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contains a spectral parameter in the boundary condition and with transmission conditions
at the point of discontinuity is investigated. We obtained asymptotic formulas for the
eigenvalues and eigenfunctions.
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1. Introduction

Boundary value problems for differential equations of the second order with retarded argument were studied in [1–5],
and various physical applications of such problems can be found in [2].

The asymptotic formulas for the eigenvalues and eigenfunctions of the boundary problem of Sturm–Liouville type for
the second order differential equation with retarded argument were obtained in [5].

The asymptotic formulas for the eigenvalues and eigenfunctions of the Sturm–Liouville problem with the spectral
parameter in the boundary condition were obtained in [6].

In this paper, we study the eigenvalues and eigenfunctions of the discontinuous boundary value problem with retarded
argument and a spectral parameter in the boundary condition. Namely, we consider the boundary value problem for the
differential equation

p(x)y′′(x) + q(x)y(x − ∆(x)) + λy(x) = 0 (1)
on

0, π

2


∪


π
2 , π


, with boundary conditions

a1y(0) + a2y′(0) = 0, (2)

y′(π) + dλy(π) = 0, (3)
and transmission conditions

γ1y
π

2
− 0


= δ1y

π

2
+ 0


, (4)

γ2y′

π

2
− 0


= δ2y′

π

2
+ 0


, (5)
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where p(x) = p21 if x ∈

0, π

2


and p(x) = p22 if x ∈


π
2 , π


, the real-valued function q(x) is continuous in


0, π

2


∪


π
2 , π


and

has a finite limit q


π
2 ± 0


= limx→ π

2 ±0 q(x), the real valued function ∆(x) ≥ 0 is continuous in

0, π

2


∪


π
2 , π


and has

a finite limit ∆


π
2 ± 0


= limx→ π

2 ±0 ∆(x), x − ∆(x) ≥ 0, if x ∈

0, π

2


; x − ∆(x) ≥

π
2 , if x ∈


π
2 , π


; λ is a real spectral

parameter; p1, p2, γ1, γ2, δ1, δ2, a1, a2, d are arbitrary real numbers; |a1| + |a2| ≠ 0 and |γi| + |δi| ≠ 0 for i = 1, 2. Also
γ1δ2p1 = γ2δ1p2 holds.

It must be noted that some problemswith transmission conditionswhich arise inmechanics (thermal condition problem
for a thin laminated plate) were studied in [7].

Let w1(x, λ) be a solution of Eq. (1) on

0, π

2


, satisfying the initial conditions

w1 (0, λ) = a2, w′

1 (0, λ) = −a1. (6)

The conditions (6) define a unique solution of Eq. (1) on

0, π

2


([2, p. 12]).

After defining the above solution we shall define the solution w2 (x, λ) of Eq. (1) on


π
2 , π


by means of the solution

w1 (x, λ) by the initial conditions

w2

π

2
, λ


= γ1δ
−1
1 w1

π

2
, λ


, ω′

2

π

2
, λ


= γ2δ
−1
2 ω′

1

π

2
, λ


. (7)

The conditions (7) are defined as a unique solution of Eq. (1) on


π
2 , π


.

Consequently, the function w (x, λ) is defined on

0, π

2


∪


π
2 , π


by the equality

w(x, λ) =

ω1(x, λ), x ∈


0,

π

2


ω2(x, λ), x ∈

π

2
, π


is such a solution of Eq. (1) on

0, π

2


∪


π
2 , π


,which satisfies one of the boundary conditions and both transmission

conditions.

Lemma 1. Let w (x, λ) be a solution of Eq. (1) and λ > 0. Then the following integral equations hold:

w1(x, λ) = a2 cos
s
p1

x −
a1p1
s

sin
s
p1

x −
1
s

∫ x

0

q (τ )

p1
sin

s
p1

(x − τ) w1 (τ − ∆ (τ ) , λ) dτ

s =

√
λ, λ > 0


, (8)

w2(x, λ) =
γ1

δ1
w1

π

2
, λ

cos

s
p2


x −

π

2


+

γ2p2w′

1


π
2 , λ


sδ2

sin
s
p2


x −

π

2


−

1
s

∫ x

π/2

q (τ )

p2
sin

s
p2

(x − τ) w2 (τ − ∆ (τ ) , λ) dτ

s =

√
λ, λ > 0


. (9)

Proof. To prove this, it is enough to substitute−
s2

p21
ω1(τ , λ)−ω′′

1(τ , λ) and−
s2

p22
ω2(τ , λ)−ω′′

2(τ , λ) instead of− q(τ )

p21
ω1(τ −

∆(τ ), λ) and −
q(τ )

p22
ω2(τ − ∆(τ ), λ) in the integrals in (8) and (9) respectively and integrate by parts twice. �

Theorem 1. The problem (1)–(5) can have only simple eigenvalues.

Proof. Letλ be an eigenvalue of the problem (1)–(5) and

u(x,λ) =

u1(x,λ), x ∈


0,

π

2


,u2(x,λ), x ∈

π

2
, π


be a corresponding eigenfunction. Then from (2) and (6) it follows that the determinant

W
u1(0,λ), w1(0,λ)


=

u1(0,λ) a2u1(0,λ) −a1

 = 0,

and by Theorem 2.2.2 in [2], the functionsu1(x,λ) and w1(x,λ) are linearly dependent on

0, π

2


. We can also prove that

the functionsu2(x,λ) and w2(x,λ) are linearly dependent on


π
2 , π


. Hence

u1(x,λ) = Kiwi(x,λ) (i = 1, 2) (10)
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for some K1 ≠ 0 and K2 ≠ 0. We must show that K1 = K2. Suppose that K1 ≠ K2. From the equalities (4) and (10), we have

γ1u π

2
− 0,λ− δ1u π

2
+ 0,λ = γ1u1

π

2
,λ− δ1u2

π

2
,λ

= γ1K1w1

π

2
,λ− δ1K2w2

π

2
,λ

= γ1K1δ1γ
−1
1 w2

π

2
,λ− δ1K2w2

π

2
,λ

= δ1 (K1 − K2) w2

π

2
,λ .

Since δ1 (K1 − K2) ≠ 0 it follows that

w2

π

2
,λ = 0. (11)

By the same procedure from equality (5) we can derive that

w
′

2

π

2
,λ = 0. (12)

From the fact thatw2(x,λ) is a solution of the differential equation (1) on


π
2 , π


and satisfies the initial conditions (11) and

(12) it follows that w1(x,λ) = 0 identically on


π
2 , π


(cf. [2, p. 12, Theorem 1.2.1]).

By using this, we may also find

w1

π

2
,λ = w

′

1

π

2
,λ = 0.

From the latter discussions of w2(x,λ) it follows that w1(x,λ) = 0 identically on

0, π

2


∪


π
2 , π


. But this contradicts (6),

thus completing the proof. �

2. An existence theorem

The function ω(x, λ) defined in Section 1 is a nontrivial solution of Eq. (1) satisfying conditions (2), (4) and (5). Putting
ω(x, λ) into (3), we get the characteristic equation

F(λ) ≡ ω′(π, λ) + dλω(π, λ) = 0. (13)

By Theorem 1 the set of eigenvalues of the boundary-value problem (1)–(5) coincides with the set of real roots of
Eq. (13). Let q1 =

1
p1

 π/2
0 |q(τ )|dτ and q2 =

1
p2

 π

π/2 q(τ )dτ .

Lemma 2. (1) Let λ ≥ 4q21. Then for the solution w1 (x, λ) of Eq. (8), the following inequality holds:

|w1 (x, λ)| ≤
1
q1


4q21a

2
2 + p21a

2
1, x ∈


0,

π

2


. (14)

(2) Let λ ≥ max

4q21, 4q

2
2


. Then for the solution w2 (x, λ) of Eq. (9), the following inequality holds:

|w2 (x, λ)| ≤
2
q1


4q21a

2
2 + p21a

2
1

γ1

δ1

+ p2γ2

p1δ1

 , x ∈

π

2
, π

. (15)

Proof. Let B1λ = max[0, π
2 ] |w1 (x, λ)|. Then from (8), it follows that, for every λ > 0, the following inequality holds:

B1λ ≤


a22 +

p21a
2
1

s2
+

1
s
B1λq1.

If s ≥ 2q1 we get (14). Differentiating (8) with respect to x, we have

w′

1(x, λ) = −
sa2
p1

sin
s
p1

x − a1 cos
s
p1

x −
1
p21

∫ x

0
q(τ ) cos

s
p1

(x − τ) w1(τ − ∆ (τ ))dτ . (16)

From (16) and (14), it follows that, for s ≥ 2q1, the following inequality holds:

w′

1(x, λ)
 ≤


s2a22
p21

+ a21 +
1
p1


4q21a

2
2 + p21a

2
1.
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Hence w′

1(x, λ)


s
≤

1
p1q1


4q21a

2
2 + p21a

2
1. (17)

Let B2λ = max[ π
2 ,π] |w2 (x, λ)|. Then from (9), (14) and (17) it follows that, for s ≥ 2q1, the following inequalities hold:

B2λ ≤
1
q1

γ1

δ1

4q21a
2
2 + p21a

2
1 + |p2|

γ2

δ2

 1
|p1q1|


4q21a

2
2 + p21a

2
1 +

1
2q2

B2λq2,

B2λ ≤
2
q1


4q21a

2
2 + p21a

2
1

γ1

δ1

+ p2γ2

p1δ1

 .

Hence if λ ≥ max

4q21, 4q

2
2


we get (15). �

Theorem 2. The problem (1)–(5) has an infinite set of positive eigenvalues.

Proof. Differentiating (9) with respect to x, we get

w′

2(x, λ) = −
sγ1

p2δ1
w′

1

π

2
, λ

sin

s
p2


x −

π

2


+

γ2w
′

1


π
2 , λ


δ2

cos
s
p2


x −

π

2


−

1
p22

∫ x

π/2
q(τ ) cos

s
p2

(x − τ) w2(τ − ∆ (τ ) , λ)dτ . (18)

From (8), (9), (13), (16) and (18), we get

−
sγ1

p2δ1


a2 cos

sπ
2p1

−
a1
s

sin
sπ
2p1

−
1
sp1

∫ π
2

0
q(τ ) sin

s
p1

π

2
− τ


ω1(τ − ∆(τ ), λ)dτ


sin

sπ
2p2

+
γ2

δ2


−

sa2
p1

sin
sπ
2p1

− a1 cos
sπ
2p1

−
1
p21

∫ π
2

0
q(τ ) cos

s
p1

π

2
− τ


ω1(τ − ∆(τ ), λ)dτ



× cos
sπ
2p2

−
1
p22

∫ π

π/2
q(τ ) cos

s
p2

(π − τ)ω2(τ − ∆(τ ), λ)dτ

+ λd


γ1

δ1


a2 cos

sπ
2p1

−
a1p1
s

sin
sπ
2p1

−
1
sp1

∫ π
2

0
q(τ ) sin

s
p1

π

2
− τ


ω1(τ − ∆(τ ), λ)dτ


cos

sπ
2p2

+
γ2p2
δ2s


−

sa2
p1

sin
sπ
2p1

− a1 cos
sπ
2p1

−
1
p21

∫ π
2

0
q(τ ) cos

s
p1

π

2
− τ


ω1(τ − ∆(τ ), λ)dτ



× sin
sπ
2p2

−
1
sp2

∫ π

π
2

q(τ ) sin
s
p2

(π − τ)ω2(τ − ∆(τ ), λ)dτ


. (19)

There are two possible cases: (1) a2 ≠ 0, (2) a2 = 0. In this paper, we shall consider only case (1). The other cases may be
considered analogically. Let λ be sufficiently large. Then, by (14) and (15), Eq. (19) may be rewritten in the form

s cos sπ
p1 + p2
2p1p2

+ O(1) = 0. (20)

Obviously, for large s Eq. (20) has an infinite set of roots. Thus the theorem is proved. �

3. Asymptotic formulas for eigenvalues and eigenfunctions

Now we begin to study asymptotic properties of eigenvalues and eigenfunctions. In the following we shall assume that
s is sufficiently large. From (8) and (14), we get

ω1(x, λ) = O(1) on

0,

π

2


. (21)

From (9) and (15), we get

ω2(x, λ) = O(1) on
π

2
, π

. (22)
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The existence and continuity of the derivatives ω′

1s(x, λ) for 0 ≤ x ≤
π
2 , |λ| < ∞, and ω′

2s(x, λ) for π
2 ≤ x ≤ π, |λ| < ∞,

follow from Theorem 1.4.1 in [2].

ω′

1s(x, λ) = O(1), x ∈


0,

π

2


and ω′

2s(x, λ) = O(1), x ∈

π

2
, π

. (23)

Theorem 3. Let n be a natural number. For each sufficiently large n, in case (1), there is exactly one eigenvalue of the problem

(1)–(5) near p21p
2
2

(p1+p22)
(2n + 1)2.

Proof. We consider the expression which is denoted by O(1) in Eq. (20). If formulas (21)–(23) are taken into consideration,
it can be shown by differentiation with respect to s that for large s this expression has bounded derivative. It is obvious that
for large s the roots of Eq. (20) are situated close to entire numbers. We shall show that, for large n, only one root (20) lies

near to each p21p
2
2

(p1+p2)2
(2n + 1)2. We consider the function φ(s) = s cos sπ p1+p2

2p1p2
+ O(1). Its derivative, which has the form

φ′(s) = cos sπ p1+p2
2p1p2

− sπ p1+p2
2p1p2

sin sπ p1+p2
2p1p2

+O(1), does not vanish for s close to n for sufficiently large n. Thus our assertion
follows by Rolle’s theorem. �

Let n be sufficiently large. In what followswe shall denote by λn = s2n the eigenvalue of the problem (1)–(5) situated near
p21p

2
2

(p1+p2)2
(2n + 1)2. We set sn =

p1p2(2n+1)
p1+p2

+ δn. From (20) it follows that δn = O
 1
n


. Consequently

sn =
p1p2 (2n + 1)

p1 + p2
+ O


1
n


. (24)

The formula (24) makes it possible to obtain asymptotic expressions for the eigenfunction of the problem (1)–(5). From (8),
(16) and (21), we get

ω1(x, λ) = a2 cos
s
p1

x + O

1
s


, (25)

ω
′

1(x, λ) = −
sa2
p1

sin
s
p1

x + O (1) . (26)

From (9), (22), (25) and (26), we get

ω2(x, λ) =
γ1a2
δ1

cos s


π(p2−p1)
2p1p2

+
x
p2


+ O


1
s


. (27)

By putting (24) in (25) and (27), we derive that

u1n = w1 (x, λn) = a2 cos
p2 (2n + 1)
p1 + p2

x + O

1
n


,

u2n = w2 (x, λn) =
γ1a2
δ1

cos


π (p2 − p1) (2n + 1)
2 (p1 + p2)

+
p1 (2n + 1)
p1 + p2

x


+ O

1
n


.

Hence the eigenfunctions un(x) have the following asymptotic representation:

un(x) =


a2 cos

p2 (2n + 1)
p1 + p2

x + O

1
n


for x ∈


0,

π

2


,

γ1

δ1
cos


π (p2 − p1) (2n + 1)

2 (p1 + p2)
+

p1 (2n + 1)
p1 + p2

x


+ O

1
n


for x ∈

π

2
, π

.

Under some additional conditions, more exact asymptotic formulas which depend upon the retardation may be obtained.
Let us assume that the following conditions are fulfilled:

(a) The derivatives q′(x) and ∆′′(x) exist and are bounded in

0, π

2

 
π
2 , π


and have finite limits q′


π
2 ± 0


= limx→ π

2 ±0

q′(x) and ∆′′


π
2 ± 0


= limx→ π

2 ±0 ∆′′(x), respectively.
(b) ∆′(x) ≤ 1 in


0, π

2

 
π
2 , π


, ∆(0) = 0 and limx→ π

2 +0 ∆(x) = 0.

By using (b), we have

x − ∆(x) ≥ 0, for x ∈


0,

π

2


and x − ∆(x) ≥

π

2
, for x ∈

π

2
, π

. (28)
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From (25), (27) and (28) we have

w1 (τ − ∆ (τ ) , λ) = a2 cos
s
p1

(τ − ∆ (τ )) + O

1
s


, (29)

w2 (τ − ∆ (τ ) , λ) =
γ1a2
δ1

cos s


π (p2 − p1)
2p1p2

+
τ − ∆ (τ )

p2


+ O


1
s


. (30)

Putting these expressions into (19), we have

0 =
sda2γ1

δ1
cos

sπ (p1 + p2)
2p1p2

−
γ1

δ1


da1p1 +

a2
p2


sin

sπ (p1 + p2)
2p1p2

−
da2γ1

δ1

[
1
p1

sin
sπ (p1 + p2)

2p1p2

∫ π/2

0

q (τ )

2

[
cos

s∆(τ )

p1
+ cos

s
p1

(2τ − ∆(τ ))

]
dτ

−
1
p1

cos
sπ (p1 + p2)

2p1p2

∫ π/2

0

q (τ )

2

[
sin

s∆(τ )

p1
+ sin

s
p1

(2τ − ∆(τ ))

]
dτ

+
1
p2

cos
sπ (p2 − p1)

2p1p2
sin

sπ
p2

∫ π

π/2

q (τ )

2

[
cos

s∆(τ )

p2
+ cos

s
p2

(2τ − ∆(τ ))

]
dτ

−
1
p2

cos
sπ (p2 − p1)

2p1p2
cos

sπ
p2

∫ π

π/2

q (τ )

2

[
sin

s∆(τ )

p2
+ sin

s
p2

(2τ − ∆(τ ))

]
dτ

−
1
p2

sin
sπ (p2 − p1)

2p1p2
sin

sπ
p2

∫ π

π/2

q (τ )

2

[
sin

s∆(τ )

p2
− sin

s
p2

(2τ − ∆(τ ))

]
dτ

−
1
p2

sin
sπ (p2 − p1)

2p1p2
cos

sπ
p2

∫ π

π/2

q (τ )

2

[
cos

s∆(τ )

p2
− cos

s
p2

(2τ − ∆(τ ))

]
dτ
]

+ O

1
s


. (31)

Let

A (x, s, ∆(τ )) =
1
2

∫ x

0
q(τ ) sin

s
p1

∆(τ ) dτ , B(x, s, ∆(τ )) =
1
2

∫ x

0
q(τ ) cos

s
p1

∆(τ ) dτ . (32)

It is obvious that these functions are bounded for 0 ≤ x ≤ π, 0 < s < ∞. Let

C (x, s, ∆(τ )) =
1
2

∫ x

π/2
q(τ ) sin

s
p2

∆(τ ) dτ , D (x, s, ∆(τ )) =
1
2

∫ x

π/2
q(τ ) cos

s
p2

∆(τ ) dτ . (33)

It is obvious that these functions are bounded for π
2 ≤ x ≤ π, 0 < s < ∞.

Under the conditions (a) and (b) the following formulas∫ x

0
q(τ ) cos

s
p1

(2τ − ∆(τ ))dτ = O

1
s


,

∫ x

0
q(τ ) sin

s
p1

(2τ − ∆(τ ))dτ = O

1
s


∫ x

π/2
q(τ ) cos

s
p2

(2τ − ∆(τ ))dτ = O

1
s


,

∫ x

π/2
q(τ ) sin

s
p2

(2τ − ∆(τ ))dτ = O

1
s

 (34)

can be proved by the same technique in Lemma 3.3.3 in [2]. From (31)–(34) and sn =
p1p2(2n+1)

p1+p2
+ δn, we have

cot


π

2
(2n + 1) +

π (p1 + p2) δn

2p1p2


=

p1 + p2
(2n + 1) p1p2

[
d
p2

D


π,
p1p2 (2n + 1)

p1 + p2
, ∆ (τ )


+

da1p1
a2

+
1
p2

+
d
p1

B


π

2
,
p1p2 (2n + 1)

p1 + p2
, ∆ (τ )

]
+ O


1
n2


and finally

sn =
p1p2 (2n + 1)

p1 + p2
−

2
π(2n + 1)

[
d
p2

D


π,
p1p2 (2n + 1)

p1 + p2
, ∆ (τ )


+

da1p1
a2

+
1
p2

+
d
p1

B(
π

2
,
p1p2 (2n + 1)

p1 + p2
, ∆(τ ))

]
+ O


1
n2


. (35)

Thus, we have proven the following theorem.
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Theorem 4. If conditions (a) and (b) are satisfied, then the positive eigenvalues λn = s2n of the problem (1)–(5) have the
(35) asymptotic representation for n → ∞.

We nowmay obtain a sharper asymptotic formula for the eigenfunctions. From (8) and (29)

w1(x, λ) = a2 cos
s
p1

x −
a1p1
s

sin
s
p1

x

−
a2p1
s

∫ x

0
q (τ ) sin

s
p1

(x − τ) cos
s
p1

(τ − ∆ (τ )) dτ + O


1
s2


.

Thus, from (32)–(34)

w1(x, λ) = a2 cos
s
p1

x


1 +

A


π
2 , s, ∆(τ )


sp1



−

sin s
p1
x

s

[
a1p1 +

a2
p1

B (x, s, ∆(τ ))

]
+ O


1
s2


. (36)

Replacing s by sn and using (35), we have

u1n(x) = a2 cos
p2 (2n + 1)
p1 + p2

x

1 +

(p1 + p2) A

x, p1p2(2n+1)

p1+p2
, ∆ (τ )


p1p2 (2n + 1)


+ a2 sin

p2 (2n + 1)
p1 + p2

x


2x

π (2n + 1) p1


dD

π,

p1p2(2n+1)
p1+p2

, ∆ (τ )


p2
+

da1p1
a2

+
1
p2

+ dB


π

2
,
p1p2 (2n + 1)

p1 + p2
, ∆ (τ )


−

p1 + p2
p1p2 (2n + 1)

sin
p2 (2n + 1)
p1 + p2

x

×

a1p1 +

a2B

x, p1p2(2n+1)

p1+p2
, ∆ (τ )


p1

+ O


1
n2


. (37)

From (16), (29) and (32), we have

w
′

1 (x, λ)

s
= −

a2
p1

sin
s
p1

x

1 +

A (x, s, ∆(τ ))

sp1


−

cos s
p1
x

s


a1 +

a2
p21

B (x, s, ∆(τ ))


+ O


1
s2


, x ∈


0,

π

2


. (38)

From (9), (30), (34), (36) and (38) we have

w2 (x, λ) =
γ1

δ1


a2 cos

sπ
2p1


1 +

A


π
2 , s, ∆(τ )


sp1


−

sin sπ
2p1

s


a1p1 +

a2B


π
2 , s, ∆(τ )


p1



+O


1
s2


cos

s
p2


x −

π

2


−

γ2p2
δ2p1


a2 sin

sπ
2p1


1 +

A


π
2 , s, ∆(τ )


sp1



+

cos sπ
2p1

s


a1p1 +

a2B


π
2 , s, ∆(τ )


p1


+ O


1
s2


sin

s
p2


x −

π

2


−

1
sp2

×

∫ x

π/2
q (τ ) sin

s
p2

(x − τ)

[
γ1a2
δ1

cos
s
p2


π (p2 − p1)

2p1
+ τ − ∆ (τ )


+ O


1
s


dτ
]

=


γ1a2
δ1


1 +

A


π
2 , s, ∆(τ )


sp1


+

γ1a2C (x, s, ∆(τ ))

sp2δ1


cos

s
p2


x +

π (p2 − p1)
2p1



−


γ1a2D (x, s, ∆(τ ))

sp2δ1
+

γ1

sδ1


a1p1 +

a2B


π
2 , s, ∆(τ )


p1



× sin
s
p2


x +

π (p2 − p1)
2p1


+ O


1
s2


, x ∈

π

2
, π

.
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Now, replacing s by sn and using (35), we have

u2n(x) =

γ1a2
δ1

1 +

(p1 + p2) A


π
2 ,

p1p2(2n+1)
p1+p2

, ∆ (τ )


p21p2 (2n + 1)


+

γ1 (p1 + p2) A

x, p1p2(2n+1)

p1+p2
, ∆ (τ )


δ1p1p22 (2n + 1)

 cos

p1x(2n + 1)

p1+p2
+

π(p2 − p1) (2n + 1)
2 (p1+p2)



×

γ1a2
δ1

 2
π (2n + 1)

dA

π,

p1p2(2n+1)
p1+p2

, ∆ (τ )


p2
+

da1p1
a2

+
1
p2

+

dB


π
2 ,

p1p2(2n+1)
p1+p2

, ∆ (τ )


p1

 x
p2

+
π (p2 − p1)

2p1p2



−

a2γ1 (p1 + p2)D

x, p1p2(2n+1)

p1+p2
, ∆ (τ )


p1p22δ1 (2n + 1)

+
γ1 (p1 + p2)

p1p2δ1 (2n + 1)
(a1p1

+

a2B


π
2 ,

p1p2(2n+1)
p1+p2

, ∆ (τ )


p1

 sin

p1x(2n + 1)

p1+p2
+

π(p2 − p1) (2n + 1)
2 (p1+p2)


+ O


1
n2


. (39)

Thus, we have proven the following theorem.

Theorem 5. If conditions (a) and (b) are satisfied, then the eigenfunctions un(x) of the problem (1)–(5) have the following
asymptotic representation for n → ∞:

un(x) =

u1n(x) for x ∈


0,

π

2


u2n(x) for x ∈

π

2
, π


where u1n(x) and u2n(x) defined as in (37) and (39), respectively.

4. Conclusion

In this study, first we obtain asymptotic formulas for eigenvalues and eigenfunctions for the discontinuous boundary
value problem with retarded argument which contains a spectral parameter in the boundary condition. Then under
additional conditions (a) and (b), more exact asymptotic formulas which depend upon the retardation are obtained.
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