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Abstract:The main objective of this study was 3-dimensional (3D) profile measurements with standard fringe projection,

consisting of a CCD and a projector. For obtaining height information of objects pixel by pixel, phases have to be

calculated from the images taken by the fringe projection technique. In this study, the 2-dimensional continuous wavelet

transform (2D CWT) phase method was used for phase extraction. 1D and 2D CWT analyses of noisy images were

compared in simulations performed for a 2-dimensional fringe signal by introducing the carrier frequencies in two spatial

directions, x and y . Profile measurement of an object was made experimentally by cross optical axis geometry. Images,

using fringes with two carrier frequencies, taken from this setup were analyzed with 2D CWT and 3D profiles of objects

were obtained. Numerical simulations and actual experiments were carried out to show the validity of this technique for

finding phase distributions from noisy images.

Key words: Continuous wavelet transform, wavelet transform profilometry, fringe projection techniques, phase calcu-

lation, fringe pattern

1. Introduction

Nowadays, there is extensive research on optical measuring systems, which stand out due to the following

features: reliability, high precision, and quick and easy applicability in a digital environment. To determine the

height profile of objects by the fringe projection technique, a practical measuring system can be designed with

high precision. In 1983, Takeda calculated 3-dimensional (3D) surface profiles from the image taken by sinusoidal

fringe pattern projection, with the use of the Fourier transform (Fourier transform profilometry (FTP)) [1].

In the following years, more advanced measurement systems were designed with Morie and sinusoidal fringe

projection techniques and surface profile calculation methods experimented by different integral transforms

and phase shifting. Over the years, the importance of fringe projection profilometry has increased in the field

of optical measurement and it has been applied in many areas such as biomedical applications like oral and

dental measurements, histology, and cell biology, as well as many areas of industry, e.g., quality control, surface

measurement, and characterization of microelectromechanical components [2–5].

3D surface measurement with the fringe projection technique (without touching) consists of three main

units: projection unit, image recording unit, and image analysis unit [3]. As an optical measurement, in this

method, the fringe pattern is projected onto the sample at first and then the image from this setup is recorded.

The fringe pattern is deformed because of the objects’ height. Height information within this image is obtained

from the phase term in the Fourier transform [2]. The deformed image is analyzed with an algorithm generated
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by Fourier or one of the other integral transforms and in this way phase information is retrieved. Then this

phase information is converted to height from the geometry of the setup. After determining the height of each

point on the surface (pixel by pixel) from the reference plane, these are brought together to provide the 3D

profile of the object [1,3].

In the present study, a two-dimensional (2D) continuous wavelet transform (CWT) was used for the

calculation of phase from a fringe pattern by introducing the carrier frequencies in two spatial directions, xand

y , for the first time. Since 1983, the Fourier transform has been as the most commonly used phase distribution

calculation technique according to the literature. On the other hand, CWT was applied as a simulation for the

fringe projection technique for the first time in 1999 and it has been frequently used since [6]. In particular,

noisy images, taken from a fringe pattern with one carrier frequency, are analyzed successively with 2D CWT

[7,8]. Noise is an expected feature for micrometer range profilometry [9–11]. The aim of the present study was

to examine the validity of this method for obtaining more precise results from noisy images taken from a fringe

pattern with two carrier frequency by 2D CWT. To achieve this goal, a simulation and experiments were carried

out.

2. CWT method for phase calculation

2.1. 1D CWT method

Consider the following 2D fringe signal:

h (x) = I0 (x) [1 + V (x) cos (2πf0x+ φ (x))] , (1)

where I0 (x) is the background intensity, V (x) is the visibility of the fringe, φ (x) is the height-modulated

phase of the fringe, and f0 is the spatial carrier frequency that must satisfy the following condition to recover

the phase [1]:

2πf0 >

∣∣∣∣dφdx
∣∣∣∣
max

(2)

The 1D wavelet transform of the fringe signal is defined by [12]

CWT (a, b) =
1

a1/2

∫ ∞

−∞
h (x)Ψ∗

(
x− b

a

)
dx

= a1/2
∞∫

−∞

Ψ̂∗ (aα)Ĥ (α) exp(ibα)dα (3)

Each wavelet is obtained by scaling a mother wavelet Ψ
(
x−b
a

)
with scaling parameter a > 0 and translating it

by b . Ψ∗ shows the complex conjugate of the mother wavelet. The second form of Eq. (3) allows the use of a

fast Fourier transform algorithm and results in much faster calculations, where a1/2Ψ̂ (aα) and Ĥ (α) are the

Fourier transforms of a−1/2Ψ
(
x−b
a

)
and h (x), respectively [12,13].

The Morlet wavelet, which is a plane wave modulated by a Gaussian, is defined as

Ψ (x) = π1/4 exp (icx) exp

(
−x2

2

)
(4)
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and its Fourier transform has the form

Ψ̂ (α) =

√
2π

4
√
π

exp

[
− (α− c)

2

2

]
, (5)

where c is a fixed spatial frequency and is chosen to be about 5 or 6 to satisfy the admissibility condition [13].

Based on the localization property [14], the phase of the fringe can be approximated by φ (x) ∼=
φ(b) + (x− b)φ

′
(b) + . . . . Furthermore, assuming a slow variation of I0 (x) and V (x), the Fourier transform

of the fringe signal is evaluated as

Ĥ (α) = I0 (b)π2δ (α) + I0 (b)πV (b) δ

(
α− f0 −

φ′ (b)

2π

)
exp

[
i
(
φ (b)− bφ

′
(b)

)]
+ I0 (b)πV (b) δ

(
α+ f0 +

φ′ (b)

2π

)
exp

[
−i

(
φ (b)− bφ

′
(b)

)]
. (6)

Then, substituting Eqs. (5) and (6) into Eq. (3) and noting that Ψ̂ (aα) = 0 for α ≤ 0, the Morlet wavelet

transform is obtained as

CWT (a, b) = I0 (b)V (b)π5/4
√
2a exp


[
a
(
2πf0 + φ

′
(b)

)
− c2

]
2

 exp {i [φ (b) + 2πf0b]} (7)

2.2. 2D CWT method

Consider the following 2D fringe signal:

h (x, y) = I0 (x, y) [1 + V (x, y) cos (2πf0x+ 2πf0y + φ (x, y))] (8)

The 2D CWT of the fringe signal is defined by

CWT (a, b, θ) =
1

a

∫ ∞

−∞
Ψ∗

(
x− bx

a
,
y − by

a
, r−θ

)
h (x, y) dxdy, (9)

where Ψ
(

x−bx
a ,

y−by
a , r−θ

)
is the analyzing wavelet with scale parameter a(a > 0), and translation parameter

b . r−θ is the rotation matrix of size 2× 2, which acts on (x, y) as [7,15]

r−θ (x, y) = (x cos θ + y sin θ,−x sin θ + ycosθ) (10)

and θ is a rotation angle. Eq. (9) can be written in the Fourier domain by using the convolution theorem to

decrease the calculation time [12,15,16]

CWT (a, b, θ) = a

∫ ∞

−∞

∫ ∞

−∞
Ψ̂∗ (ar−θαx, ar−θαy) Ĥ (αx, αy) (11)

Ĥ (αx, αy) and Ψ̂ (ar−θαx, ar−θαy) are the Fourier transforms of h (x, y)and 1√
a
Ψ
(

x−bx
a ,

y−by
a , r−θ

)
, respec-

tively.
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Mother wavelet selection is an important step for the determination of phase from a projected fringe

pattern [17]. In the present study, a 2D Morlet wavelet was chosen, which is defined as [7]

Ψ

(
x− bx

a
,
y − by

a
, r−θ

)
= exp

[
ic
(x− bx) cos θ + (y − by) sin θ

a

]
exp

[
− (x− bx)

2
+ (y − by)

2

2a

]
(12)

and its Fourier transform is

Ψ̂ (ar−θαx, ar−θαy) = exp

[
− (aαx − c cos θ)

2
+ (aαy − c sin θ)

2

2

]
(13)

Based on the localization property of the CWT [14,18], the phase of the fringe can be approximated by φ (x, y) ∼=
φb + (x− bx)φ

′
x + (y − by)φ

′
y + . . . . Here, φb = φ (bx, by),φ

′
x = ∂φ(bx, by)/∂x and φ′

y = ∂φ(bx, by)/∂y .

Furthermore, assuming a slow variation of I0 (x, y) and V0 (x, y), the Fourier transform of the fringe signal is

evaluated as

Ĥ (αx, αy) = A1 +A2 +A3 (14)

A1 = 2πI0 (bx, by) δ (αx, αy)

A2 = πI0 (bx, by)V (bx, by)

exp
[
i
(
φb − bxφ

′

x − byφ
′

y

)]

δ
(
αx − 2πf0 − φ

′

x, αy − 2πf0 − φ
′

y

)
A3 = πI0 (bx, by)V (bx, by)

exp
[
−i

(
φb − bxφ

′

x − byφ
′

y

)]

δ
(
αx + 2πf0 + φ

′

x, αy + 2πf0 + φ
′

y

)
Then, substituting Eqs. (13) and (14) into Eq. (11) and noting that Ψ̂ (ar−θαx, ar−θαy) = 0 for αx,y ≤ 0,

CWT is evaluated as

CWT (a, b, θ) = πI0 (bx, by)V (bx, by) exp
[
i
(
φb + 2πf0bx + 2πf0by

)]
exp

{
−1

2

[(
a2πf0 + aφ

′

x − c cos θ
)2

+
(
a2πf0 + aφ

′

y − c sin θ
)2

]}
(15)

In the CWT phase method, the wrapped phase distribution is directly acquired from the phase of CWT (Eqs.

(7) and (15)) and the unwrapped phase is obtained by using a suitable unwrapping algorithm to correct phase

discontinuities [14,19].
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3. Simulation and experimental work

As an example, to test the above phase recovery algorithms, the following 2D simulated phase modulation

function was used (Figure 1a):

a

b

c

Figure 1. a) Simulated fringe pattern; b) Fringe pattern, with the spatial frequency in the x and y directions,

corresponding to test phase; c) Calculated phase values of the simulated fringe pattern for the rows y = 200.

φ (x, y) = 0.0005
[
(x− 200)

2
+ (y − 200)

2
]

(16)

The fringe pattern corresponding to this phase function (Figure 1b) was calculated by taking I0 (x, y) =

V (x, y) = 1 and f0 = 0.2 (1/pixel) in Eq. (1). The simulated phase function and the phases, which were
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recovered by applying the 2D and 1D CWT with the Morlet wavelet, are compared in Figure 1c for the line y

= 200. The execution time for the 1D CWT analysis was 87.913 s, whereas it was 14.056 seconds for the 2D

CWT.

2D CWT has an advantage when noisy images are analyzed [7,8]. To test this, a speckle noise of zero

mean with a 0.03 variance was added to the fringe pattern given in Figure 1b, and the ultimate shape is depicted

in Figure 2a. The recovered phase distributions, for the line y = 200, by both 1D and 2D CWT are shown in

Figure 2b. Phase values obtained from noisy images and simulated phases are compared for four different pixel

numbers in Table 1.

a b

Figure 2. a) Fringe pattern with speckle noise; b) Calculated phase values from the noisy fringe pattern for the rows

y = 200.

Table 1. Comparison for phase values of simulated noisy signal and the phases calculated from this signal by 1D CWT

and 2D CWT are given for four different pixel numbers.

Phase values (rad) Phase error (%)
Pixel Number

1D CWT 2D CWT
Simulated

1D CWT 2D CWT
(X × Y) noisy signal
100× 100 10.459 9.952 10 4.59 0.48
200× 200 0.189 0.037 0 1.89 0.37
300× 300 10.533 10.030 10 5.33 0.30
400× 400 40.792 39.276 40 1.98 1.81

A schematic diagram of the experimental setup using crossed optical axes geometry is presented in

Figure 3. The fringe pattern with the carrier frequency in two spatial directions, x and y , given in Eq. (1) was

calculated by taking φ (x, y) = 0. This sinusoidal fringe pattern was projected by a projector (BENQ MP512)

with a resolution of 600 × 800 pixel onto a mask mechanically measured as 3.50 cm high around the nose.

The distance from the CCD camera (CANON - IXSUS, 10 megapixels) to reference plane, L , was 175 cm; the

distance between projector and camera, d, was 14.5 cm, and the period of fringes on the reference plane, p0 ,

was 0.8 cm. The CCD camera was focused on the center of the reference plane. Firstly, the reference image

and then the object image, shown in Figure 4a, were captured and converted into grayscale for analysis.
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Figure 3. Experimental setup for fringe projection.

In 2D CWT method with the Morlet wavelet, phase distributions of the reference image φR (x, y)

and the object image φ0 (x, y) were obtained. Afterwards, the phase distribution of the object φ (x, y) =

φ0 (x, y)− φR (x, y) was calculated by the 2D CWT phase method. Because the measured object in this work

had a smooth surface, the phase as wrapped in the [−π , +π ] range was unwrapped using the unwrap subroutine

of MATLAB to correct discontinuities and the correct phase was retrieved. Finally, the height values of the

object surface were determined as follows [1]:

z(x, y) =
Lp0

(
ϕ(x,y)
2π

)
[
p0

(
ϕ(x,y)
2π

)
− d

] , (17)

where z is the surface height. The height profile, obtained from the phase method using 2D CWT is shown in

Figure 4b. In Table 2, retrieved height values are compared with a mechanically measured one for four different

pixel numbers.

Table 2. Comparison for height values of mask from 2D CWT and mechanical measurement are given for four different

pixel numbers.

Height values (cm) Height error (%)
Pixel Number (X × Y) 2D CWT Mechanically measured
50× 50 2.083 2.150 3.116
80× 280 3.849 3.950 2.556
200× 60 3.329 3.500 4.885
270× 300 2.840 3.000 5.333

Furthermore, to test the noise analysis, speckle noise of zero mean with 0.03 variance was added to the

images retrieved from the experiment, and the noisy object image is shown in Figure 5a. The calculated height

profile from these noisy images by 2D CWT is given in Figure 5b.
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a b

Figure 4. a) Sinusoidal 2D fringe projected image of the mask; b) Recovered height profile of the mask by 2D CWT.

 
 

a
b

Figure 5. a) Sinusoidal 2D fringe projected image with speckle noise; b) Recovered height profile of the mask from the

noisy images by 2D CWT.

4. Conclusion

The 2D CWT of a 2D fringe pattern by introducing the carrier frequencies in two spatial directions, xand y ,

was used for the first time to recover the height information, according to the literature. The simulation showed

1D CWT is very convenient for the analysis of clean images; in contrast, 2D CWT gives more accurate results

in noisy images. Furthermore, this technique has an advantage that the execution time is much shorter than for

1D CWT. Height profiles retrieved by 2D CWT for the clean and noisy images obtained from the experiment

are very close to each other. This reveals how appropriate CWT analysis is for such applications.
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