
Anadolu Üniversitesi Bilim ve Teknoloji Dergisi A- Uygulamalı Bilimler ve Mühendislik   

Anadolu University Journal of Science and Technology  A- Applied Sciences and Engineering 

 
2016 - Volume: 17 Number: 4  
Page: 708-716  

DOI: 10.18038/aubtda.266151 

Received: 30 June 2016   Revised: 27 October 2016   Accepted: 04 November 2016 

 

 

THERMODYNAMIC PROPERTIES OF A NUCLEON UNDER THE GENERALIZED 

SYMMETRIC WOODS-SAXON POTENTIAL IN FLOURINE 17 ISOTOPE 

 

Bekir Can LÜTFÜOĞLU1,*, Muzaffer ERDOĞAN2 

 

1 Department of Physics, Faculty of Science, Akdeniz University, Antalya, TURKEY 
2Department of Physics, Faculty of Science and Letters, Namık Kemal University, Tekirdağ, TURKEY 

 

ABSTRACT 

 
The exact analytical solution of the Schrödinger equation for a generalized symmetrical Woods-Saxon potential are 

examined for a nucleon in Fluorine 17 nucleus for bound and quasi-bound states in one dimension. The wave 

functions imply that the nucleon is completely confined within the nucleus, i.e., no decay probability for bound states, 

while tunneling probabilities arise for the quasi-bound state. We have calculated the temperature dependent 

Helmholtz free energies, the internal energies, the entropies and the specific heat capacities of the system.  It is shown 

that, when the quasi-bound state is included, the internal energy and entropy increase, while the Helmholtz energy 

decreases at high temperatures. Very high excitation temperatures imply that the nucleus does not tend to release a 

nucleon. The calculated quasi bound state energy is in reasonable agreement with the experimental data on the 

cumulative fission energy issued by IAEA. 

 

Keywords: Generalized symmetric Woods-Saxon potential, bound and quasi bound states, analytical solutions, 

partition and thermodynamic functions, Fluorine 17 nucleus. 

 

1. INTRODUCTION 
 

Recently, the interest to the thermodynamic functions, which play significant role to understand 

fully the physical properties of different potential fields in either relativistic or non-relativistic 

regimes, has been increased. Pacheco et al. have analyzed one [1] and three dimensional [2] 

Dirac oscillator in a thermal bath. Boumali has studied relativistic harmonic oscillator in context 

of thermodynamics [3], calculated the thermal properties of graphene under a magnetic field via 

the two dimensional Dirac oscillator [4] and thermodynamic properties of the one-dimensional 

Duffin-Kemmer-Petiau oscillator by using the Hurwitz zeta function method [5]. Arda et al. 

have studied the thermodynamic quantities of linear potential with Klein-Gordon and Dirac 

equations [6]. Dong et al. have studied the thermodynamic properties of a non-relativistic 

harmonic oscillator with an inverse square potential [7]. 

 

On the other hand, the Woods-Saxon (WS) potential has numerous applications in physics such 

as nuclear physics [8-12], atom-molecule [13] and for non-relativistic [12-16] and relativistic 

problems [17-25]. 

 

While WS potential can be used to model the behavior of the nuclear force, which rapidly 

decays to zero for large radii, the large force exerted on the nucleon near the surface can be  
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represented by an additional term to WS potential. This model is called the Generalized 

Symmetric Woods-Saxon (GSWS) potential [11]. 

 

GSWS potential can be used to model any system, in which a particle is confined in a potential 

well enclosed by a potential barrier, such as a nucleon in an atomic nucleus, an electron in a 

metal, the scattering, transmission resonance, supercriticality, decay, fusion, fission [26-30]. 

 

In this paper, we are motivated to calculate the thermodynamic properties of a nucleon in a 

Fluorine 17 nucleus by using the GSWS potential instead of the WS potential. Fluorine element 

has a wide usage in nuclear medical monitoring, such as positron emission tomography–

computed tomography (PET-CT) [31]. Although Fluorine has 18 isotopes, Fluorine 17 isotope 

is the only one that can emits positron. Hence, the thermodynamic properties of the isotope 

worth to investigate. 

 

In Section II, we discussed the characteristics of the GSWS potential and give the energy 

spectrum of the nucleon obtained by using the method in [14]. In Section III, we first calculate 

the partition function based on the energy spectrum, then, the temperature dependent Helmholtz 

free energies, the internal energies, the entropies and the specific heat capacities of the system. 

Finally in Section IV, our conclusion is given. 

 

2. METHODS 

 

To study the behavior of a nucleon confined within one dimensional potential well, we first 

consider the Woods Saxon potential; 

 

𝑽𝑾𝑺(𝒙) = −𝜽(−𝒙)
𝑽𝟎

𝟏+𝒆−𝒂(𝒙+𝑳) −  𝜽(𝒙)
𝑽𝟎

𝟏+𝒆𝒂(𝒙−𝑳) ,                                 (1) 

 

In order to include the surface effect, we add a second term, the radius times the derivative of 

the WS potential with respect to position. We obtain GSWS potential as;  

 

𝑉(𝑥) = 𝜃(−𝑥) [−
𝑉0

1+𝑒−𝑎(𝑥+𝐿) +
𝑉0𝑎𝐿𝑒−𝑎(𝑥+𝐿)

(1+𝑒−𝑎(𝑥+𝐿))
2]+𝜃(𝑥) [−

𝑉0

1+𝑒𝑎(𝑥−𝐿) +
𝑉0𝑎𝐿𝑒𝑎(𝑥−𝐿)

(1+𝑒𝑎(𝑥−𝐿))
2],  (2) 

 

here 𝜃(±𝑥) are the Heaviside step functions. The surface term corresponds to the barrier at the 

interface between the confined system and the rest of space. The GSWS potential has three 

parameters, 𝑉0 measures the depth of the potential, the parameters 𝑎 and 𝐿 are used to 

manipulate the shape of the potential. As 𝑎 decreases, the surface contribution of the potential 

gets more extended and the bulk contribution gets sharper, while the parameter 𝐿 measures the 

nuclear size. The GSWS potential is used to simulate some physical problems, showing good 

agreement with the experiments [26-30].  

 

In Figure 1, the GSWS potential for the nucleon confined within a Fluorine 17 nucleus is shown 

for the values of the parameters  𝑉0 = 42.710 𝑀𝑒𝑉 and 𝑎 = 1.538 𝑓𝑚−1[12], and for the 

calculated radius of the Fluorine 17 nucleus, 𝐿 = 3.209 𝑓𝑚. The GSWS potential is completely 

symmetric with respect to ordinate axis, thus, even and odd wave functions are expected for 

corresponding eigenstates. 

 

The bound state energies of the nucleon satisfy – 𝑉0 < 𝐸𝑛
𝑏 < 0, i.e. – 42.710 𝑀𝑒𝑉 < 𝐸𝑛

𝑏 < 0   

and quasi-bound states satisfy 0 < 𝐸𝑛
𝑞𝑏

< 𝑉0
(1−𝑎𝐿)2

4𝑎𝐿
, i.e.  0 < 𝐸𝑛

𝑞𝑏
< 33.523 𝑀𝑒𝑉. One 

dimensional Schrödinger equation for a nucleon with mass 𝑚 moving under the GSWS 
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potential has been extensively studied by Lütfüoğlu et al. [14]. Employing the same procedure 

as in [14] for the parameters for Fluorine 17 nucleus, the energy spectrum is calculated as 

shown in Table 1. The energy spectrum together with the GSWS potential is demonstrated in 

Figure 1, and their corresponding unnormalized wave functions are plotted in Figure 2. 

 

 

 
Table 1. The calculated energy spectrum of Fluorine 17 nucleus in the unit of MeV. The 

highest level corresponds to quasi-bound eigenvalue. Note that the modulus of this 

energy is very close to its real part. 

 

𝐸0
𝑏 𝐸1

𝑏 𝐸2
𝑞𝑏

 

-28.297 -4.725 19.673-0.699 i 

 

 
Note that the energy eigenvalues of bound states are real and thus, they have infinite time 

constant, therefore the states are stationary. Contrarily, energy eigenvalues of quasi-bound states 

have complex form in general. This implies a finite time constant and thus a non-zero transition 

probability. 

 

 
Figure 1. The GSWS potential and energy eigenvalues for the Fluorine 17 nucleus. The 

saturation values of the internal energy for quasi-bound states excluded (𝑈𝑚𝑎𝑥
𝑏  ) 

and included (𝑈𝑚𝑎𝑥
𝑞𝑏

 ) 
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Figure 2. Even and odd unnormalized wave functions versus x for bound and quasi-bound 

states. Subscripts stand for the number of nodes. For quasi-bound state in the 

lower panel, tunneling indicated by the harmonic behavior outside the well is 

clearly observed. Note that one even and odd wave functions exist for bound 

states, while only one even for quasi bound state 
 

 

2.1. Thermodynamic Functions of the System 

 

In order to analyze the system in the context of thermodynamics, we first write the partition 

function by using the energy levels of the system 

 

                                                            𝑍(𝛽) = ∑ 𝑒−𝛽𝐸𝑛
𝑛  ,                                                          (3) 

 

where 𝛽 =
1

𝑘𝐵𝑇
, 𝑘𝐵 is the Boltzman constant and 𝑇 is the temperature in Kelvin. 

 

Helmholtz free energy 𝐹(𝛽) of a system is defined by 

 

𝐹(𝛽) ≡ −
1

𝛽
𝑙𝑛𝑍(𝛽) .                                                             (4) 

 

Entropy 𝑆(𝑇) of a system is given by the relation 

 

𝑆(𝑇) = −
𝜕

𝜕𝑇
𝐹(𝑇).                                                               (5) 

 

The Helmholtz free energy and the entropy functions for both quasi-bound states included and 

excluded of the system vary with reduced temperature 𝑘𝐵𝑇/𝑚𝑐2,  as seen in Figure 3 (a) and 

(b), respectively. 
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The zero entropy at zero Kelvin is in agreement with the third law of thermodynamics. Note that 

the entropy saturates to a higher value at a higher rate when quasi bound state is included in the 

partition function. This is attributed to the fact that inclusion of the bound states gives rise to an 

increase in the number of microstates available to the system. Since the Helmholtz free energy 

is equal to the minus integral of entropy with respect to temperature, when quasi bound state is 

included, its curve versus temperature goes below the one for bound states only.  

 

The internal energy 𝑈(𝛽) of the nucleon is merely the quantum mechanical expectation value of 

the energy. In the language of statistical mechanics, the internal energy is related to the partition 

function by 

 

𝑈(𝛽) = −
∂

∂𝛽
lnZ(𝛽).                                                                 (6) 

 

The isochoric specific heat capacity 𝑐𝑣(𝑇)  is defined by 

 

𝑐𝑣(𝑇) ≡
∂

∂𝑇
𝑈(𝑇).                                                                     (7) 

 

The internal energy and the specific heat capacity functions for both quasi-bound states included 

and excluded of the system vary with temperature as seen in Figure 3 (c) and (d), respectively. 

 

 
Figure 3. (a) Helmholtz free energy, (b) entropy, (c) internal energy, (d) specific heat 

capacity versus reduced temperature 𝑘𝐵𝑇/𝑚𝑐2. The quasi bound state is included 

in the red(dashed), excluded in the black(solid) curve 

 

 

 

3.  RESULTS AND DISCUSSION 

 

At zero Kelvin, the starting value of internal energy is the lowest energy level of the spectrum 

−28.297 𝑀𝑒𝑉, as given in Table. The internal energy starts to increase at around 0.002 of the 

reduced temperature, where the probability of occupation the ground state energy lessens from 
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unity. The internal energy keeps increasing in a convex manner until a certain reduced 

temperature about 0.013, at which the specific heat capacity passes through a maximum, 

followed by concave ascent up to the saturation as shown in Figure 4. At about huge reduced 

temperature of 1.53, the probability of occupation the first excited state passes through a 

maximum.  

 

 

 
Figure 4. The internal energy has an inflection point at the first excited state, where the 

specific heat capacity passes through a maximum around zero temperature 

 

 

When the quasi-bound state is included in the partition function, the maximum in the specific 

heat capacity occurs at a higher value, at a higher temperature. This indicates that the internal 

energy reaches the saturation value in a longer temperature range than that only bound states are 

included. 

 

Significant decay probability starts to arise at very high temperature around 1011K. As the 

temperature goes to infinity, all states become equally available and the internal energy goes to 

the arithmetic average value of the energy spectrum. The calculated quasi bound state energy 

19.673𝑀𝑒𝑉 is in reasonable agreement with the experimental data on the cumulative fission 

energy [32]. 

 

 

4. CONCLUSIONS 

 

In this paper, we presented results of exact analytical solution of the Schrödinger equation for 

the GSWS potential for a nucleon in a Fluorine 17 nucleus. We calculated even and odd wave 

functions for bound and quasi-bound states, their corresponding energy eigenvalues, and the 

partition functions as functions of temperature. All calculations are carried out for the cases of 

quasi-bound state is included and excluded.  

 
Using the partition functions in the two cases, we calculated the temperature dependent 

Helmholtz free energies, the internal energies, the entropies and the specific heat capacities of 



Lütfüoğlu  and Erdoğan / Anadolu Univ. J. of Sci. and Technology – A – Appl. Sci. and Eng. 17 (4) - 2016 

714 

the system. When the quasi-bound state is included, the internal energy increases, the Helmholtz 

energy decreases, the entropy increases at high temperatures. The internal energy has an 

inflection point at the temperature about 𝟏. 𝟒 ∙ 𝟏𝟎𝟏𝟏 𝑲, at which the specific heat capacity 

passes through a maximum. Examining the wave functions, it is observed that the nucleon is 

completely restricted within the nucleus, i.e., no decay probability for bound states, while very 

low tunneling probability arises for quasi-bound state. This practically means that Fluorine 17 

nucleus can only emits positron accompanied by x-ray, as confirmed by the experiments [32, 

33]. This result is in agreement with the variation of the internal energy with temperature. 
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