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Abstract: The energy eigenvalues and the wave functions of anα particle in a Bohrium
270 nucleus have been calculated by solving Schrödinger equation for Generalized Sym-
metric Woods-Saxon potential. Using the energy spectrum by excluding and including
the quasi-bound eigenvalues, entropy, internal energy, Helmholtz energy, and specific
heat, as functions of reduced temperature have been calculated. Stability and emission
characteristics have been interpreted in terms of the wave and thermodynamic functions.
The kinetic energy of a decayedα particle was calculated using the quasi-bound states,
which has been found close to the experimental value.

Bir Bh-270Çekirdeği İçinde Genelleştirilmiş Simetrik Woods-Saxon Potansiyeli Etkisindeki
Bir α Parçacı̆gının Özellikleri

Anahtar Kelimeler
Genelleştirilmiş simetrik
Woods-Saxon potansiyeli,
Sıkı băglı durumlar,
Yarı băglı durumlar,
Analitik çözümler,
Bölüşüm fonksiyonu,
Ternodinamik fonksiyonlar

Özet: Bir Boryum 270 çekirdĕginde bulunan birα parçacı̆gının enerji özdĕgerleri
ve dalga fonksiyonları, Schrödinger denklemi Genelleştirilmiş Simetrik Woods-Saxon
potansiyeli için çözülerek hesaplanmıştır. Yarı bağlı durumları içeren ve içermeyen en-
erji spektrumları kullanılarak indirgenmiş sıcaklığın fonksiyonu olarak entropi, iç enerji,
Helmholtz enerjisi ve özgül ısı hesaplanmıştır. Dalga ve termodinamik fonksiyonlar kul-
lanılarak kararlılık ve ışınım karakteristikleri yorumlanmıştır. Yarı bağlı durum enerjileri
kullanılarak bozunan birα parçacı̆gının kinetik enerjisi deneysel veri ile uyumlu olarak
hesaplanmıştır.

1. Introduction

In the last decade, thermodynamic functions have
been a subject of ongoing interest in understanding
physical properties of potential fields in relativistic or
non-relativistic regimes. Pachecoet al. has investigated
Dirac oscillator in a thermal bath in one-dimension [1],
then extended the study to three-dimensional case [2]. In
these studies, for high temperatures, it has been reported
that, in the one-dimensional case the heat capacity of
the Dirac oscillator is twice as that of one-dimensional
harmonic oscillator, while in the three-dimensional
case, the limiting value of the specific heat capacity at
high temperatures is three times greater than that of the
one-dimensional case. Meanwhile, the first experimental
one-dimensional Dirac oscillator has been studied by
Franco-Villafañeet al. [3]. Boumali has used the Hurwitz
zeta function to investigate the relativistic harmonic os-
cillator in thermodynamic point of view [4]. He has also
calculated some thermodynamic functions of graphene
under a magnetic field via the two-dimensional Dirac
oscillator in an approach based on the zeta function [5].
On his following paper, Boumali has studied the thermal

∗ Corresponding author: bclutfuoglu@akdeniz.edu.tr

properties of the one-dimensional Duffin-Kemmer-Petiau
oscillator and computed the vacuum expectation value of
its energy by using Hurwitz zeta function [6]. Arda et al.
have studied some thermodynamic quantities of a linear
potential in the Klein-Gordon equation with Lorentz
vector and Lorentz scalar parts and for an inverse-linear
potential, in Dirac equations with a Lorentz scalar term
only. In both cases they have given the analytical results
for high temperatures under the assumption of strong
scalar potential term [7]. Donget al. have exactly solved
a one-dimensional Schrödinger equation of a harmonic
oscillator with an additional inverse square potential by
using operator algebra. They have studied the relations
between the eigenvalues and eigenfunctions using a hid-
den symmetry and derived some of the thermodynamic
functions of the system [8].

The Woods-Saxon Potential (WSP) [9] has been widely
used in many areas of physics such as nuclear physics [9–
16], atom-molecule physics [16,17], relativistic [18–26]
and non-relativistic [27–30] problems. In order to take
the effects such as non-zerol, spin-orbit coupling, large
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force suffered by nucleons near the surface of a nucleus,
additional terms to WSP have been introduced to form
various types of Generalized Symmetric Woods-Saxon
Potential (GSWSP) [31–43]. GSWSP can be used to
model any system, in which a particle is trapped in a
finite space [44–48].

In this paper, we solve Schrödinger equation, substituting
GSWSP for WSP to calculate the thermodynamic prop-
erties of anα particle in a Bohrium 270 nucleus, as an
application of the formalism which has been studied in
detail in [34].

Like WSP, the GSWSP does not possess analytical
solutions forl 6= 0 cases. GSWSP serves our purpose for
the casel = 0, which corresponds to spherical symmetry.
This reduces the problem to one-dimensional form with
the only radial degree of freedom.

In section 2, we first consider the GSWSP, and give
the main result of [34], in section3 we calculate the
energy spectrum of anα particle employing the method
given in the previous section. In subsection3.1, we
calculate partition functions using the energy spectra,
then, Helmholtz free energies, internal energies, entropies
and specific heat capacities of the system as functions of
temperature. In section4, our conclusion is presented.

2. Material and Method

Let us consider a nucleon under one-dimensional GSWSP
[34];

V (x) = θ(−x)

[
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here the second terms in the square brackets represent the
energy barrier at the surface, which is linearly propor-
tional to the spatial derivative of the first term and the
radius. Thus the parameterW0 is linearly proportional
to a,L,V0 and the proportionality constant can be deter-
mined by means of momentum and energy conservations
for the nucleus under consideration.θ(±x) are the Heav-
iside step functions,V0 is the depth of the potential given
by [11]

V0 = 40.5+0.13A. (2)

We classify bound states to tight-bound and quasi-bound
states since they obey different boundary conditions. In
tight-bound case, the particles are confined in the well
and they can have only negative energy eigenvalues. In
other words their wave functions outside the well vanish.
In quasi-bound case, although the particles are inside the
potential well, they have positive energy eigenvalues and
with appropriate conditions they can tunnel. Therefore
their wave functions imply a propagation in outgoing di-
rection from the potential well, contrary to tight-bound

states. Exploiting the continuity of the wave functions and
their first spatial derivatives, as well behaved wave func-
tions must obey, the quantization conditions are obtained.
Moreover by using thex → −x symmetry of the poten-
tial well the energy spectrum can be given in two subsets
as "even" and "odd" eigenvalues. In the reference [34] the
energy eigenvalues for tight-bound states have been found
as
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while for quasi-bound states are
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Heren′ are integers, whereasn stands for the number of
nodes, the roots of the wave functions.N1, N2, N3, andN4

are complex numbers

N1 =
Γ(c1)Γ(c1−a1−b1)

Γ(c1−a1)Γ(c1−b1)
, (7)

N2 =
Γ(c1)Γ(a1+b1− c1)

Γ(a1)Γ(b1)
, (8)

N3 =
Γ(2− c1)Γ(c1−a1−b1)

Γ(1−a1)Γ(1−b1)
, (9)

N4 =
Γ(2− c1)Γ(a1+b1− c1)

Γ(1+a1− c1)Γ(1+b1− c1)
, (10)

and implicitly dependent on the energy eigenvalues via
the coefficientsa1, b1 andc1

a1 = µ +θ +ν , (11)

b1 = 1+µ −θ +ν , (12)

c1 = 1+2µ , (13)

where

µ =

√

−
2mEn

a2h̄2 , (14)
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−
2m(En +V0)

a2h̄2 , (15)
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1
2
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1
4
−

2mW0
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3. Results

In this manuscript we investigate anα particle in a heavy
nucleus, Bohrium 270.a, the reciprocal of the diffusion
parameter, is taken to bea = 1.538f m−1 [11] and the
nuclear radius is calculated asL = 8.068f m. Then we
substitute the atomic numberA = 270 of the nucleus, and

317



find out V0 = 75.617MeV and W0 = 215.523MeV. In
Figure1, the GSWSP is shown.
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Figure 1. The GSWS potential for anα-particle in a
Bohrium 270 nucleus.

The tight-bound energy eigenvalues calculated via Equa-
tion 3 and Equation4 fall into the interval such that,

−V0 < Etb
n < 0, (17)

are presented in Table1.

Table 1. The tight-bound energy spectrum of theα parti-
cle confined in Bohrium 270 nucleus.

n Etb
n (MeV ) n Etb

n (MeV ) n Etb
n (MeV )

0 −75.166 6 −59.531 12 −29.605
1 −73.915 7 −55.373 13 −23.607
2 −72.022 8 −50.855 14 −17.386
3 −69.585 9 −45.998 15 −10.971
4 −66.666 10 −40.823 16 −4.402
5 −63.304 11 −35.351

The quasi-bound energy eigenvalues given by Equation5
and Equation6 satisfy

0< Eqb
n <V0

(1−aL)2

4a
(18)

i.e. 0< Eqb
n < 22.705MeV, which are given in Table2.

Table 2. The quasi-bound energy spectrum of theα par-
ticle confined in Bohrium 270 nucleus.

n Eqb
n (MeV )

17 2.263−0.537×10−3i
18 8.929−0.146×10−1i
19 15.439−0.133i
20 21.688−0.650i

Note that the tight-bound states are considered stationary,
sincetheir energy eigenvalues are real with infinite time
constants. Contrarily, energy eigenvalues of quasi-bound
states have complex form in general, giving rise to a finite
time constant and a non-zero decay probability [49,50].

Thefirst two and the last two bound state wave functions
are given in Figure2, and all the quasi-bound wave func-
tions are shown in Figure3. The wave functions of the
quasi-boundstates have oscillations outside the well, indi-
cating theα decay. Note that all the wave functions are
unnormalized.
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Figure 2. The first four unnormalized wave functions of
thetight-bound states spectrum.
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Figure 3. The unnormalized wave functions of the quasi-
boundstates and the oscillations outside the well.

3.1. Thermodynamic functions of the system

We first calculate the partition function by using the en-
ergy spectrum of the system;

Z(β ) = ∑
n=0

e−βEn , (19)

Hereβ is defined by

β =
1

kBT
. (20)

wherekB indicatesthe Boltzman constant andT is the tem-
perature in Kelvin. The Helmholtz function of the system
is calculated via the relation,

F(T ) ≡ −kBT lnZ(β ). (21)

The entropy of the system is calculated using,

S(T ) = −
∂

∂T
F(T ). (22)

The Helmholtz free energy and the entropy functions for
both quasi-bound states included and excluded of the sys-
tem versus the reduced temperature are seen in Figure4(a)
and Figure 4(b), respectively. The reduced temperature
is defined as the unitless quantitykBT/mc2. The zero
entropy at zero Kelvin is consistent with the third law
of thermodynamics. The entropy saturates to the value
2.33×10−4eV/K when only the bound states are included
in the partition function. When the quasi-bound states
are taken into account, the number of microstates avail-
able to the system increases and the entropy saturates to
a higher value, 2.96×10−4eV/K and the Helmholtz free
energy decreases for high temperatures as seen in Figure
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4(a). According to the behavior of entropy function, the
system favours the addition of quasi-bound states, being
consistent with the second law of thermodynamics. This
verifies the necessity of the surface interactions.
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Figure 4. (a) Helmholtz free energy, (b) entropy, (c) in-
ternal energy, (d) specific heat capacity versus reduced
temperaturekBT/mc2. Quasi bound states are included
in the red curve, excluded in the black. The saturation
value of the internal energy is−46.739MeVwithout
quasi bound states, and−35.535MeV, when they are
included.

The internal energyU(T ) is the expectation value of the
energy of theα particle. It is given by

U(T ) = −
∂

∂β
lnZ(β ). (23)

Then, the specific heat capacityCv(T ) is

Cv(T ) ≡
∂

∂T
U(T ). (24)

For the cases that the quasi-bound states are included
and excluded, the plots ofU(T ) andCv(T ) are shown in
Figure4(c) and Figure4(d), respectively.

The initial behavior of the internal energy and the specific
heat against the reduced temperature are presented in
Figure5. The initial value of the internal energy at 0Kis
−74.995MeV, the lowest energy eigenvalue in the spec-
trum. The internal energy has an initial convex increase
until the reduced temperature of 2×10−4 followed by a
linear ascent. The linear increase of the internal energy
is followed by a concave ascent up to the saturation,
which is −46.739MeV when the quasi-bound states are
excluded, and−35.535MeV when they are included.
These saturations are the mean values of the respective
energy spectra. This is a consequence that, as temperature
goes to infinity, all Boltzmann factors approach to unity.
In this temperature regime, thus occupation of all energy
values become equally probable in the spectrum.

In the linear regime, the specific heat remains constant
at about 5.35× 10−5eV/K. When the quasi-bound are
presented in the spectrum, the specific heat goes to zero
in a wider temperature range.

A particle having the energy that coincides the quasi-
bound energy spectrum after the tunneling into a nucleus
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Figure 5. The internal energy initially increases in a con-
vex manner followed by a linear ascent.

is known as the resonance. In our problem the resonance
is satisfied for theα particle to decay, when it has a quasi-
bound energy as indicated in Figure6. The kinetic energy
of the decayedα particle has been calculated as the mean
value of the quasi-bound energy spectrum as 12.079MeV,
which is in reasonable agreement with the experimental
data [51].
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Figure 6. Transition (T) and reflection (R) coefficients of
anα particle through the energy barrier at the surface, as
functions of the energy.

4. Discussion and Conclusion

In this work, we revealed the contribution of the surface
term added to WSP to form GSWSP, to the physics of a
Bohrium 270 nucleus, in context of thermodynamic point
of view. We solved the Schrödinger equation considering
an α particle in a GSWSP, which has surface terms in
addition to the WSP. The energy spectrum and the corre-
sponding wave functions of the system were calculated as
well as entropy, internal energy, Helmholtz energy, and
specific heat, as functions of reduced temperature, using
the partition functions based on the energy spectrum.

When the quasi-bound states are taken into account, the
internal energy increases, while the Helmholtz energy de-
creases in comparison with the case of bound states solely.
With this inclusion, the entropy also increases and the
specific heat capacity sails at higher values, decaying to
zero at longer temperature scale. The bound state wave
functions imply that the nucleon is completely restricted
within the nucleus, with zero decay probability, while de-
cay probabilities have resonances leading to very high tun-
neling probabilities for quasi-bound states. The imagi-
nary parts of the quasi-bound energy eigenvalues are used
to calculate the kinetic energy of the decayedα parti-
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B.C. Lütfüŏglu, M. Erdŏgan / Properties of anα Particle in a Bh-270 Nucleus under GSWSP

cle, being in reasonable agreement with the experimen-
tal data. The difference from the experimental data is be-
cause of that the other effects such as spin-orbit coupling,
orbital contribution were ignored, which reduces the orig-
inal problem into one-dimensional one.
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