p _ { 1 } } \left[\frac{\mathrm{~d} D\left(\pi, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{2}}+\frac{\mathrm{d} a_{1} p_{1}}{a_{2}}\right.\right. \\
& \left.\left.+\frac{1}{p_{2}}+\mathrm{d} B\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)\right]\right]-\frac{p_{1}+p_{2}}{p_{1} p_{2}(2 n+1)} \sin \frac{p_{2}(2 n+1)}{p_{1}+p_{2}} x \\
& \times\left[a_{1} p_{1}+\frac{a_{2} B\left(x, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1}}\right]+O\left(\frac{1}{n^{2}}\right) . \tag{37}
\end{align*}
$$

From (16), (29) and (32), we have

$$
\begin{equation*}
\frac{w_{1}^{\prime}(x, \lambda)}{s}=-\frac{a_{2}}{p_{1}} \sin \frac{s}{p_{1}} x\left(1+\frac{A(x, s, \Delta(\tau))}{s p_{1}}\right)-\frac{\cos \frac{s}{p_{1}} x}{s}\left(a_{1}+\frac{a_{2}}{p_{1}^{2}} B(x, s, \Delta(\tau))\right)+O\left(\frac{1}{s^{2}}\right), \quad x \in\left(0, \frac{\pi}{2}\right] . \tag{38}
\end{equation*}
$$

From (9), (30), (34), (36) and (38) we have

$$
\begin{aligned}
w_{2}(x, \lambda)= & \frac{\gamma_{1}}{\delta_{1}}\left\{a_{2} \cos \frac{s \pi}{2 p_{1}}\left[1+\frac{A\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{s p_{1}}\right]-\frac{\sin \frac{s \pi}{2 p_{1}}}{s}\left[a_{1} p_{1}+\frac{a_{2} B\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{p_{1}}\right]\right. \\
& \left.+O\left(\frac{1}{s^{2}}\right)\right\} \cos \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right)-\frac{\gamma_{2} p_{2}}{\delta_{2} p_{1}}\left\{a_{2} \sin \frac{s \pi}{2 p_{1}}\left[1+\frac{A\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{s p_{1}}\right]\right. \\
& \left.+\frac{\cos \frac{s \pi}{2 p_{1}}}{s}\left[a_{1} p_{1}+\frac{a_{2} B\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{p_{1}}\right]+O\left(\frac{1}{s^{2}}\right)\right\} \sin \frac{s}{p_{2}}\left(x-\frac{\pi}{2}\right)-\frac{1}{s p_{2}} \\
& \times \int_{\pi / 2}^{x} q(\tau) \sin \frac{s}{p_{2}}(x-\tau)\left[\frac{\gamma_{1} a_{2}}{\delta_{1}} \cos \frac{s}{p_{2}}\left(\frac{\pi\left(p_{2}-p_{1}\right)}{2 p_{1}}+\tau-\Delta(\tau)\right)+O\left(\frac{1}{s}\right) \mathrm{d} \tau\right] \\
= & \left\{\frac{\gamma_{1} a_{2}}{\delta_{1}}\left[1+\frac{A\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{s p_{1}}\right]+\frac{\gamma_{1} a_{2} C(x, s, \Delta(\tau))}{s p_{2} \delta_{1}}\right\} \cos \frac{s}{p_{2}}\left(x+\frac{\pi\left(p_{2}-p_{1}\right)}{2 p_{1}}\right) \\
& -\left\{\frac{\gamma_{1} a_{2} D(x, s, \Delta(\tau))}{s p_{2} \delta_{1}}+\frac{\gamma_{1}}{s \delta_{1}}\left[a_{1} p_{1}+\frac{a_{2} B\left(\frac{\pi}{2}, s, \Delta(\tau)\right)}{p_{1}}\right]\right\} \\
& \times \sin \frac{s}{p_{2}}\left(x+\frac{\pi\left(p_{2}-p_{1}\right)}{2 p_{1}}\right)+O\left(\frac{1}{s^{2}}\right), x \in\left(\frac{\pi}{2}, \pi\right] .
\end{aligned}
$$

Now, replacing s by s_{n} and using (35), we have

$$
\begin{align*}
u_{2 n}(x)= & \left\{\frac{\gamma_{1} a_{2}}{\delta_{1}}\left[1+\frac{\left(p_{1}+p_{2}\right) A\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1}^{2} p_{2}(2 n+1)}\right]\right. \\
& \left.+\frac{\gamma_{1}\left(p_{1}+p_{2}\right) A\left(x, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{\delta_{1} p_{1} p_{2}^{2}(2 n+1)}\right\} \cos \left(\frac{p_{1} x(2 n+1)}{p_{1+} p_{2}}+\frac{\pi\left(p_{2}-p_{1}\right)(2 n+1)}{2\left(p_{1+} p_{2}\right)}\right) \\
& \times\left\{\frac { \gamma _ { 1 } a _ { 2 } } { \delta _ { 1 } } \left[\frac { 2 } { \pi (2 n + 1) } \left[\frac{\mathrm{d} A\left(\pi, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{2}}+\frac{\mathrm{d} a_{1} p_{1}}{a_{2}}+\frac{1}{p_{2}}\right.\right.\right. \\
& \left.\left.+\frac{\mathrm{d} B\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1}}\right]\right]\left(\frac{x}{p_{2}}+\frac{\pi\left(p_{2}-p_{1}\right)}{2 p_{1} p_{2}}\right) \\
& -\left[\frac{a_{2} \gamma_{1}\left(p_{1}+p_{2}\right) D\left(x, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1} p_{2}^{2} \delta_{1}(2 n+1)}+\frac{\gamma_{1}\left(p_{1}+p_{2}\right)}{p_{1} p_{2} \delta_{1}(2 n+1)}\left(a_{1} p_{1}\right.\right. \\
& \left.\left.\left.+\frac{a_{2} B\left(\frac{\pi}{2}, \frac{p_{1} p_{2}(2 n+1)}{p_{1}+p_{2}}, \Delta(\tau)\right)}{p_{1}}\right)\right]\right\} \sin \left(\frac{p_{1} x(2 n+1)}{p_{1+} p_{2}}+\frac{\pi\left(p_{2}-p_{1}\right)(2 n+1)}{2\left(p_{1+} p_{2}\right)}\right)+O\left(\frac{1}{n^{2}}\right) . \tag{39}
\end{align*}
$$

Thus, we have proven the following theorem.
Theorem 5. If conditions (a) and (b) are satisfied, then the eigenfunctions $u_{n}(x)$ of the problem (1)-(5) have the following asymptotic representation for $n \rightarrow \infty$:

$$
u_{n}(x)= \begin{cases}u_{1 n}(x) & \text { for } x \in\left[0, \frac{\pi}{2}\right) \\ u_{2 n}(x) & \text { for } x \in\left(\frac{\pi}{2}, \pi\right]\end{cases}
$$

where $u_{1 n}(x)$ and $u_{2 n}(x)$ defined as in (37) and (39), respectively.

4. Conclusion

In this study, first we obtain asymptotic formulas for eigenvalues and eigenfunctions for the discontinuous boundary value problem with retarded argument which contains a spectral parameter in the boundary condition. Then under additional conditions (a) and (b), more exact asymptotic formulas which depend upon the retardation are obtained.

References

[1] S.B. Norkin, On boundary problem of Sturm-Liouville type for second-order differential equation with retarded argument, Izv. Vysś. Ućebn. Zaved. Matematika 6 (7) (1958) 203-214 (in Russian).
[2] S.B. Norkin, Differential Equations of the Second Order with Retarded Argument, in: Translations of Mathematical Monographs, vol. 31, AMS, Providence, RI, 1972.
[3] R. Bellman, K.L. Cook, Differential-Difference Equations, New York Academic Press, London, 1963.
[4] G.V. Demidenko, V.A. Likhoshvai, On differential equations with retarded argument, Sibirsk. Mat. Zh. 46 (3) (2005) 417-430.
[5] A. Bayramov, S. C̣alıṣkan, S. Uslu, Computation of eigenvalues and eigenfunctions of a discontinuous boundary value problem with retarded argument, Appl. Math. Comput. 191 (2007) 592-600.
[6] C.T. Fulton, Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions, Proc. Roy. Soc. Edinburgh A 77 (1977) 293-308.
[7] I. Titeux, Y. Yakupov, Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Math. Models Methods Appl. Sci. 7 (7) (1997) 1035-1050.

[^0]: * Corresponding author.

 E-mail addresses: esen@nku.edu.tr (E. Şen), abayramov@nku.edu.tr (A. Bayramov).

