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ABSTRACT 
 

Tarnauceanu [On the poset of subhypergroups of a hypergroup, Int. J. Open Problems Comp. Math. 3(2) (2010) 505-508] 

gave some open problems concerning to the set of subhypergroups of a hypergroup, partially ordered by set inclusion. In this 

study, we obtain that some certain subposets of subhypergroups of a hypergroup are modular or distributive lattice. 
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1. INTRODUCTION 
 

One of the most important problems in algebra is to obtain some of the properties of algebraic 

structures by examining the lattice of subalgebraic structures (such as subgroups of a group, ideals of a 

ring, submodules of a module or ideals of a lattice). Until now, many important results have been 

obtained in this subject, particularly, in group theory [7]. As a generalization of algebraic structures, 

hyper structure was introduced by Marty [4] in 1934. Since then this theory has enjoyed a rapid 

development.  

 

In this study, we investigate the properties of closed, invertible, ultraclosed and conjugable 

subhypergroups classes. We study when the hypergroups satisfy the property that the hyperproduct of 

subhypergroups becomes an operation on the set of subhypergroups. It is investigated in which cases, 

the poset of the subhypergroups of a hypergroup is a lattice. It is examined when this lattice is modular 

or distributive. Thus some information about a hypergroup may be obtained by investigating the lattice 

of its subhypergroups.  

 

2. PRELIMINARIES 

 

We first give some fundamental definitions and results from literature. For more details, we refer to 

the references quoted from [1-3].  

 

Now we first introduce the lattice-theoretic base of our work. Let 𝐿 be a lattice where "≤" denotes the 

partial ordering of 𝐿, the join (sup) and meet (inf) of the elements of 𝐿 are denoted by "∨" and "∧", 

respectively. We also write 1 and 0 for top and bottom elements of 𝐿, respectively. We say that 𝐿 is a 

complete lattice if 𝐿 is closed with respect to arbitrary suprema and arbitrary infima. It is well known 

that a nonempty ordered set 𝐿 is a complete lattice if it is closed under arbitrary infima. 

A lattice 𝐿 is called distributive if, for any 𝑥, 𝑦, 𝑧 ∈ 𝐿,  

 

 𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧). 
 

A lattice 𝐿 is called modular if, for any 𝑥, 𝑦, 𝑧 ∈ 𝐿 with 𝑥 ≤ 𝑦,  

 

 𝑥 ∨ (𝑦 ∧ 𝑧) = 𝑦 ∧ (𝑥 ∨ 𝑧). 
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A lattice is distributive if and only if it is modular and does not contain a sublattice isomorphic to the 

five element lattice 𝑀5. 

 

 
 

Figure 1. Hasse diagram of the lattice 𝑀5 

 

Let 𝐻 be a nonempty set and let 𝑃∗(𝐻) be the set of all nonempty subsets of 𝐻. Then a hyperoperation 

on 𝐻 is a map ∘: 𝐻 × 𝐻 ⟶ 𝑃∗(𝐻) and the couple (𝐻,∘) is called a hypergroupoid. 

 

For any two nonempty subsets 𝐴 and 𝐵 of 𝐻 and 𝑥 ∈ 𝐻, the sets 𝐴 ∘ 𝐵, 𝐴 ∘ 𝑥 and 𝑥 ∘ 𝐴 are defined by:  

 

 𝐴 ∘ 𝐵 = ⋃ {𝑎 ∘ 𝑏  |  𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}, 
 

 𝐴 ∘ 𝑥 = 𝐴 ∘ {𝑥}, 
 

 𝑥 ∘ 𝐴 = {𝑥} ∘ 𝐴. 
 

The set 𝐴 ∘ 𝐵 is called hyperproduct of 𝐴 and 𝐵. 

A hypergroupoid (𝐻,∘) is called semihypergroup if for all 𝑎, 𝑏, 𝑐 of 𝐻 we have  

 𝑎 ∘ (𝑏 ∘ 𝑐) = (𝑎 ∘ 𝑏) ∘ 𝑐. 
A hypergroupoid (𝐻,∘) is called quasihypergroup if for all 𝑎 of 𝐻 we have  

 𝑎 ∘ 𝐻 = 𝐻 ∘ 𝑎 = 𝐻. 
A hypergroup is a hypergroupoid which is both a semihypergroup and a quasihypergroup. 

 

(𝐻,∘) is called a commutative hypergroup of H if 𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 for all 𝑥, 𝑦 ∈ 𝐻.  A nonempty subset K 

of a hypergroup (𝐻,∘) is called a subhypergroup of H if 𝐾 ∘ 𝐾 ⊆ 𝐾 and 𝐾 is a hypergroup under the 

hyperoperation ∘. In other words, it is a hypergroup according to the hyperoperation on 𝐻. 𝐾 provides 

the following conditions:   

 

    1.  𝑎 ∘ 𝑏 ⊆ 𝐾 for all 𝑎, 𝑏 ∈ 𝐾.  

    2.  𝑎 ∘ 𝐾 = 𝐾 ∘ 𝑎 = 𝐾, for all 𝑎 ∈ 𝐾.  

   A nonempty subset K of a semihypergroup (𝐻,∘) is called a complete part of H if the following 

implication holds: 

 

 For all 𝑛 ≥ 2,   𝑛 ∈ ℕ  and for all (𝑥1, . . . , 𝑥𝑛) ∈ 𝐻𝑛, ∏𝑛
𝑖=1 𝑥𝑖 ∩ 𝐾 ≠ ∅ ⟹ ∏𝑛

𝑖=1 𝑥𝑖 ⊂ 𝐾. 

 

Definition 2.1 [3] A subhypergroup 𝐾 of a hypergroup (𝐻,∘) is called   

 

    • closed if for all 𝑎, 𝑏 ∈ 𝐾 and 𝑥 ∈ 𝐻, from 𝑎 ∈ 𝑥 ∘ 𝑏 and 𝑎 ∈ 𝑏 ∘ 𝑥, it follows that 𝑥 ∈ 𝐾;  

    • invertible if 𝑎 ∈ 𝑏 ∘ 𝐾 implies 𝑏 ∈ 𝑎 ∘ 𝐾 and 𝑎 ∈ 𝐾 ∘ 𝑏 implies 𝑏 ∈ 𝐾 ∘ 𝑎 for any 𝑎, 𝑏 ∈ 𝐻;  

    • ultraclosed if for all 𝑥 ∈ 𝐻, we have 𝐾 ∘ 𝑥 ∩ (𝐻\𝐾) ∘ 𝑥 = ∅ and 𝑥 ∘ 𝐾 ∩ 𝑥 ∘ (𝐻\𝐾) = ∅;  

    • conjugable if it is closed and for all 𝑥 ∈ 𝐻, there exists 𝑥′, 𝑦′ ∈ 𝐻 such that 𝑥′ ∘ 𝑥 ⊆ 𝐾 and 𝑥 ∘
𝑦′ ⊆ 𝐾.  
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Note that the sets of all subhypergroups, closed subhypergroups, invertible subhypergroups, 

ultraclosed subhypergroups and conjugable subhypergroups of 𝐻 will be denoted by 𝑆𝑢𝑏(𝐻), 

𝐶𝑆𝑢𝑏(𝐻), 𝐼𝑆𝑢𝑏(𝐻), 𝑈𝑆𝑢𝑏(𝐻) and 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻), respectively. Moreover, we remark that these sets are 

partially ordered under the set inclusion. It is clear that 𝐾 ∘ 𝐾 = 𝐾 for any 𝐾 subhypergroup of 𝐻 and 

𝐶𝑜𝑛𝑆𝑢𝑏(𝐻) ⊆ 𝑈𝑆𝑢𝑏(𝐻) ⊆ 𝐼𝑆𝑢𝑏(𝐻) ⊆ 𝐶𝑆𝑢𝑏(𝐻) ⊆ 𝑆𝑢𝑏(𝐻). 

 

In the literarure, the set {𝑒 ∈ 𝐻  |∃𝑥 ∈ 𝐻  𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡  𝑥 ∈ 𝑥 ∘ 𝑒 ∪ 𝑒 ∘ 𝑥} denoted by 𝐼𝑃 and it is called 

the set of partial identities of 𝐻. 

 

Theorem 2.2 [3, Theorem 2.3.14] A subhypergroups 𝐾 of a hypergroup (𝐻,∘) is ultraclosed if and 

only if 𝐾 is closed and 𝐼𝑃 ⊆ 𝐾. 

 

Theorem 2.3 [6, Corolary 2.11] The non-void intersection of two closed subhypergroups is a closed 

subhypergroup. 

 

Theorem 2.4 [2, Theorem 36] A subhypergroups 𝐾 of a hypergroup 𝐻 is a complete part if and only 

if 𝐾 is conjugable. 

 

3. MAIN RESULTS 

 

The following proposition can be easily from the axioms:  

Proposition 3.1 Let (𝐻,∘) be a hypergroup . Then   

    • if 𝐴 ⊆ 𝐵, then 𝐴 ∘ 𝐶 ⊆ 𝐵 ∘ 𝐶 and 𝐶 ∘ 𝐴 ⊆ 𝐶 ∘ 𝐵 for every 𝐴, 𝐵, 𝐶 ∈ 𝑃∗(𝐻),  

    • if 𝑎 ∈ 𝐴, then 𝐵 ∘ 𝑎 ⊆ 𝐵 ∘ 𝐴 and 𝑎 ∘ 𝐵 ⊆ 𝐴 ∘ 𝐵 for every 𝐴, 𝐵 ∈ 𝑃∗(𝐻),  

    • if 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 , then 𝑎 ∘ 𝑏 ⊆ 𝐴 ∘ 𝐵 for every 𝐴, 𝐵 ∈ 𝑃∗(𝐻).  

 

Lemma 3.2 Let 𝐾1 and 𝐾2 be invertible subhypergroups of 𝐻. Then 𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1 if and only if 

𝐾1 ∘ 𝐾2 and 𝐾2 ∘ 𝐾1 are invertible subhypergroups of 𝐻. 

 

Proof. Assume that 𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1. Let 𝑎 ∈ 𝐾1 ∘ 𝐾2. Then there exist 𝑘2 ∈ 𝐾2 such that 𝑎 ∈ 𝐾1 ∘
𝑘2. Since 𝐾1 is invertible, 𝑘2 ∈ 𝐾1 ∘ 𝑎. Hence, 

 

 

𝐾1 ∘ 𝐾2 = 𝐾1 ∘ 𝐾2 ∘ 𝑘2

⊆ 𝐾1 ∘ 𝐾2 ∘ 𝐾1 ∘ 𝑎

= 𝐾1 ∘ 𝐾1 ∘ 𝐾2 ∘ 𝑎

= 𝐾1 ∘ 𝐾2 ∘ 𝑎

 

On the other hand, since 𝑎 ∈ 𝐾1 ∘ 𝐾2, there exist 𝑘1 ∈ 𝐾1 and 𝑘2 ∈ 𝐾2 such that 𝑎 ∈ 𝑘1 ∘ 𝑘2.  

 

𝐾1 ∘ 𝐾2 ∘ 𝑎 ⊆ 𝐾1 ∘ 𝐾2 ∘ 𝑘1 ∘ 𝑘2

= 𝐾2 ∘ 𝐾1 ∘ 𝑘1 ∘ 𝑘2

= 𝐾2 ∘ 𝐾1 ∘ 𝑘2

= 𝐾1 ∘ 𝐾2 ∘ 𝑘2

= 𝐾1 ∘ 𝐾2

 

Hence 𝐾1 ∘ 𝐾2 ∘ 𝑎 = 𝐾1 ∘ 𝐾2 for all 𝑎 ∈ 𝐾1 ∘ 𝐾2. Similarly, 𝑎 ∘ 𝐾1 ∘ 𝐾2 = 𝐾1 ∘ 𝐾2. 

Let 𝑎, 𝑏 ∈ 𝐾1 ∘ 𝐾2. 

 

 

𝑎 ∘ 𝑏 ⊆ 𝐾1 ∘ 𝐾2 ∘ 𝐾1 ∘ 𝐾2

= 𝐾1 ∘ 𝐾1 ∘ 𝐾2 ∘ 𝐾2

= 𝐾1 ∘ 𝐾2

 

Hence 𝐾1 ∘ 𝐾2 ∈ 𝑆𝑢𝑏(𝐻). Let 𝑥 ∈ 𝐾1 ∘ 𝐾2 ∘ 𝑦. Then there exists a 𝑘 ∈ 𝐾2 ∘ 𝑦 such that 𝑥 ∈ 𝐾1 ∘ 𝑘. 

Since 𝐾1 and 𝐾2 are invertible subhypergroups, we obtain that 𝑦 ∈ 𝐾2 ∘ 𝑘 and 𝑘 ∈ 𝐾1 ∘ 𝑥. Thus 𝑦 ∈
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𝐾2 ∘ 𝐾1 ∘ 𝑥 = 𝐾1 ∘ 𝐾2 ∘ 𝑥. Similarly, it is easily seen that if 𝑥 ∈ 𝑦 ∘ 𝐾1 ∘ 𝐾2, then 𝑦 ∈ 𝑥 ∘ 𝐾1 ∘ 𝐾2. 

Hence 𝐾1 ∘ 𝐾2 is invertible subhypergroup of 𝐻. 

 

Conversely, assume that 𝐾1 ∘ 𝐾2 and 𝐾2 ∘ 𝐾1 are invertible subhypergroups of 𝐻. Firstly we prove that 

𝐾2 ∘ 𝐾1 ∘ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2. Let 𝑎 ∈ 𝐾2 ∘ 𝐾1 ∘ 𝐾2. Since 𝐾1 ∘ 𝐾2 ∘ 𝐾1 ∘ 𝐾2 = 𝐾1 ∘ 𝐾2, it follows that 𝐾1 ∘
𝑎 ⊆ 𝐾1 ∘ 𝐾2. Then, since 𝐾1 ∘ 𝑎 ≠ ∅, we have there exists 𝑥 ∈ 𝐾1 ∘ 𝐾2 such that 𝑥 ∈ 𝐾1 ∘ 𝑎. Since 𝐾1 

is invertible, 𝑎 ∈ 𝐾1 ∘ 𝑥 ⊆ 𝐾1 ∘ 𝐾1 ∘ 𝐾2 = 𝐾1 ∘ 𝐾2. Hence 𝐾2 ∘ 𝐾1 ∘ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2.  

 

Now, we show that 𝐾2 ∘ 𝐾1 ⊆ 𝐾1 ∘ 𝐾2. Let 𝑏 ∈ 𝐾2 ∘ 𝐾1. Then 𝑏 ∘ 𝐾2 ⊆ 𝐾2 ∘ 𝐾1 ∘ 𝐾2. Hence 𝑏 ∘ 𝐾2 ⊆
𝐾1 ∘ 𝐾2. Here, we note that 𝑏 ∘ 𝐾2 ≠ ∅, then there exists 𝑥 ∈ 𝐾1 ∘ 𝐾2 such that 𝑥 ∈ 𝑏 ∘ 𝐾2. Since 𝐾2 is 

invertible, 𝑏 ∈ 𝑥 ∘ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2 ∘ 𝐾2 = 𝐾1 ∘ 𝐾2. Hence 𝐾2 ∘ 𝐾1 ⊆ 𝐾1 ∘ 𝐾2. Similarly, 𝐾1 ∘ 𝐾2 ⊆ 𝐾2 ∘
𝐾1. Consequently, 𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1. 

 

The following example shows that the hyperproduct of two closed subhypergroups of a hypergroup 

may not be closed subhypergroup. 

 

Example 3.3 Define the following hyperoperation on the real set ℝ:  

 𝑥 ∘ 𝑦 = {
{𝑥}, 𝑖𝑓    𝑥 = 𝑦,
(𝑚𝑖𝑛{𝑥, 𝑦}, 𝑚𝑎𝑥{𝑥, 𝑦}) 𝑖𝑓    𝑥 ≠ 𝑦.

 

Then (ℝ,∘) is a hypergroup [3]. 

It is easy to see that {1} and {2} are closed subhypergroups of (ℝ,∘). The hyperproduct of {1} and {2} 

{1} ∘ {2} = (1,2) is a subhypergroup, but it is not closed. 

 

Lemma 3.4 Let (𝐻,∘) be a hypergroup such that 𝑎 ∘ 𝑏 ∩ {𝑎, 𝑏} ≠ ∅ for all 𝑎, 𝑏 ∈ 𝐻. If 𝐾1, 𝐾2 ∈
𝐶𝑆𝑢𝑏(𝐻) or 𝐾1, 𝐾2 ∈ 𝐼𝑆𝑢𝑏(𝐻), then 𝐾1 ∩ 𝐾2 ≠ ∅.  

 

Proof. Suppose that 𝐾1, 𝐾2 ∈ 𝐶𝑆𝑢𝑏(𝐻). Let 𝑎 ∈ 𝐾1 and 𝑏 ∈ 𝐾2. Since (𝑎 ∘ 𝑏) ∩ {𝑎, 𝑏} ≠ ∅, 𝑎 ∈ 𝑎 ∘ 𝑏 

or 𝑏 ∈ 𝑎 ∘ 𝑏. Since 𝐾1, 𝐾2 are closed subhypergroups, 𝑏 ∈ 𝐾1 or 𝑎 ∈ 𝐾2. Therefore, 𝑎 ∈ 𝐾1 ∩ 𝐾2 or 

𝑏 ∈ 𝐾1 ∩ 𝐾2. Hence 𝐾1 ∩ 𝐾2 ≠ ∅. If 𝐾1, 𝐾2 ∈ 𝐼𝑆𝑢𝑏(𝐻), then, with the above explanations, 𝑎 ∈ 𝐾1 ∘ 𝑏 

or 𝑏 ∈ 𝑎 ∘ 𝐾2. This implies 𝑏 ∈ 𝐾1 ∘ 𝑎 = 𝐾1 or 𝑎 ∈ 𝑏 ∘ 𝐾2 = 𝐾2 and hence 𝐾1 ∩ 𝐾2 ≠ ∅.  

 

Theorem 3.5 Let (𝐻,∘) be a commutative hypergroup such that 𝑎 ∘ 𝑏 ∩ {𝑎, 𝑏} ≠ ∅ for all 𝑎, 𝑏 ∈ 𝐻. 

Then (𝐼𝑆𝑢𝑏(𝐻), ⊆) is a lattice such that 𝐾1 ∨ 𝐾2 = 𝐾1 ∘ 𝐾2 and 𝐾1 ∧ 𝐾2 = 𝐾1 ∩ 𝐾2 for all 𝐾1, 𝐾2 ∈
𝐼𝑆𝑢𝑏(𝐻). 

 

Proof. Let 𝐾1, 𝐾2 ∈ 𝐼𝑆𝑢𝑏(𝐻). Then by Lemma 3.2, we have 𝐾1 ∘ 𝐾2 is an invertible subhypergroup. 

Firstly we prove that 𝐾1 ∪ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2. Let 𝑥 ∈ 𝐾1. Then, since 𝐾2 ≠ ∅, there exists 𝑏 ∈ 𝐾2. 

Therefore, by hypothesis, 𝑥 ∈ 𝑥 ∘ 𝑏 or 𝑏 ∈ 𝑥 ∘ 𝑏. If 𝑥 ∈ 𝑥 ∘ 𝑏, then 𝑥 ∈ 𝐾1 ∘ 𝐾2. If 𝑏 ∈ 𝑥 ∘ 𝑏, then 𝑏 ∈
𝑥 ∘ 𝐾2. Thus 𝑥 ∈ 𝑏 ∘ 𝐾2 = 𝐾2. Therefore 𝑥 ∈ 𝑥 ∘ 𝑥 ⊆ 𝐾1 ∘ 𝐾2. Hence 𝐾1 ⊆ 𝐾1 ∘ 𝐾2. Similarly, 𝐾2 ⊆
𝐾1 ∘ 𝐾2. Hence, 𝐾1 ∪ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2. 

Now we prove that 𝐾1 ∘ 𝐾2 is the smallest invertible subhypergroup containing 𝐾1 and 𝐾2. Let 𝐾3 be a 

invertible subhypergroup such that 𝐾1 ⊆ 𝐾3 and 𝐾2 ⊆ 𝐾3. Then 𝐾1 ∘ 𝐾2 ⊆ 𝐾3 ∘ 𝐾3 = 𝐾3. 

Consequently 𝐾1 ∨ 𝐾2 = 𝐾1 ∘ 𝐾2.  

Next, we prove that 𝐾1 ∧ 𝐾2 = 𝐾1 ∩ 𝐾2. By Lemma 3.4, 𝐾1 ∩ 𝐾2 ≠ ∅. It is enough to show that 𝐾1 ∩
𝐾2 ∈ 𝐼𝑆𝑢𝑏(𝐻). It is clear that 𝑎 ∘ 𝑏 ⊆ 𝐾1 ∩ 𝐾2 and 𝑎 ∘ (𝐾1 ∩ 𝐾2) ⊆ (𝐾1 ∩ 𝐾2) for all 𝑎, 𝑏 ∈ 𝐾1 ∩ 𝐾2. 

Let 𝑥 ∈ 𝐾1 ∩ 𝐾2. As 𝑥 ∈ 𝑎 ∘ 𝐾1 and 𝑥 ∈ 𝑎 ∘ 𝐾2, there exist 𝑘1 ∈ 𝐾1, 𝑘2 ∈ 𝐾2 such that 𝑥 ∈ 𝑎 ∘ 𝑘1, 𝑥 ∈
𝑎 ∘ 𝑘2. Inside the proof of Lemma 3.4, we have 𝑘1 ∈ 𝐾1 ∩ 𝐾2 or 𝑘2 ∈ 𝐾1 ∩ 𝐾2. Therefore, 𝑥 ∈ 𝑎 ∘
(𝐾1 ∩ 𝐾2). This implies that 𝐾1 ∩ 𝐾2 = 𝑎 ∘ (𝐾1 ∩ 𝐾2) for every 𝑎 ∈ 𝐾1 ∩ 𝐾2. By the commutativity, 

𝐾1 ∩ 𝐾2 = (𝐾1 ∩ 𝐾2) ∘ 𝑎. Hence, 𝐾1 ∩ 𝐾2 ∈ 𝑆𝑢𝑏(𝐻). Further, if 𝑐 ∈ 𝑑 ∘ (𝐾1 ∩ 𝐾2), then 𝑐 ∈ 𝑑 ∘ 𝐾1 

and 𝑐 ∈ 𝑑 ∘ 𝐾2. As 𝐾1, 𝐾2 are invertible, 𝑑 ∈ 𝑐 ∘ 𝐾1 and 𝑑 ∈ 𝑐 ∘ 𝐾2. By repeating the above 

techniques, 𝑑 ∈ 𝑐 ∘ (𝐾1 ∩ 𝐾2). By the commutativity, 𝐾1 ∩ 𝐾2 ∈ 𝐼𝑆𝑢𝑏(𝐻). 
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Theorem 3.6 Let (𝐻,∘) be a commutative hypergroup such that 𝑎 ∘ 𝑏 ∩ {𝑎, 𝑏} ≠ ∅ for all 𝑎, 𝑏 ∈ 𝐻. 

Then (𝐼𝑆𝑢𝑏(𝐻), ⊆) is a distributive lattice. 

 

Proof. Let 𝐾1, 𝐾2, 𝐾3 ∈ 𝐼𝑆𝑢𝑏(𝐻). Since the distributive inequality is valid for every lattice, we have 

(𝐾1 ∧ 𝐾2) ∨ (𝐾1 ∧ 𝐾3) ⊆ 𝐾1 ∧ (𝐾2 ∨ 𝐾3). 

Let 𝑥 ∈ 𝐾1 ∧ (𝐾2 ∨ 𝐾3). Then 𝑥 ∈ 𝐾1 ∩ (𝐾2 ∘ 𝐾3). Since 𝑥 ∈ 𝐾2 ∘ 𝐾3, there exists 𝑏 ∈ 𝐾2 and 𝑐 ∈ 𝐾3 

such that 𝑥 ∈ 𝑏 ∘ 𝑐. We know that 𝑏 ∈ 𝑏 ∘ 𝑐 or 𝑐 ∈ 𝑏 ∘ 𝑐. Since 𝐾2 and 𝐾3 are invertible 

subhypergroups of 𝐻, we obtain 𝑏 ∈ 𝐾3 or 𝑐 ∈ 𝐾2. 

If 𝑐 ∈ 𝐾2, then 𝑥 ∈ 𝑏 ∘ 𝑐 ⊆ 𝐾2 and so 𝑥 ∈ 𝐾1 ∩ 𝐾2. Similarly, if 𝑏 ∈ 𝐾3, then 𝑥 ∈ 𝐾1 ∩ 𝐾3. Hence 

𝐾1 ∩ (𝐾2 ∘ 𝐾3) ⊆ (𝐾1 ∩ 𝐾2) ∪ (𝐾1 ∩ 𝐾3). By Theorem 3.5, (𝐾1 ∩ 𝐾2) ∪ (𝐾1 ∩ 𝐾3) ⊆ (𝐾1 ∩ 𝐾2) ∘
(𝐾1 ∩ 𝐾3). Hence, 𝐾1 ∩ (𝐾2 ∘ 𝐾3) ⊆ (𝐾1 ∩ 𝐾2) ∘ (𝐾1 ∩ 𝐾3). It follows that (𝐾1 ∧ 𝐾2) ∨ (𝐾1 ∧ 𝐾3) =
𝐾1 ∧ (𝐾2 ∨ 𝐾3). This establishes the result. 

 

Even if a hypergroup satisfies the condition of Theorem 3.6, (𝐼𝑆𝑢𝑏(𝐻), ⊆) is not be a complete lattice. 

We can see this in the following example. 

 

Example 3.7 Let us consider the group (ℤ, +) and the subgroups 𝑆𝑖 = 2𝑖ℤ, where 𝑖 ∈ ℕ. For any 𝑥 ∈
ℤ\{0}, there exists a unique integer 𝑛(𝑥), such that 𝑥 ∈ 𝑆𝑛(𝑥)\𝑆𝑛(𝑥)+1. Define the following 

commutative hyperoperation on ℤ\{0}: 

if 𝑛(𝑥) < 𝑛(𝑦), then 𝑥 ∘ 𝑦 = 𝑥 + 𝑆𝑛(𝑦); 

if 𝑛(𝑥) = 𝑛(𝑦), then 𝑥 ∘ 𝑦 = 𝑆𝑛(𝑥)\{0}; 

if 𝑛(𝑥) > 𝑛(𝑦), then 𝑥 ∘ 𝑦 = 𝑦 + 𝑆𝑛(𝑥). 

Notice that if 𝑛(𝑥) < 𝑛(𝑦), then 𝑛(𝑥 + 𝑦) = 𝑛(𝑥). Then (ℤ\{0},∘) is a commutative hypergroup and 

for all 𝑖 ∈ ℕ, 𝑆𝑖\{0} is an invertible subhypergroup of ℤ\{0} [3]. Also 𝐼𝑆𝑢𝑏(ℤ\{0}) = {𝑆𝑖\{0}|  𝑖 ∈
ℕ}. Hence we obtain that 𝐼𝑆𝑢𝑏(ℤ\{0}) is distributive lattice. 

⋂𝑖∈ℕ 𝑆𝑖\{0} = ∅. So it isn’t complete lattice, although 𝐼𝑆𝑢𝑏(ℤ\{0}) is lattice. 

 

Lemma 3.8 Let (𝐻,∘) be a hypergroup. If 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻), then 𝐾1 ∩ 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻).  

 

Proof. Let 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻). 𝐾1, 𝐾2 are closed subhypergroup. Then, by Theorem 2.2, 𝐼𝑃 ⊆ 𝐾1 and 

𝐼𝑃 ⊆ 𝐾2 . Using 𝐼𝑃 ≠ ∅, we obtain that 𝐾1 ∩ 𝐾2 ≠ ∅. Hence 𝐾1 ∩ 𝐾2 ∈ 𝐶𝑆𝑢𝑏(𝐻). According to 

Theorem 2.3, 𝐾1 ∩ 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻), since 𝐼𝑃 ⊆ 𝐾1 ∩ 𝐾2.  

 

Lemma 3.9 Let (𝐻,∘) be a hypergroup and 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻). 𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1 if and only if 𝐾1 ∘
𝐾2 and 𝐾2 ∘ 𝐾1 are ultraclosed subhypergroups of 𝐻. 

 

Proof. Let 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻) such that 𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1. According to Lemma 3.2, 𝐾1 ∘ 𝐾2, 𝐾2 ∘
𝐾1 ∈ 𝐼𝑆𝑢𝑏(𝐻). 

It is easily seen that 𝐼𝑃 ⊆ 𝐼𝑃 ∘ 𝐼𝑃 and 𝐼𝑃 ⊆ 𝐾1 ∘ 𝐾2. Using Theorem 2.2, we obtain that 𝐾1 ∘ 𝐾2 ∈
𝑈𝑆𝑢𝑏(𝐻). 

Conversely, let 𝐾1 ∘ 𝐾2 and 𝐾2 ∘ 𝐾1 be ultraclosed subhypergroups of 𝐻. By Lemma 3.2, 𝐾1 ∘ 𝐾2 =
𝐾2 ∘ 𝐾1.  

 

Theorem 3.10 Let (𝐻,∘) be a commutative hypergroup. Then (𝑈𝑆𝑢𝑏(𝐻), ⊆) is a lattice such that 𝐾1 ∨
𝐾2 = 𝐾1 ∘ 𝐾2 and 𝐾1 ∧ 𝐾2 = 𝐾1 ∩ 𝐾2 for all 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻). 

 

Proof. Let 𝐾1 and 𝐾2 be ultraclosed. Since 𝐾1 ⊆ 𝐾1 ∘ 𝐼𝑃 ⊆ 𝐾1 ∘ 𝐾2, we obtain that 𝐾1 ∪ 𝐾2 ⊆ 𝐾1 ∘ 𝐾2. 

Suppose that 𝐿 ∈ 𝑈𝑆𝑢𝑏(𝐻) such that 𝐾1 ∪ 𝐾2 ⊆ 𝐿. Since 𝐾1 ∘ 𝐾2 ⊆ 𝐿 ∘ 𝐿 = 𝐿, 𝐾1 ∨ 𝐾2 = 𝐾1 ∘ 𝐾2. 

By Lemma 3.8, 𝐾1 ∧ 𝐾2 = 𝐾1 ∩ 𝐾2 for all 𝐾1, 𝐾2 ∈ 𝑈𝑆𝑢𝑏(𝐻). Hence (𝑈𝑆𝑢𝑏(𝐻), ⊆) is a lattice. 

 

Theorem 3.11 Let (𝐻,∘) be a commutative hypergroup. Then (𝑈𝑆𝑢𝑏(𝐻), ⊆) is modular lattice. 
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Proof. Let 𝐾1, 𝐾2 and 𝐾3 be ultraclosed subhypergroups such that 𝐾1 ⊇ 𝐾2.Since the modularity 

inequality is valid for every lattice, we have 𝐾2 ∨ (𝐾1 ∧ 𝐾3) ⊆ 𝐾1 ∧ (𝐾2 ∨ 𝐾3). 

Let 𝑥 ∈ 𝐾1 ∧ (𝐾2 ∨ 𝐾3). 𝑥 ∈ 𝐾1 and 𝑥 ∈ 𝐾2 ∘ 𝐾3. There exists 𝑏 ∈ 𝐾2 and 𝑐 ∈ 𝐾3 such that 𝑥 ∈ 𝑏 ∘ 𝑐. 

We know 𝑥, 𝑏 ∈ 𝐾1.Thus 𝑐 ∈ 𝐾1 since the closeness of 𝐾1. 𝑥 ∈ 𝑏 ∘ 𝑐 ⊆ 𝐾2 ∘ (𝐾1 ∩ 𝐾3) = 𝐾2 ∨ (𝐾1 ∧
𝐾3). 

 

Hence 𝐾1 ∧ (𝐾2 ∨ 𝐾3) ⊆ 𝐾2 ∨ (𝐾1 ∧ 𝐾3). This establishes that the lattice of ultraclosed 

subhypergroups of 𝐻 is a modular lattice. 

 

The following example shows that the lattice (𝑈𝑆𝑢𝑏(𝐻), ⊆) does not have to be distributive. 

Example 3.12 Let us consider the Klein four-group.  

 𝑉 =< 𝑎, 𝑏  |𝑎2 = 𝑏2 = (𝑎𝑏)2 = 1 > 

Then (𝑉,∘) is a hypergroup with the hyperoperation 𝑎 ∘ 𝑏 = {𝑎𝑏} for all 𝑎, 𝑏 ∈ 𝑉. In this situation, 

𝑈𝑆𝑢𝑏(𝑉) = 𝐿(𝑉), where 𝐿(𝑉) is the set of subgroups of 𝑉. Since the lattice structure of 𝐿(𝑉) forms 

𝑀5, 𝑈𝑆𝑢𝑏(𝑉) isn’t a distributive lattice.  

 

Lemma 3.13 Let (𝐻,∘) be a hypergroup and 𝐾1, 𝐾2 ∈ 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻). The following statements are hold.   

    1.  𝐾1 ∩ 𝐾2 ∈ 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻)  

    2.  𝐾1 ∘ 𝐾2 = 𝐾2 ∘ 𝐾1 if and only if 𝐾1 ∘ 𝐾2 and 𝐾2 ∘ 𝐾1 are conjugable subhypergroups of 𝐻.  

 

Proof. Let 𝐾1, 𝐾2 ∈ 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻).   

    1.  Since Lemma 3.8, 𝐾1 ∩ 𝐾2 ≠ ∅. By Theorem 2.4, 𝐾1, 𝐾2 are complete part of 𝐻. Now, we show 

that 𝐾1 ∩ 𝐾2 is complete part. 

Let (𝑥1, . . . , 𝑥𝑛) ∈ 𝐻𝑛 and ∏𝑛
𝑖=1 𝑥𝑖 ∩ (𝐾1 ∩ 𝐾2) ≠ ∅. Then  

 

 ∏𝑛
𝑖=1 𝑥𝑖 ∩ 𝐾1 ≠ ∅    𝑎𝑛𝑑    ∏𝑛

𝑖=1 𝑥𝑖 ∩ 𝐾2 ≠ ∅ 

 

Since 𝐾1, 𝐾2 are complete part,  

 

 ∏𝑛
𝑖=1 𝑥𝑖 ⊂ 𝐾1    𝑎𝑛𝑑    ∏𝑛

𝑖=1 𝑥𝑖 ⊂ 𝐾2 

 

 ∏𝑛
𝑖=1 𝑥𝑖 ⊂ 𝐾1 ∩ 𝐾2 

 

Thus 𝐾1 ∩ 𝐾2 is complete part. Using Theorem 2.4, 𝐾1 ∩ 𝐾2 is conjugable subhypergroup of 𝐻. 

 

    2.  Let 𝑥 ∈ 𝐻. Since 𝐾1, 𝐾2 ∈ 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻), there exists 𝑦1, 𝑦2 ∈ 𝐻 such that 𝑥 ∘ 𝑦1 ⊆ 𝐾1 and 𝑥 ∘
𝑦2 ⊆ 𝐾2. In this case, 𝑥 ∘ 𝑎 ⊆ 𝑥 ∘ 𝑦1 ∘ 𝑥 ∘ 𝑦2 ⊆ 𝐾1 ∘ 𝐾2, for all 𝑎 ∈ 𝑦1 ∘ 𝑥 ∘ 𝑦2. So 𝐾1 ∘ 𝐾2is 

conjugable subhypergroups of 𝐻. Similarly, it is easily seen that 𝐾2 ∘ 𝐾1 is conjugable. The opposite 

can be clearly seen with Lemma 3.2 since 𝐶𝑜𝑛𝑆𝑢𝑏(𝐻) ⊆ 𝐼𝑆𝑢𝑏(𝐻).  

 

Corollary 3.14 Let (𝐻,∘) be a commutative hypergroup. (𝐶𝑜𝑛𝑆𝑢𝑏(𝐻), ⊆) is a lattice. Moreover it is 

modular. 

Proof. It is obvious from Theorem 3.10 and Theorem 3.11. 
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