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Abstract We consider a D dimensional Kasner type diagonal spacetime where met-
ric functions depend only on a single coordinate and electromagnetic field shares the
symmetries of spacetime. These solutions can describe static cylindrical or cosmo-
logical Einstein–Maxwell vacuum spacetimes. We mainly focus on electrovacuum
solutions and four different types of solutions are obtained in which one of them has
no four dimensional counterpart. We also consider the properties of the general solu-
tion corresponding to the exterior field of a charged line mass and discuss its several
properties. Although it resembles the same form with four dimensional one, there is
a difference on the range of the solutions for fixed signs of the parameters. General
magnetic field vacuum solution are also briefly discussed, which reduces to Bonnor-
Melvin magnetic universe for a special choice of the parameters. The Kasner forms
of the general solution are also presented for the cylindrical or cosmological cases.
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1 Introduction

Higher dimensional extensions of general relativity are an active field of research.
Although the existence of extra dimensions is still speculative, this topic plays an
important role on the unification of the fundamental fields. For example, in Kaluza–
Klein theory [1,2], electromagnetism and four dimensional gravity can be unified, with
the expense of a scalar dilaton field, through a five dimensional pure gravity theory
with a compact extra dimension having a small radius at the order of Planck length. In
Braneworld models [3–6], extra dimensions are considered as large, but all the matter
fields are constrained to live in a three dimensional subspace called the three brane
and only gravity can propagate into extra dimensions. Several exact solutions of extra
dimensional theories were considered, where, in general, the focus is on the solutions
having a horizon and which are asymptotically flat, i. e. black hole type solutions, due
to their striking properties. (For a review see [7]). However, solutions which are not
asymptotically flat or not having an event horizon, such as cylindrically symmetric
ones, are studied less.

In four dimensions, cylindrically symmetric static vacuum and Einstein–Maxwell
solutions were studied extensively. The vacuum solution was found by Levi-Civita
[8] whereas vacuum Einstein–Maxwell solutions were presented by several authors,
such as Bonnor [9] and Raychaudhuri [10] (See also [11–17]). These solutions were
often used for investigating some physically interesting problems, for example they
can describe the exterior regions of static vacuum or current carrying cosmic strings
[18–21], which were believed to play important roles in structure formation of the
universe. They are the only type of topological defects which are still compatible with
recent observations, although their contribution must be less than 10 % in spectral
power of CMB density fluctuations [22,23]. Recently, an interest emerged in higher
dimensional generalizations of these strings [24,25] and other cylindrical sources
[26,27]. Moreover, one particular solution of cylindrical Einstein–Maxwell solutions,
the Bonnor-Melvin magnetic universe [28–30], describing a uniform magnetic field
along the symmetry axis is studied extensively in several contexts especially since
it is possible to embed a black hole in this magnetic field [31] via Harrison type
transformations [32]. Its generalizations were studied in higher dimensional models
[33–36]. Some five dimensional Kaluza–Klein type solutions considering Melvin-type
configurations were also studied [37,38]. Thus, it might be important to obtain general
static, cylindrical vacuum Einstein–Maxwell solutions to higher dimensions.

There are several motivations leading to this work. First of all, cylindrically sym-
metric solutions are one of the most important class of solutions of general relativity
because they have a lot of applications on the topics such as gravitational waves [39],
gravitational collapse of non compact bodies and hoop conjecture, [40–43], cosmic
strings [18–21], quantum gravity [44–47], numerical relativity [48], etc. It is obvi-
ous that at least some of these topics are important for theories involving higher
dimensions. Hence cylindrically symmetric solutions must also be discussed in higher
dimensional theories, in order to complete the discussion of mathematical and physical
properties of these theories. This motivates us to study all Einstein–Maxwell vacuum
solutions of a static, cylindrically symmetric space time in higher dimensions. These
solutions could be useful to understand some properties of the extended line-like con-
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Higher dimensional cylindrical or Kasner type 2253

figurations in higher dimensions similar to how four dimensional solutions had been
useful to understand four dimensional ones [18–21]. Indeed, it is known that these
kind of solutions naturally produced in some theories employing higher dimensions.
For example, in brane inflation theory, cosmic strings are produced during brane col-
lisions [49,50] with possible observable effects. Also, it was shown that cosmic F
and D (super)strings [51] can be macroscopic and also can become stable under some
conditions [52,53]. This work could be seen as one of the first steps in the direction
of understanding higher dimensional charged line like configurations. Hence, in this
work, we only consider static fields and a diagonal metric ansatze similar to four
dimensional static ones. More general solutions such as stationary ones or Einstein-
Rosen type generalizations of these solutions or solutions in more generalized theories
can be considered in further works.

Our paper is organized as follows. In the next section we will first discuss the
compatibility of the electromagnetic field sharing the symmetries of spacetime with
the metric and show that the potential one form of the Maxwell field should have only
one nontrivial component. Then by choosing this component as timelike, we obtain
several possible general electrovacuum solutions for a cylindrically symmetric metric.
We will also investigate some physical properties such as mass and charge per unit
lenght for weak field limit and for general case. Moreover, some possible motions of
charged or neutral test particles for general solution corresponding to exterior of a
charged infinite line mass are also discussed. We also present vacuum solutions with a
magnetic field. In the last section, using the property that cylindrical vacuum solutions
can also be expressed in a Kasner type form, we present these general solutions and
their cosmological counterpart in Kasner type coordinates.

2 Static cylindrically symetric Einstein–Maxwell solutions

2.1 Static Maxwell field and diagonal spacetime

In this paper we consider a D dimensional diagonal spacetime where the metric func-
tions depend only on one coordinate, let say x1. This spacetime can be written in the
following Kasner-type diagonal form:

ds2 = gμνdxμdxν = −Y 2
0 (x1)dt2 +

D−1∑

i=1

[
Yi (x1)dxi

]2
. (1)

We are interested in Einstein–Maxwell vacuum solutions of this spacetime. We con-
sider a Maxwell field,

F = 1

2
Fμνdxμ ∧ dxν (2)

sharing the symmetry of the metric, i. e., the vector potential is proportional to the
Killing vectors of spacetime:
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ξμ = ∂μ, (μ �= 1). (3)

We consider a general vector potential one form:

A =
D−1∑

μ=0(μ�=1)

fμ(x1) dxμ. (4)

This yields that the Faraday tensor has only nonzero components as follows:

F1μ = −Fμ1 = f ′
μ(x1), (μ �= 1). (5)

For this metric and Maxwell field, we want to solve the Einstein–Maxwell Equations

d F = d ∗ F = 0, (6)

Gμν = κ Tμν, (7)

where the Maxwell Energy-momentum tensor is defined as

Tμν = 2

κ

(
Fλ

μFλν − 1

4
gμν Fλκ Fλκ

)
. (8)

The Maxwell equations (6) yield

fμ(x1) =
∫

Cμ(Y1Yμ)2

Y
dx1, (9)

where Cμ are constants with C1 = 0 and the function Y is defined as

Y ≡ √−detg = Y0Y1 . . . YD−1.

Trace of Tμν yields

T = T μ
μ = 2(4 − D)

κ
Fμν Fμν = 4 − D

κ

∑

μ

f ′2
μ. (10)

The Einstein tensor of this metric is diagonal. However, the energy-momentum tensor
Tμν has nondiagonal terms proportional to

Tμν ∼ f ′
μ f ′

ν, μ �= ν. (11)

Hence, as in the four dimensions [15], the compability of the field equations demand
the following cases:
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(i) Vanishing of Faraday tensor Fμν , i. e. vacuum solution,
(ii) Only one of fμ is nonzero, i e., the vector potential is proportional to only one of

the killing vectors ξμ, either spacelike or timelike.

Thus, we have shown that the electromagnetic field one form should be proportional
to one of the Killing vectors of spacetime, i. e. only one of fμ in (4) should have
nonvanishing derivative.

Depending on the choice that the vector potential one form has either timelike
or spacelike nontrivial component, it describes an electric or magnetic field vacuum
solution. Now we will solve the full Einstein–Maxwell field equations for a nonvan-
ishing electrical field. The magnetic field solutions can be obtained by conveniently
relabeling the coordinates.

2.2 Static electrovacuum solutions

In order to solve the field equations, for convenience, we consider a different metric
ansatz. First we transform the metric (1) such that after the transformation the g11
and g22 components have the same form, by choosing a new coordinate x̃1 such that
Y1dx1 = Ỹ2dx̃1. Then we relabel the coordinates by choosing x̃1 = r, x2 = z, x3 = φ

and the metric functions Ỹ0 = eU , Ỹ1 = Ỹ2 = eK−U , Ỹ3 = e−U W, Ỹi = Xi . Then
we obtain a static, cylindrically symmetric, D dimensional spacetime in Weyl type
coordinates as follows [26,33,34]:

ds2 = −e2U dt2 + e2(K−U )(dr2 + dz2) + e−2U W 2dφ2 +
D−1∑

i=4

X2
i (dxi )2, (12)

where K , U, W, and Xi are the functions depending only on the radial coordinate r .
Here the coordinates t, r, z, φ are usual cylindrical coordinates and the extra coordi-
nates are labeled by xi , i = 4, 5, . . . , D − 1. Note that although the metric and field
equations can be written more symmetrical by using Kasner type coordinates, we pre-
fer this form since it will be easier to compare the solutions with four dimensional
ones. Moreover, Einstein-Rosen type coordinates can be obtained by transformation
t = i z, z = i t . This metric posesses in general D−1 Killing vectors ξμ = ∂μ, (μ �= r).
Due to the discussion above, the potential one-form for the electromagnetic field of
the spacetime (12) is chosen as

A = f (r)dt, (13)

and the corresponding electromagnetic two form F = d A becomes F = f ′dr ∧ dt .
The solutions for this configuration might be interpreted as D dimensional vacuum
Einstein–Maxwell solutions corresponding to exterior field of an infinitely long static
charged line-mass with cylindrical symmetry.

The Einstein and Energy-Momentum tensors corresponding to the space-time and
field configuration given by (12), (13) are presented in “Appendix”, where we have
also shown that the field equations can be reduced to a very compact form. We will
however employ a different strategy to obtain the solutions as follows.
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Let us first define the functions Ω and X , where X is actually the square root of
the determinant of the extra dimensional part of the metric (12):

Ω = W X, X =
D−1∏

i=4

Xi . (14)

Maxwell equations (6) for the metric (12) and the electromagnetic field (13), with the
help of above definition and (92 ) reduces to

f ′ = f0
e2U

Ω
, (15)

where f0 is a constant. Our strategy to find the solutions is to determine the unknown
metric functions by eliminating f ′ terms in the field equations (84)–(88) via adding
or subtracting the equations one by one. If all the metric functions can be determined
with this procedure, we can fed them into the Maxwell and Einstein equations to fully
determine the Maxwell field f as well.

Our first observation for solving these equations is that, when we add (85) and (86)
we find

Ω ′′ = 0, (16)

which imply that

Ω = W0r + W1, (17)

with W0, W1 being constants. We have to consider two different cases either Ω ∼ r
or Ω ∼ constant by taking W1 = 0 or W0 = 0 respectively, since they may lead to
different classes of solutions. Note that both of the choices enable us to eliminate one
of the metric functions W, Xi in terms of others.

2.2.1 W0 �= 0 case

For this case we can choose the constant W1 = 0, thus we have W = W0r/X . We
realize that subtracting any two of the extra dimensional field equations (88), (89)
yield a second order differential equation involving only the functions corresponding
to that coordinates. Namely, if indices i, j labels two of the extra dimensions, then
this prodecure yields

(
r

X ′
i

Xi

)′
=
(

r
X ′

j

X j

)′
, (18)

which enables one to find all Xi ’s in terms of one of the function X j , j fixed. Moreover,
after using this fact, the field equations also permit us to find a differential equation
involving the function X j and U as follows:
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[
r
(
ln X j

)′]′ = − 1

D − 3
(rU ′)′. (19)

By integrating this equation, X j can be expressed in terms of U . Then we can easily
find an equation, whose solution relates the function K in terms of U ,

(r K ′)′ = D − 4

D − 3
(rU ′)′. (20)

Remaining field equations can be integrated to find U . Note that the arbitrary inte-
gration constants can be fixed when these solutions fed into field equations again. By
conveniently selecting the integration constants to have familiar forms, the metric (12)
and field functions (13) are found as,

K (r) =
[

2σ(2σ + p) + p2 + q2

2
− p

]
ln r − D − 4

D − 3
ln(c1 + c2r4σ ),

U (r) = 2σ ln r − ln(c1 + c2r4σ ),

W (r) = W0r1−p(c1 + c2r4σ )
4−D
D−3 , (21)

Xi (r) = r pi (c1 + c2r4σ )
1

D−3 ,

A =
√

D − 2

D − 3

√−c1

c2

1

(c1 + c2r4σ )
dt, (22)

p =
D−1∑

i=4

pi , q2 =
D−1∑

i=4

p2
i . (23)

Here, the positivity of the energy density requires the constants c1, c2 to satisfy

c1c2 σ 2 < 0. (24)

These solutions have free parameters σ, W0, pi , c1, c2 and since one of the constants
c1 or c2 can be set to unity by rescaling the coordinates, we have D−1 free parameters.
Further properties of this solution will be discussed in the next subsection.

Apart from the general solution discussed above, there is a special solution. For the
solution of the Eqs. (18), (19), (20), if one sets all the first integration constants to zero,

then one finds that Xi (r) = e− 1
D−3 U (r), K (r) = D−4

D−3U (r) and U (r) = − ln[a ln(cr)]
and the metric and potential one form takes the form

ds2 = − dt2

(a ln cr)2 + (a ln cr)
2

D−3

(
dr2 + dz2 + r2dφ2 +

∑

i

dx2
i

)
, (25)

A =
√

D − 2

D − 3

1

a ln cr
dt, (26)

where a is a positive integration constant. This solution generalizes Raychaudhuri’s
solution [10] to higher dimensions. This conformastatic solution belongs to higher
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dimensional generalization of Papapetrou-Majumdar (PM) class [54,55]. Note that
there is a recent interest on higher dimensional generalizations of PM solutions
[56,57].

2.2.2 W0 = 0 case

For the case W0 = 0 in (17), repeating similar steps we find that for this case there are
also two different solutions. The first one has no four dimensional counterpart:

Xi = e− U
D−3 +pi r , (27)

K = D − 2

D − 3
U + k0r, (28)

W = W1∏
i Xi

, (29)

eU = 1

cos( f0r)
, (30)

f =
√

D − 2

D − 3
tan( f0r), (31)

f0 =
√

D − 3

D − 2

√
p2 + q2, (32)

where here f0 is a constant, p, q are defined in (23) and we have set some integration
constants to zero.

The second solution of this class is

ds2 = −
(

f1

r

)2

dt2 +
(

r

f1

) 2
D−3
[

e2k0r (dr2 + dz2) + w2
1dφ2 +

∑

i

dx2
i

]
, (33)

A =
√

D − 2

D − 3

f1

r
dt, (34)

with f1, k0 and w1 are constants. This solution can be easily obtained if one sets all pi

in (27) zero and then proceeds to the solution. The Kretchmann scalar of this solution
is singular only at r = 0, i. e., Rabcd Rabcd ∼ e−4(k0r)r−6. When k0 = 0 this solution
reduces to a special case of the general solution (21)–(23) for σ = 1/2 and pi = 0.

2.3 Properties of the general solution

2.3.1 The solution and its vacuum and Minkowski limits

Hereafter we only consider the general solution given in (21), (22) and (23). Let us
recall the metric and electromagnetic field:
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ds2 = − dt2

G(r)2 + G(r)
2

D−3 r
4σ

D−3

[
r4σ(2σ+p−1)−2p+p2+q2

(
dr2 + dz2

)

+ W 2
0 r2(1−2σ−p)dφ2 +

D−1∑

i=4

r2pi (dxi )2
]
, (35)

A = r

PG

dG

dr
dt, (36)

G(r) =
(

c1r−2σ + c2r2σ
)

, (37)

P2 = − D − 2

D − 3
16 c1c2σ

2. (38)

Here we have written (36) in a slighly different form, in order to compare the
conventional form of four dimensional solutions [17], which differs from (22) by a
constant term. We see that for D = 4 the solution given above is in accordance with
given in [17] up to notational differences.

The Electromagnetic field two form has the expression

F = P

r G(r)2 dt ∧ dr, (39)

which vanishes when one of the parameters c1, c2 or σ vanishes. When we set σ = 0
we obtain

ds2 = − dt2

(c1 + c2)2 + (c1 + c2)
2

D−3

[
r p2+q2−2p(dr2 + dz2)

+ W 2
0 r1−2pdφ2 +

D∑

i=4

r2pi (dxk)2
]
. (40)

This is a vacuum solution but, unlike D = 4, it is not locally flat in general. Hence
setting σ = 0 is not enough to obtain a locally flat metric, we also need all the constants
pk to vanish. The flat Minkowski limit of this metric requires the other constants of
the solutions to satisfy c1 + c2 = 1 and the conicity parameter W0 = 1.

In order to find the relation of the corresponding Minkowskian solution of the
Electromagnetic field of infinitely long charged line, we expand (39), series in σ . We
obtain, by also setting c1 + c2 = 1 due to the discussion above,

F10 = Er = 2λ0

r
− 8(c2 − c1)

λ0σ

r
log(r) + O(σ 3), (41)

where λ0 can be seen as the charge per unit lenght of the Minkowskian solution

λ0 = −2σ

√
D − 2

D − 3

√−c1c2. (42)
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Let us discuss the vacuum limits of this solution. As we have discussed above, when
we set σ = 0 we obtain a vacum solution and if remaining constants pi are also vanish
we obtain (locally) flat solution. For c1, σ �= 0, c2 = 0 we obtain higher dimensional
generalization of static cylindrical vacuum solution, i.e., Levi-Civita solution. Note
that in this limit the constant c1 must be chosen as positive in this case. By rescaling
the ignorable coordinates and setting c1 = 1 we can express this metric as follows:

ds2 = −r4σ dt2 +
[

r2(2σ+p)(2σ−1)+p2+q2
(

dr2 + dz2
)

+ W 2
0 r2(1−2σ−p)dφ2 +

D−1∑

k=4

r2pk (dxk)2
]
. (43)

When we set c1 = 0, c2, σ �= 0 to obtain vacuum solution from electrovacuum one,
the electromagnetic field tensor vanishes identically, but the vector potential becomes
infinity. However, we can cure this ambiguity using the freedom to add a constant
term to the vector potential which cancels the term causing this infinity, namely we
can add the term −{(D − 2)/[(D − 3)(−c1c2)]}1/2 to (22). Note that for this case
( c1 = 0, c2 �= 0) in order to obtain vacuum solution in the form (43), we need to
redefine the parameters as σ → −σ and pi → pi − 4σ/(D − 3) with c2 > 0.

2.3.2 The singularity structure and the range of solutions

This spacetime, in general, contains two singularities, at radii

r = 0 and r = r0 = (−c1/c2)
1/4σ > 0. (44)

This can be easily seen from scalars constructed from curvature or field components,
in which some of them are given below:

Fμν Fμν = 32
D − 2

D − 3

c1c2σ
2 r2(4σ+p)

r2(1+4σ 2+(p2+q2)/2+2σ p)(c1 + c2r4σ )2 D−2
D−3

= −(E1)
2 < 0,

Fμν ∗ Fμν = 0, (45)

R = 16

(
D − 4

D − 3

)
c1c2σ

2 r2(4σ+p)

r2(1+4σ 2+(p2+q2)/2+2σ p)(c1 + c2r4σ )2 D−2
D−3

,

and similar expressions for Rμν Rμν and Rμνλκ Rμνλκ . The singularity at r = r0 is a
naked singularity since it is not surrounded by an event horizon. This singularity stems
from the term (c1 + c2r4σ ) in the denominator of the curvature scalars and becomes
finite only for σ = 0, i. e. only for vanishing of the electrical field. The singularity
at r = 0 is also a genuine singularity except for when the parameters satisfy the
following equality 4σ + p = 1 + 4σ 2 + (p2 + q2)/2 +σ p, including the special case
σ = 1/2, pi = 0, in which the axis r = 0 is not singular for this case. In this special
case the coordinate r must be extended to include −∞ < r < r0. The interesting
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point of this value of parameters σ = 1/2, pi = 0 is that it is the higher dimensional
generalization of four dimensional case where the Levi-Civita metric describes an
infinite plane geometry [15,60,62] rather than a cylindrical one. Thus, for this case
we have a charged infinite plane at r = r0 where r in this case should be considered
as a Cartesian coordinate.

At r → ∞ the solutions becomes asymptotically flat, since the leading terms in
curvature scalars behave like 1/rh, (h > 0) which vanish as r → ∞.

An interesting point in these solutions is the choice of the sign of c1 and c2, since
only the sign of their multiplication is fixed, i. e., c1c2 < 0. For D = 4, the function
G(r) can be positive or negative, since its square enters in the metric. For D = 5,
for the case G(r) < 0 the signature of the metric becomes −5, i. e., it becomes an
Euclidian metric with an overal minus sign, so this case is not physical. Moreover,
for D > 5, the regions in which G(r) < 0 is also forbidden, since for these regions,
for D > 5 the metric becomes imaginary. Thus, although the solution is similar in its
functional form for any D ≥ 4 dimensions, there is a big difference for four, five and
higher dimensions due to the exponent 2/(D − 3) on the metric function G(r). The
ranges in which metric is valid for D > 4 can be classified as follows. Solution is valid
for r ∈ (r0,∞) whenewer σ > 0, c1 < 0, c2 > 0 or σ < 0, c1 > 0, c2 < 0, whereas
the solution is valid for r ∈ (0, r0) for vice versa. Hence, unlike for D = 4, choice
of signs of σ, c1, c2 determines whether the solution is valid only in ‘the interior’
(0 < r < r0) region or ’the exterior’ (r0 < r < ∞) regions. Only for D = 4, the
solution can be valid in both regions irrespective of which one of c1, c2 is negative.

Unlike D = 4, since for D ≥ 5 for the fixed signs of c1, c2 and σ , both the
“interior” and exterior“ regions cannot be covered by the same metric and the physics
in the interior region is not clear since it is bounded by two singularities, we consider
the exterior region as the physically valid region of solution. Note that σ > 0 and
σ < 0 cases are identical when we replace c1 and c2, thus we can only consider the
case σ > 0. We can actually set the location of r0 as the axis of solution with a new
radial coordinate r ′. Then we have a solution well behaving at r ′ ∈ (0,∞) with a
singularity at r ′ = 0.

2.3.3 Charge and mass per unit coordinate length

Let us calculate charge per unit coordinate length for the space time by using Gauss’s
teorem for the electrical flux across r = constant surface [58]

2π∫

0

1∫

0

. . .

1∫

0

F01√−g dx D−1 . . . dz dφ = 4πλ, (46)

where g is the D-dimensional determinant of the metric and λ is the parameter cor-
responding to the charge per unit coordinate length. Performing the integral (46) we
obtain

λ = −2σ W0

√
D − 2

D − 3

√−c1c2. (47)

123



2262 Ö. Delice et al.

Note that this resut is in accordance with the weak field epression we have derived
above, namely, charge per unit lenght of an infinitely long charged line in classical
electrodynamics (42) since, in that limit we have to take W0 = 1.

The mass per unit coordinate length at coordinate r can be obtained by using the
relativistic form of Gauss’s teorem on gravitational flux [59] as follows

−
2π∫

0

1∫

0

. . .

1∫

0

d2r

ds2

√−g dx D−1 . . . dz dφ = 4πμ(r), (48)

where here μ(r) is the gravitational mass per unit coordinate length which depends
on the coordinate r . For a neutral test particle initially at rest, the gravitational force
is given by

d2r

dτ 2 = −U ′e−2(K+U ). (49)

Using expressions (12), (21) we find

μ(r) = W0σ
c1 − c2r4σ

c1 + c2r4σ
= −W0σ

(
r
r0

)4σ + 1
(

r
r0

)4σ − 1
. (50)

For vacuum Levi-Civita solution [8], the parameter σ is related with the mass per
unit length of the source generating cylindrical vacuum and when σ > 0 the source
attracts the surrounding test particles and for negative σ it repells them [60,61]. It is
known for four dimensions [63] that the presence of radial electrical field dramatically
changes this behaviour. Here we will show that this is indeed the case for D > 4 as
well. Since we are interested to the region r > r0, irrespective of the sign of σ , when
electric field is present, i. e., c1, c2 �= 0, μ is always negative. Also, as r goes to
infinity μ(r) → −W0σ and for the uncharged case μ(r) → W0σ , therefore we can
conclude that, as in four dimensional solution [63], the effect of the radial electrical
field is to change the sign of the gravitational mass. Thus similar conclusion can be
made as four dimensional cases [15,63] that, unlike Newtonian physics, an infinily
long charged line cannot be produced by physically acceptable sources.

This fact can also be understood from the weak field expansion of the metric. If we
series expand the metric function g00 in the mass parameter σ , then we obtain

g00 = − (c1 + c2)
−2
[

1 + 4σ
c1 − c2

c1 + c2
ln r + 8σ 2 (c1 − c2)

2 − 2c1c2

(c1 + c2)2 (ln r)2
]

+O(σ 3), (51)

where we can set without loss of generality c1 + c2 = 1 for nearly Minkowskian
spacetime. Here we consider the region r0 < r < ∞ where solution behaves well
then we have σ, c2 > 0, c1 < 0 or σ, c2 < 0, c1 > 0. Remembering that in the

123



Higher dimensional cylindrical or Kasner type 2263

Newtonian limit we have g00 = −(1 + 2U ), where U is the Newtonian potential of
the mass distribution, we see that for this case we have

U = 2σ (c1 − c2) ln r. (52)

This yields a radial force expresion,

Fr = −dU

dr
= −2σ(c1 − c2)

r
, (53)

which is repulsive since the quantity σ(c1 − c2), which can be considered as mass per
unit length in Newtonian limit, is always negative. These expressions are compatible
with (50) in the weak field limit. When electromagnetic field vanishes, i,e, c1 =
0, c2 > 0 or c2 = 0, c1 > 0 this force becomes attractive or repulsive depending on σ

is positive or negative. Note that for the limit c1 vanishes we have to remember setting
σ → −σ , due to the discussion at the end of the Sect. 2.3.1.

2.3.4 Equations of motion of test particles

Let us consider a test particle with charge e and mass m in this field. The equations of
motion can be derived from the expression

d2xμ

dτ 2 + Γ
μ
βλ

dxβ

dτ

dxλ

dτ
= e

m
Fμ

ν

dxν

dτ
, (54)

where τ is the proper time of the particle. The only nonzero components of electro-
magnetic field are obtained as

F10 = −F01 =
√

D − 2

D − 3

√−c1c2
4σ

r
e2(U−K ). (55)

The first integrals of the equations of motion can be calculated as follows:

e2U dt

dτ
= e

m
f (r) − E, (56)

e2(K−U ) dz

dτ
= L , (57)

e−2U W 2 dφ

dτ
= J, (58)

X2
i

dxi

dτ
= Pi , (59)

where the integration constants E, L , J, Pi are related with total energy, linear momen-
tum in z direction, angular momentum, and linear momentums in xi directions of the
particle.
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We have studied the equations of motion (54) in detail. Here we only state some
important results for a test particle (outside the singularity at r = r0 for electro-vacuum
solutions, i. e. c1 < 0 for σ > 0 and c2 < 0 for σ < 0):

– when the electrical field presents, the charged and neutral test particles cannot
follow a trajectory which is purely circular, axial, or in one of the xi directions.

– For vacuum solution, i. e. when electrical field vanishes, test particles can follow
circular timelike geodesics for 0 < σ + p/4 < 1/4 and circular null geodesics for
σ + p/4 = 1/4. Such particle can also follow axial timelike (null) geodesics if the
parameters satisfy the inequality (equality) 2σ(2σ − 2 + p)− p + (p2 + q2)/2 >

0(= 0). These are in accordance with four dimensional Levi-Civita solution [8,60–
62].

– For vacuum solution, a test particle initially at rest experiences an attractive force
for σ > 0 and repulsive force for σ < 0 in accordance with four dimensional
solution [8,60–62].

– For electro-vacuum solution, neutral test particles initially at rest experience a
repulsive force, for any value of parameters, as in four dimensional solution [63].

– The radial force on a charged test particle initially at rest in electro-vacuum solution
(outside the singularity at r0) is affected by two forces, in accordance with four
dimensional case [63], given by

d2r

dτ 2 ≈
{

λe

m

r4σ

W0
− σc1

[(
r

r0

)2σ

+ 1

]}
, (60)

where a positive proportionality factor is omited for clarity. Here, the second term
in the first pharanthesis is the gravitational force, and it is always repulsive since
always c1σ < 0. The first term however, the electrical force term, is attractive if the
charge of the particle, e, and charge per unit length of the source, λ, have different
signs and repulsive it both have same sign. When the electrical force on the particle is
attractive, there are values of r in which the particle is in neutral equilibrium where the
gravitational and electrical forces cancel each other and the expression (60) vanishes.

2.4 Cylindrical vacuum solutions with a magnetic field

Here we present the general solution of the Einstein–Maxwell vacuum magnetic field
solutions presented in Einstein-Rosen type coordinates. The solutions can be obtained
by directly solving the field equations as we have done. They can also be obtained by
suitably relabeling the coordinates and parameters as well. Let us present the resulting
solution, for an electromagnetic potential one form A = h(r)dφ, compatible with the
form given in [17]:

ds2 = G−2W 2
0 dφ2 + G

2
D−3 r

2m
D−3

[
r2m(m+p−1)−2p+p2+q2

(
dr2 − dt2

)

+ r2(1−m−p)dz2 +
D−1∑

k=4

r2pk (dxk)2
]
, (61)

123



Higher dimensional cylindrical or Kasner type 2265

G = (c3 r−m + c4 rm) , p =
D−1∑

i=4

pi , q2 =
D−1∑

i=4

p2
i , (62)

A =
√

D − 2

D − 3

√
c3

c4

r−m

G(r)
dφ. (63)

The positivity of energy density for this case requires the condition

c3c4 m2 > 0. (64)

Vacuum limit is obtained when one of the constants c3, c4 is vanishing. One of c3, c4
can be set to unity, thus the solution has D − 1 free parameters: W0, m, one of c3, c4
and pk . Note that a magnetic field solution whose vector potential is in any one of
the other spacelike Killing directions can be obtained with appropriate coordinate re-
labelings. The common property of these magnetic field solutions, unlike electrical
field solutions, that there is no singularity other than at r = 0, despite the scalars
constructed from field or curvature components have the same form with (45), due
to the relation (64). For this solution the motion of charged and neutral test particles
are discussed in detail in [11] for four dimensions, and for higher dimensional case
similar behaviour can be expected for such particles.

For the special case m = 1, pi = 0, the solution reduces to higher dimensional
generalizations of one of the important Einstein–Maxwell solutions, namely, Bonnor-
Melvin magnetic universe [28–30],

ds2 = W 2
0 r2dφ2

(
c3 + c4r2

)2 +
(

c3 + c4r2
) 2

D−3

[
−dt2 + dr2+dz2+

D−1∑

k=4

(dxk)2

]
, (65)

A =
√

D − 2

D − 3

√
c3

c4

1

(c3 + c4 r2)
dφ. (66)

This solution describes a uniform magnetic field, i. e., Melvin flux-brane. This solution
can be considered as a union of parallel magnetic flux lines extending along z axis. This
spacetime is stable and it has no singularities. One important aspect of this solution
is that, the flat Minkowski metric in square pharanthesis can be replaced with any
D − 1 dimensional Ricci flat seed solution [31], which is a consequence of Harrison
transformations [32] which enables one to generate an Electrovacuum solution from
a vacuum Einstein solution. Several applications of this observation had been made
such as, a solution describing a back hole in an external magnetic field [31,33–36].

3 D dimensional Kasner-type Einstein–Maxwell solutions

One of the earlier and important solutions of Einstein equations is Kasner solution
[64]. Although it is generally considered as a cosmological solution and related with
Bianchi Type I cosmological vacuum, its original form was presented with a positive
signature, i. e.,
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ds2 =
4∑

k=1

(x4)2ak (dxk)2, (67)

where metric depends only on x4 and the parameters ai satisfy the following condi-
tions:

a1 + a2 + a3 = 1 + a4, a2
1 + a2

2 + a2
3 = (1 + a4)

2. (68)

Here the parameter a4 can be set to zero without loss of generality.
Actually, homogeneous and anisotropic cosmological Kasner vacuum metric is a

metric of the form given above with the timelike coordinate x4 = t having (− + ++)

signature

ds2 = −dt2 +
3∑

i=1

t2ai (dxi )2, (69)

with the same conditions (68) with a4 = 0. Note that if one choses the coordinate
x4 as the radial coordinate and the remaining coordinates as usual cylindrical coor-
dinates in (67) with properly chosen signature, then one obtains the cylindrical static
vacuum Levi-Civita solution [8] in its Kasner form. There is a simple transformation
between these two different forms of cylindrical vacuum solutions (See for example
[62,26]). Actually, Kasner type cosmological [65–67] or cylindrical vacuum solutions
[26,27] were generalized to higher dimensions. Hence it is logical to bring the obtained
Einstein–Maxwell type solutions in this form. Thus, in this section, for completeness,
we present D dimensional general electrical and magnetic field solutions we have
discussed in the previous sections, namely cylindrical static Einstein–Maxwell solu-
tions in generic dimensions, in Kasner type form. Moreover, this analogy enables us
to present an anisotropic cosmological Kasner solution with a nonvanishing electro-
magnetic field. Let us first discuss vacuum solutions in this form.

3.1 Vacuum solutions

The vacuum solution of the metric (1) yields a multidimensional generalization [65–
67,26] of Kasner solution

Yμ = C̃μ xαμ, (no sum), (70)

where C̃μ and αμ are integration constants and for clarity we have taken x1 = x . The
D dimensional Kasner parameters αμ satisfy

D−1∑

μ( �=1)=0

αμ = 1 + α1, (71)
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D−1∑

μ( �=1)=0

α2
μ = (1 + α1)

2. (72)

This metric describes a D dimensional cylindrically symmetric static vacuum solution
[26] if one identifies the coordinates xμ as usual cylindrical coordinates, namely,
(x0, x1, x2, x3, xi ) = (t, r, z, φ, xi ). Note that the constant α1 can be set to zero
without loss of generality by defining a Gaussian normal coordinate dx̃ = xα1 dx1

and redefining other parameters. Hence, only D − 3 of the parameters αμ are free.
These parameters define D −2 dimensional “Kasner sphere” analogous to the Kasner
circle in four dimensions. This solution has a naked singularity at x = 0 unless the
parameters correspond to locally flat, Rindler type, spacetime, e. g. only one of them
is nonzero and equal to 1 + α1.

3.2 Electrovacuum solutions

For the electro-vacuum solution only A = f0(x)dt term is present, describing an
Einstein–Maxwell electrovacuum solution with a nonvanishing electrical field. As we
have demonstrated in Sect. 2 that there are four different solutions. Here, we only
present the Kasner form of the general solution (21), (22), (23), in the form of the
metric (1) and field (4) as follows:

Y0 = (c1xα0 + c2x−α0)−1, (73)

Yi = (c1xα0 + c2x−α0)1/(D−3)xαi +α0/(D−3), (74)

f0(x) =
√

D − 2

D − 3

√
−c1

c2

1

c1 + c2x2α0
, (75)

c1c2α
2
0 < 0, (76)

where again we have set x1 = x for clarity and the parameters αμ satisfy (71), (72). The
coordinates should be thought as cylindrical coordinates as in the previous subsection.
Vacuum solution is recovered when c1 = 0 or c2 = 0.

The transformation from Weyl type coordinates (12) to Kasner type coordinates (1)
(with α1 = 0) are given by

x = r�, α0 = 2σ

�
, α2 = 1 − 1

�
, α3 = 1 − 2σ − p

�
,

αi(i=4,5,...,D−1) = pi

�
, p =

D−1∑

I=4

pi , q =
D−1∑

I=4

p2
i , (77)

� = 2σ(2σ + p − 1) + p2 + q2

2
− p + 1.
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3.3 Magnetic field vacuum solutions

For only nonvanishing Maxwell field term is spacelike, i. e. Fi1 = f ′
i where fixed

indice i is representing the coordinate of any one of the space-like Killing vectors of
spacetime, we have magnetic field solution with A = fi (x)dxi (no sum). Since the
special solutions can be expressed accordingly, let us only present the general solution
(61), (63) in Kasner form

Yi = (c3xαi + c4x−αi )−1, (78)

Yμ(μ�=i) = (c3xαi + c4x−αi )1/(D−3)xαμ+αi /(D−3) (79)

fi (x) =
√

D − 2

D − 3

√
c3

c4

1

c3 + c4x2αi
, (80)

c3c4α
2
i > 0, (81)

where again the parameters to satisfy (71), (72) and the coordinates should be consid-
ered as cylindrical ones. Vacuum limit of this solution is when c3 = 0 or c4 = 0.

3.4 Kasner-Maxwell cosmological solutions

A generalization of Kasner cosmological vacuum solution with an electromagnetic
field aligned in certain direction in four dimensions was given by Datta [68]. The
solution we have presented in the previous section can also be seen as a higher dimen-
sional generalization of this solution, if one considers the coordinates as Cartesian
coordinates and chooses the nonignorable coordinate as timelike. Then the solution
for a vector potential aligned along a fixed xi direction, i. e. A = f (t) dxi reads

ds2 = (dxi )2

(
k1tαi + k2t−αi

)2 + (k1tαi + k2t−αi
) 2

D−3
∑

μ,ν( �=i)

[
t2αμ+ 2αi

D−3 ημνdxμdxν

]
,

A =
√

D − 2

D − 3

√
k2

k1

1

k2 + k1t2αi
dxi , (82)

where the Kasner parameters αμ satisfy (71), (72) and the paremeters k1, k2 have to
satisfy the condition

k1k2α
2
i > 0. (83)

This spacetime is singular at t = 0 in general. However, for αi = 1, αμ,(μ�=i) = 0,
similar to Melvin solution, it describes a time dependent electromagnetic field where
spacetime is free of singularities.

4 Discussion

In this paper we have presented higher dimensional generalizations of Einstein–
Maxwell vacuum solutions for diagonal metrics depending only on a single coordinate
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and corresponding to cylindrical or Kasner type spacetimes. We mainly considered
the electro-vacuum solutions in cylindrical coordinates, since magnetic field solutions
are easy to obtain if electrical one is known. We have found four different solutions
in which one of them has no four dimensional analogue. As an application, we have
studied some properties of the general solution corresponding to the exterior field of
a charged line mass. The properties of this solution does not differ from four dimen-
sional one, i. e. there are two singularities in general, one at the symmetry axis and the
other at a certain distance from the axis. Also, as in four dimensions, the presence of
the radial electrical field changes the characteristics of spacetime such that the mass
per unit length becomes negative. However, there is an important distinction, in which,
unlike four dimensional case, if the signs of the parameters satisfying the relation (24)
is fixed, then the solution is valid either at the region outside of the outer singularity
or at the region in between the singularities but cannot be valid in both regions. We
have also realized that as in four dimensional solution, the mass parameter becomes
negative irrespective of the sign of parameters. This enables us to conclude that, as in
the four dimensions [63], a charged infinite line mass has not realistic counterpart in
higher dimensional relativistic theory.

These solutions may have interesting applications. For example as in the four dimen-
sions, these solutions may describe the exterior regions of (space-like or time-like)
current carrying (cosmic) strings, hence the parameters can be related to mass per unit
length and the four-charge density of these strings. For this interpretation, one has to
consider a higher dimensional Nielsen-Olesen type Abelian Higgs model with appro-
priate gauge fields and discuss its asymptotic behavior of the spacetime considered in
this model.

Another application is to consider a brane embedded in these spacetimes. Since the
only geodesically complete spacetime in these solutions is the Melvin case, using the
other cases seems to have problems since they contain naked singularities. For the elec-
trical case, although there is a singularity at r = 0 and r = rs , if a brane located at r ≥
rs , since a neutral brane will feel a repulsive force in this spacetime, it will repel from the
singularity. Hence it seems the singularity may not as harmful as it thought. However
these discussions need more detailed calculations, in which we leave for future works.

Acknowledgments We thank the anonymous referees for their usefull comments and suggestions.

Appendix: field equations

The nonzero components of the Einstein tensor for Einstein Maxwell field equations
Gμν = κTμν for the metric (12) are given by

G0
0 = −e2(U−K )

{
2U ′′ − K ′′ − U ′2 + 2U ′ W ′

W
− W ′′

W

+
N∑

i

⎡

⎣

⎛

⎝U ′ − W ′

W
− 1

2

N∑

j �=i

X ′
j

X j

⎞

⎠ X ′
i

Xi
− X

′′
i

Xi

⎤

⎦

⎫
⎬

⎭ , (84)
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G1
1 = e2(U−K )

⎡

⎣K ′ W ′

W
− U ′2+

N∑

i

⎛

⎝K ′ − U ′+ W ′

W
+ 1

2

N∑

j �=i

X ′
j

X j

⎞

⎠ X ′
i

Xi

⎤

⎦ , (85)

G2
2 = e2(U−K )

{
U ′2 − K ′ W ′

W
+ W ′′

W

+
N∑

i

⎡

⎣

⎛

⎝U ′ − K ′ + W ′

W
+ 1

2

N∑

j �=i

X ′
j

X j

⎞

⎠ X ′
i

Xi
+ X

′′
i

Xi

⎤

⎦

⎫
⎬

⎭ , (86)

G3
3 = e2(U−K )

⎧
⎨

⎩K ′′ + U ′2 +
N∑

i

⎡

⎣

⎛

⎝U ′ + 1

2

N∑

j �=i

X ′
j

X j

⎞

⎠ X ′
i

Xi
+ X

′′
i

Xi

⎤

⎦

⎫
⎬

⎭ , (87)

Gi
i = e2(U−K )

⎡

⎢⎣U ′2 − U ′′ + K ′′ − U ′W ′

W
+
(

W ′∏N
j �=i X j

)′

W
∏N

j �=i X j

+
N∑

j �=i

X ′′
j

X j
+ 1

2

∑

j,k
i �= j �=k

X ′
j X ′

k

X j Xk

⎤

⎥⎥⎦, (88)

and the nonzero components of energy momentum tensor for and electric field (13) is
given by

− T 0
0 = −T 1

1 = T 2
2 = T 3

3 = T i
i = 1

2
e−2K f ′2. (89)

Let us use the functions Ω and X , defined in (14). From (85) and (86) we have

Ω ′′ = 0. (90)

Also from (84) and (87)

(U ′Ω)′

Ω
= (W ′ X)′

2X
+ e−2K f ′2

2
, (91)

The Maxwell equations yield

(
f ′Ω

)′ = 2Ω f ′U ′. (92)

From (85)

K ′ Ω ′

Ω
= U ′2 + U ′ X ′

X
− e−2K f ′2

2

+ 1

2

[(
Ω ′

Ω

)2

−
(

W ′

W

)2

−
∑

i

(
X ′

i

Xi

)2
]

, (93)

123



Higher dimensional cylindrical or Kasner type 2271

and from (88) and (84) we have D − 4 equations

(
Ω X ′

i

Xi

)′
= (ΩU ′)′ − Ω f ′2e−2K . (94)

The Eqs. (14), (90)–(94) constitute a complete set and they are in accordance with the
equations for D = 4 case given in [17].
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