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ABSTRACT  

 

Apoptosis is an important area of research because of its role in keeping a mature 

multicellular organism's number of cells constant hence, ensuring that the organism does 

not have cell accumulation that may transform into cancer with additional hallmarks. 

Firstly, we have carried out sensitivity analysis on an existing mitochondria-dependent 

mathematical apoptosis model to find out which parameters have a role in causing 

monostable cell survival i.e., malfunction in apoptosis. We have then generated three 

healthy cell models by changing these sensitive parameters while preserving bistability 

i.e., healthy functioning. For each healthy cell, we varied the proapoptotic production 

rates, which were found to be among the most sensitive parameters, to yield cells that 

have malfunctioning apoptosis. We simulated caspase-3 activation, by numerically 

integrating the governing ordinary differential equations of a mitochondria-dependent 

apoptosis model, in a hypothetical malfunctioning cell which is treated by four potential 

treatments, namely: (i) proteasome inhibitor treatment, (ii) Bcl-2 inhibitor treatment, (iii) 

IAP inhibitor treatment, (iv) Bid-like synthetic peptides treatment. The simulations of the 

present model suggest that proteasome inhibitor treatment is the most effective treatment 

though it may have severe side effects. For this treatment, we observed that the amount of 

proteasome inhibitor needed for caspase-3 activation may be different for cells in 

individuals with a different proapoptotic protein deficiency. We also observed that 

caspase-3 can be activated by Bcl-2 inhibitor treatment only in those hypothetical 

malfunctioning cells with Bax deficiency but not in others. These support the view that 
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molecular heterogeneity in individuals may be an important factor in determining the 

individuals’ positive or negative responses to treatments. 
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Introduction 

 

Chemotherapy resistance is an important problem in cancer treatments. A specific cancer 

chemotherapy that is used on patients whose tumors have similar histopathology may 

have very different responses. Oncologists suspect that subsets of patients that respond 

positively to a chemotherapy are hidden in larger groups of resistant cases. Genetic and 

molecular heterogeneity may be the cause of those subsets.
1
 The presence or absence of, 

or more specifically, the quantity of a biological molecule e.g., DNA, RNA, protein and 

other metabolites which indicate whether the individual is healthy or has a disease is a 

biomarker. Therefore, assessment of biomarkers can unravel this genetic and molecular 

heterogeneity and may be utilized to determine the type and the intensity of 

chemotherapy method to treat a patient. Mathematical modeling and computations may 

facilitate the decision of the chemotherapy method to be used because just experience 

may not be enough because of the complex nature of cancer.  

 

The beneficial effects of chemotherapy drugs can be mitotic catastrophe, apoptosis or 

prolonged cell cycle arrest. Hence, defects in apoptotic mechanisms may be a reason for 

chemotherapy resistance. The mitochondria-dependent apoptotic pathway is the major 

apoptotic pathway which is utilized by chemotherapeutic drugs.
2
 Depending on which 

tissue they belong to, there are two types of cells for apoptosis: Type I and Type II. If the 

apoptotic signaling pathway bypasses mitochondria then these are Type I cells and if not, 

these are called Type II cells.  
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A mathematical model for mitochondria-dependent apoptosis, in which bistability 

emerges as healthy functioning of the Type II cells was proposed by Bagci et al.
3
 In this 

model, the extracellular apoptotic stimulus (Fas Ligand) results in cytochrome c (cyt c) 

release from the mitochondria and caspase-3 activation which is the executioner enzyme 

for apoptosis. For simplicity, the model excluded the reactions before caspase-8 

formation. The detailed descriptions of the model can be found in Model and Methods 

section of the study by Bagci et al.
3
  

 

The biochemical mechanism of apoptosis is studied extensively because of the 

importance of keeping the number of cells in the mature organism balanced in response 

to pro- or anti-apoptotic stimuli.
4
 In healthy tissues, cell number stays constant when the 

rate of cell proliferation is equal to the rate of cell death. However, in malfunctioning 

apoptosis, the rate of cell proliferation can be higher (lower) than the rate of cell death 

and the number of cells increases (decreases). The total number of cells in a tissue 

increases in tumorigenesis whereas it decreases in neurodegenerative disorders (e.g. 

Parkinson’s disease and Alzheimer’s disease). 

 

In this study, by healthy cells, we mean the cells without apoptosis malfunction prior to 

any treatment. Healthy cells are converted to cells with apoptosis malfunction by 

decreasing the proapoptotic protein production rates in the model. We call these cells 

“hypothetical malfunctioning cells”. However, these hypothetical malfunctioning cells 

can not represent all the tumor cells as some of the tumor may have apoptosis rates that 

are considerably higher than that of normal cell.
5,6

 The hypothetical malfunctioning cells 
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are then treated in silico by four different treatment methods. The cells are predicted to be 

resistant to treatment if they do not undergo apoptosis. On the other hand, they are 

predicted to be sensitive to the treatment if apoptosis is induced. 

 

After pioneering studies by Fussenegger et al.
7
 and Eissing et al.,

8
 many apoptosis models 

have been published (see review by Salvioli et al.
9
 and other references

3, 10-28
), however, 

none of these studies focused on resistance to treatment (i.e., despite treatment, the cells 

survive due to lack of apoptosis). In treatments that target apoptotic pathways, drugs 

affecting extracellularly either activate Fas or another death signaling receptor. On the 

other hand, drugs affecting intracellularly upregulate proapoptotic proteins and/or 

downregulate antiapoptotic proteins. In this study, we focused on intracellular affecting 

treatments. The results herein suggest that the type of potential treatment and the identity 

of the deficient proapoptotic protein determine whether apoptosis will be induced in a 

hypothetical malfunctioning cell. Therefore, the results suggest that the reason of 

different outcomes of a treatment in different people may be genetic variations in their 

cells that can be observed through their possible biomarkers for apoptosis namely, 

production rates of proapoptotic proteins
4
. 

 

The previous simulations by Bagci et al.
3
 predicted a pathological state in which cells 

will exhibit a monostable cell survival if the degradation rate constant (expression rate 

constant) of the proapoptotic protein Bax is above (below) a threshold value. On the other 

hand, with suitable values of rate constants, the model predicts bistability with a suitable 

threshold of apoptotic stimulus for apoptosis. We used a mathematical model that was 
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originally proposed by Bagci et al.
3
 to shed light on resistance to treatments because this 

model successfully predicts the correct functioning (bistable, healthy cell) and 

malfunctioning (monostable, unhealthy cell) of apoptosis. We have also used a modified 

version of this model in our study. Herein, it is assumed that all pathways other than 

those related to apoptosis remain unchanged, and therefore a change in apoptosis will 

lead to a change in homeostasis of the number of cells. In this article, we first present the 

sensitivity analysis to determine the most sensitive parameters to caspase-3 activation. 

Then, we summarize the results of the sensitivity analysis performed on the model 

parameters. This is followed by presenting the simulations of four hypothetical potential 

treatments i.e., the proteasome inhibitor treatment, Bcl-2 and IAP inhibitors treatment 

and Bid-like synthetic peptides treatment of which proteasome inhibitor treatment is 

predicted to be the most effective. The aims of the in silico experiments were (i) to gain 

insights for the role of molecular heterogeneity in resistance to treatment for malfunction 

in apoptosis and (ii) to check if the underlying reaction mechanisms should be modified 

and/or new reactions should be added into the pathway and (iii) to check if the parameter 

values used in the existing model should be known within a narrow range (i.e., sensitive) 

so that the resulting model and parameters could be used in guiding treatments. The 

results support the view that molecular heterogeneity among individuals may be a reason 

for varied responses to treatments. As for the second and third aims, we have found the 

reactions which are important and the parameters which should be known within a 

narrow range for the present model. We have also compared the experimental methods of 

Kim et al.
29

 with the theoretical predictions of our modified model. We also compared the 

predictions of our model with the experimental results compiled by di Pietro et al.
30

 from 
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several databases. It should be emphasized that our focus in this study is on malfunction 

in apoptosis and resistance to treatments for it and not the much more complicated 

problem, chemotherapy resistance to cancer. 

 

Methods 

 

In the model proposed in the reference
3
, the rate constants ensure bistability in apoptotic 

response where initial concentrations smaller than threshold values for caspases lead to 

cell survival and higher initial concentrations lead to apoptosis. The chemical reactions 

and physical interactions of the proteins involved in the apoptotic pathways of this model 

are presented in Supplementary Materials Figure S1 and Table S1 for easy reference. As 

mentioned in the previous section, sensitivity analysis is performed to determine the 

parameters that may have a role in malfunctioning apoptosis and resistance to treatment. 

Out of those parameters that are found to be sensitive (ten of them) (See Table 1), we 

have varied arbitrarily chosen four of them among the benchmark parameter values given 

in reference
3
 to determine whether the system is robust to parameter variations. For this 

purpose we obtained two additional parameter sets each representing cells belonging to a 

healthy  individual (Table 2). The benchmark parameters are varied so as to preserve the 

bistable character of the system. Therefore, each parameter set is bistable in response to 

apoptotic stimulus and hence represents cells of healthy individuals. We then used these 

three parameter sets to simulate four hypothetical potential treatments. We also generated 

six malfunctioning point cells around the nominal malfunctioning point cells in parameter 



 9 

set 1 and 3 to evaluate the statistical significance of the results for the two parameter sets. 

The new parameter sets around set 1 and 3 are presented in Table 4. 

 

When mass action kinetics is applied, the reactions listed in Table S1 lead to rate 

equations in the form of nonlinear ordinary differential equations.
3
 Herein, we solved 

these equations numerically using the software XPPAUT developed by G. Bard 

Ermentrout
31

 for the simulation of the potential treatments. 

 

Modified version of mitochondria-dependent apoptosis model: 

The following degradation of caspase-3 reaction is omitted from existing mitochondria-

dependent apoptosis model: 

caspase-3 → aminoacids 

The following reactions
32

 are added to the existing mitochondria-dependent apoptosis 

model: 

  caspase-3.IAP → IAP + caspase-3ubuiquitinated      

caspase-3 ubuiquitinated → aminoacids                      
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Results and discussion 

 

Firstly, some preliminary results on nullclines, and phase plane for bistable and 

monostable dynamical system are discussed for easy reference as they are profusely used 

in the later subsections. Figure 1A illustrates the phase plane of a bistable apoptosis 

model. There are three steady states, denoted by (i), (ii) and (iii) which have zero, high 

and intermediate levels of executioner caspase (caspase-3) concentration. The steady 

state (i) is the cell survival state (zero executioner caspase concentration), (ii) is the 

possible apoptotic state and (iii) is the cell fate decision point. The steady states (i) and 

(ii) are stable because a small perturbation away from them eventually disappears. On the 

other hand, the steady state (iii) is unstable because a small perturbation away from it 

grows. The thick curves are the nullclines
33

 and their intersections are the steady state 

points.  

 

The two stable equilibrium points may bifurcate to one stable equilibrium point (i.e., 

become monostable) if a system parameter (e.g., degradation rate of caspase-3) is 

changed. The phase plane in Figure 1B is an example of this case; where the monostable 

state is cell survival. 

 

We first present the sensitivity of steady state caspase-3 concentration to the parameters 

of the model by Bagci et al.
3
 and determine those that may induce a malfunction in 

apoptosis when perturbed from their nominal values. The model is presented 

schematically in Figure S1 and the list of chemical reactions and physical interactions are 
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listed in Table S1. For parameter values, see the reference
3
. Then, we present outcomes 

for four hypothetical treatments that are obtained by simulating the model for three 

different parameter sets each representing a healthy cell. Finally, we present the 

sensitivity results and proteasome inhibitor treatment outcomes for the modified model 

(corrected for IAP – caspase-3 interactions), and also compare model predictions with 

experiments that addressed the effect of Bcl-2 and IAP inhibitors in chondrosarcoma 

cells
29

 and with experimental results compiled by di Pietro et al.
30

 from databases. 

 

Sensitivity analysis of mitochondria-dependent apoptosis model 

 

To evaluate the sensitivity of caspase-3 concentration to the parameters, we used a 

different and a much simpler method than the one used by Shoemaker and Doyle
34

 who 

have carried out sensitivity analysis on the parameters in the same model using tools from 

control engineering. However, the results of the two different approaches are in good 

agreement. Hereafter, the nominal values of the parameters are understood to be those 

given in the reference
3
 and the steady-state concentration of caspase-3 for these 

parameters corresponds to 5.4 nM. For sensitivity analysis we increased and decreased 

the values of the parameters by 100-fold and then checked how much the steady-state 

value of [caspase-3] is changed (Table 1). The following parameters are found to be 

sensitive that affect the final steady-state concentration of caspase-3: p53 concentration 

([p53]), production rate constants of pro-apoptotic proteins, Apaf-1 (ΩApaf1), procaspase-3 

(Ωproc3), procaspase-9 (Ωproc9), Bid (ΩBid), Bax (ΩBax), mitochondrial cyt c (Ωcytcmito), anti-

apoptotic proteins Bcl-2 (ΩBcl2), IAP (ΩIAP), and degradation rate constant for all the 
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proteins (kd). The same results were also observed by Shoemaker and Doyle
34

. They also 

found that steady-state concentration of caspase-3 is not sensitive to most of the 

parameters.  

 

Sensitivity analysis revealed not only the sensitive parameters but also whether an 

increase or decrease in these parameters may lead to malfunction in apoptosis. It is found 

that when the production rate constants of proapoptotic proteins are low, and production 

rate constants of antiapoptotic proteins and degradation rate constant of all proteins are 

high, the model predicts monostability with the cell survival state being the only stable 

state. Therefore, the sensitivity analysis helped us to create cells with malfunctioning 

apoptosis. These hypothetical malfunctioning cells are then treated in silico by four 

treatment types.  

 

Hypothetical treatments 

 

The roles of the sensitive parameters on malfunction in apoptosis and resistance to 

treatments in a hypothetical cell were then investigated. The simulations were carried out 

for three parameter sets representing three healthy cells which may belong to three 

different individuals (since each parameter set results in bistability) to test the robustness 

of the theoretical outcomes of the treatments. Parameter set 1 was taken as the parameter 

values used in the reference
3
. Parameter set 2 was obtained by changing the numerical 

values of production rates of IAP (ΩIAP), procaspase-9 (Ωproc9), procaspase-3 (Ωproc3) of 

set 1. Finally, parameter set 3 was obtained by changing the numerical values of 
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production rates of IAP (ΩIAP), procaspase-3 (Ωproc3) and mitochondrial cyt c (Ωcytcmito) of 

set 1. These three parameter sets are given in Table 2. We note that the numerical values 

of parameters in parameter set 1 are close to those in set 2 but considerably different than 

those in set 3. The true values of these sensitive parameters are only known within a wide 

range. Even if we only take upper and lower values of these ten sensitive parameters (i.e., 

2 levels), the number of in silico experiments that has to be carried out is a very large 

value 1024 (=2
10

) to obtain all main and interaction effects.
35

 Therefore, we took only 

three of them to generate our healthy cells which may belong to three different 

individuals and yet found qualitative and quantitative differences. We note that the gene 

expression levels of caspase-3, caspase-9 and cyt c are reported to vary naturally in 

human individuals in a database that also reports certain polymorphisms in the genes.
36

 

 

In order to generate cells with malfunctioning apoptosis from each parameter set, the 

numerical value of one of the sensitive parameters was changed and then checked 

whether this cell had malfunction in apoptosis. If the result was on the affirmative, then 

we applied four potential treatments, one at a time to see if apoptosis can be achieved in 

this cell. To this end, the production rates of proapoptotic proteins were reduced to 1 % 

and 15 % of their nominal values. These proapoptotic proteins were Apaf-1, procaspase-

3, procaspase-9, Bid, Bax and mitochondrial cyt c. The criterion for malfunction in 

apoptosis in those phenotypes was either monostability (cell survival i.e., caspase-3 

concentration is zero as shown in Figure 1B) in responding to apoptotic stimulus or 

bistability with caspase-3 concentration not reaching a predetermined threshold value of 

1 nM which is only to be understood relatively hereafter. This concentration corresponds 
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to approximately 2500 molecules for a cell of diameter 20 m. We notice that in most of 

the proapoptotic protein deficiencies, the model predicts malfunction in apoptosis, one of 

the hallmarks of cancer. This is in line with the observation that cancer is linked with 

suppressed levels of pro-apoptotic proteins.
37

 Note that when the production rates of 

proapoptotic proteins are reduced to 50 % of their nominal values, cells with malfunction 

in apoptosis were predicted to be unattainable in all cases for parameter sets 1 and 2 and 

for parameter set 3 except for Bid deficiency, the cells had malfunction in apoptosis (data 

not shown). 

 

The final value of the caspase-3 concentration was obtained as the steady-state solution 

of the governing differential equations using XPPAUT.
31

 At the end of the simulation 

run, if it was found that the cell is resistant to apoptosis, then we simulated the effect of 

the potential treatments described below. To this end, we made an appropriate change in 

a parameter to represent the effect of treatment and checked whether caspase-3 was 

produced. We assumed that the treatment becomes successful if caspase-3 concentration 

reached values greater than or equal to 1 nM. In those cells apoptosis may occur in a 

monostable fashion as well. This was not investigated in this work. 

 

Using the sensitivity results (Table 1), four different treatment methods, which were also 

proposed by experimentalists, and which may yield the final caspase-3 concentration 

greater than or equal to 1 nM were simulated to achieve apoptosis in the hypothetical 

malfunctioning cell: 
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1) Proteasome inhibitor treatment
38

 (simulated by reducing the degradation rate constant 

(kd) of proteins)  

2) Bcl-2 inhibitor treatment
39

 (simulated by decreasing the production rate constant of 

anti-apoptotic protein Bcl-2)  

3) IAP inhibitor treatment
39

 (simulated by decreasing the production rate constant of anti-

apoptotic protein IAP) 

4) Bid-like synthetic peptides treatment
40

 (simulated by increasing the production rate of 

proapoptotic protein Bid) 

 

The first treatment listed above which has the effect of reducing the degradation rate 

constants of the proteins might also have severe side effects because this treatment 

inhibits proteasomes that degrade proteins involved in pathways other than apoptosis as 

well and hence affecting the other functions of the cell. On the other hand, 

downregulating Bcl-2 and IAP and upregulating Bid might have less severe side effects.  

 

The predictions of the outcomes of those four potential treatments are discussed below 

and the results are presented in Tables 3-9. 

 

Possible outcomes of proteasome inhibitor treatment. 

 

Herein we checked whether apoptosis is achieved in a hypothetical malfunctioning cell, 

i.e., a cell whose steady-state concentration of caspase-3 is less than 1 nM. For this 

purpose, as a treatment, we reduced the degradation rate constant of proteins (kd) to 
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achieve apoptosis. Rate constant kd can be reduced biochemically by using a proteasome 

inhibitor.
38

 The preclinical studies have shown that proteasome inhibitor bortezomib 

induces apoptosis, and overcomes chemoresistance in several malignancy models in vitro 

and in vivo.
41

 As the proteins are degraded by the same proteasome machinery, we have 

taken all the degradation rates of the proteins to be equal to kd (0.006 s
-1

 as an 

approximate value) and decreased its value to see if caspase-3 concentration exceeds the 

threshold value of 1 nM to mimic the effect of proteasome inhibitor. When the cell is a 

hypothetical malfunctioning cell, then, the ranges of kd values within which apoptosis is 

possible are tabulated in Table 3. It is shown that as kd value becomes smaller, the steady-

state caspase-3 concentration increases in the present theoretical results (sensitivity 

results in Table 1). This functional relation was investigated using steady-state 

concentration of caspase-3 versus kd graph. This bifurcation diagram of caspase-3 with 

respect to kd is presented in Figure 2. The parameter set 1 was used for the values of the 

parameters in the rate equations except for the Apaf-1 production rate which was 

decreased by a factor of 100-fold (upper left entry in Table 3) to create a hypothetical 

malfunctioning cell. Apoptotic response was monostable apoptosis when kd was less than 

the limit point 1 (LP1) (kd = 0.006x0.07 s
-1

) or monostable cell survival when kd was 

greater than limit point 2 (LP2) (kd = 0.006x0.48 s
-1

) and bistable when kd was in 

between this interval (0.006 s
-1

 is the nominal value of kd). For the bistable case, whether 

the response results in cell survival or apoptosis depends on the initial concentration of 

caspase-3 protein. The upper solid curve in Figure 2 represents the apoptotic steady state, 

the dashed curve in the inset represents the unstable steady state (a slight increase in 

caspase-3 concentration will lead to apoptosis, whereas, a slight decrease will lead to cell 
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survival) and the horizontal lower solid line represents the cell survival steady state. The 

inset is the enlargement of the lower part of the diagram as this becomes invisible due to 

scaling. The points for steady states which were simulated are shown in circles and the 

smooth function curves were obtained using the KaleidaGraph Version 4.0 (Synergy 

Software). The caspase-3 concentration 6.7x10
-3

 nM was very low to start apoptosis 

when the value of kd at LP2 is 0.006x0.48 s
-1

. Therefore, in Table 3, we tabulated the 

range of kd values for which caspase-3 steady state concentration is above the threshold 

value of 1 nM which was obtained when kd was smaller than or equal to 0.006x0.35 s
-1

. 

The same procedure was repeated to fill in the rest of the entries in Table 3. The case 

when kd < LP1, i.e., the cells are monostable apoptotic, was not investigated in this work. 

 

In this study, inhibition of proteasomes (simulated by reducing kd) was found to induce 

apoptosis in hypothetical malfunctioning cells. Experimental studies also suggest that 

proteasome inhibitors can be used for inducing apoptosis.
38

 However, it should be noted 

that the present study does not take into account the inhibition of proteasomal 

degradation of IKB and subsequent inhibition of NF-KB which can change the 

production rates of proteins in the apoptotic pathways.
42

 

 

It can be seen in Table 3 that the overall proapoptotic protein degradation rate has to be 

decreased in different proportions for each proapoptotic protein deficiency. This 

difference may help to determine the amount of proteasome inhibitor needed to treat a 

patient. For a healthy cell, it was assumed that apoptosis is possible when kd is less than 

or equal to 0.006 s
-1

.
3
 When a cell’s Apaf-1 production rate was reduced by 100-fold, 
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while keeping the other protein production rates at their nominal values, apoptosis was 

then possible for kd range between 0 – 0.006x0.35 s
-1

. When a cell’s Bid production rate 

was reduced by the same amount, apoptosis could be achieved if kd range was 0 – 

0.006x0.88 s
-1

. Therefore, the amount of proteasome inhibitor which should be used for 

the treatment of a patient with Apaf-1 deficiency may be more than a patient with Bid 

deficiency according to the present model. To know the least amount of drug that is 

effective is important to reduce its side effects.  

 

When we analyzed the consequences of Bid deficiency in people whose Bid production 

rate was reduced to 15 % of its nominal value, it was found that the cells represented by 

parameter sets 1 and 2 are healthy, however, the cell represented by parameter set 3 have 

malfunction in apoptosis. Moreover, the kd ranges are similar in parameter sets 1 and 2 

but the ranges are significantly different in parameter set 3. To check whether variations 

in four proteins’ (IAP, procaspase-3, procaspase-9 and mitochondrial cyt c) production 

rates produce statistically significant outcome, we have generated 6 point cells that 

belong to patients from the parameter sets in Table 4 which are obtained around the 

nominal one for parameter sets 1 and 3 given in Table 3 (parameter set 2 is not included 

for it is similar to the parameter set 1) for each hypothetical impairment in the production 

levels of the pro-apoptotic proteins (column 1 in Table 5) and 90, 95, 99% confidence 

intervals for the difference in the means of the two hypothetical populations of the 

parameter sets 1 and 3 are calculated. When the production rates of proapoptotic proteins 

are decreased by 100 fold, then it is found that there is a statistical significance for Apaf-

1, procaspase-3 and procaspase-9 but no statistical significance for Bid, Bax and 
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mitochondrial cyt c. This is because the confidence intervals for the former set include 

zero within their confidence interval hence the mean values can also be equal. On the 

other hand, when the production rates are decreased by 15%, some of the mutations did 

not lead to unhealthy cells hence no confidence interval is calculated for that group and 

for those that we have calculated all the confidence intervals is found to include zero. The 

groups of cells in parameter set 1 and 3 can be considered as two groups of different 

genetic background but similar within. The statistical results suggest that parameter set 1 

group require different doses of proteasome inhibitor compared to the individuals whose 

cells can be represented by parameter set 3 if they have a drastic reduction down to 1% in 

their production rates of Apaf-1 or procaspase-3 or procaspase-9 proteins. 

 

In this study, we did not assess the degradation of proteins by lysosomes as this will 

simply shift the steady state concentrations of all the proteins in the cell downwards. 

 

Possible outcomes of Bcl-2 and IAP inhibitors treatments. 

 

In the previous treatment method, we determined the proapoptotic proteins whose 

deficiencies may result in hypothetical malfunctioning cell formation. For treatment 

purposes, we then reduced the antiapoptotic Bcl-2 and IAP production rates to induce 

apoptosis in these hypothetical malfunctioning cells with proapoptotic protein deficiency 

from Apaf-1 to cyt c (Table 6). The production rate constants of Bcl-2 and IAP can be 

reduced biochemically by introducing their hypothetical inhibitors into the medium.
39

 

Such an inhibitor for Bcl-2 is obatoclax mesylate (GX015-070)
43

 and for IAP is SMAC 
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peptide derived small compounds.
39

 Instead of including the reaction of a protein with an 

inhibitor, the same effect can also be obtained by reducing the production rate of the 

same protein. This means that if three proteins are synthesized and one of them is quickly 

inactivated by an inhibitor which binds irreversibly, then the production rate of the 

functional protein will be reduced by one third. 

 

The outcomes of treatment methods for the hypothetical malfunctioning cells wherein 

Bcl-2 and IAP inhibitors are introduced as a treatment are summarized in Tables 6 and 7, 

respectively. As for the cells whose caspase-3 concentration exceeds the threshold value 

of 1 nM, no treatment is needed (denoted by “Healthy cell” in the Tables). On the other 

hand, when the cells are hypothetical malfunctioning cells then whether the treatment 

induces apoptosis (the cells are sensitive or resistant to treatment) depends on the 

parameter set and proapoptotic protein deficiency. Reducing the production rates of Bcl-2 

or IAP may induce apoptosis. By how much amount the production rate had to be 

reduced is presented in Table 6 so that caspase-3 concentration exceeded its threshold 

value (however IAP inhibitor treatment did not induce apoptosis). For example, in Table 

6 for parameter set 1, when Bax concentration was reduced to 15 % of its nominal value, 

apoptosis was possible if the production rate of Bcl-2 was reduced to values smaller than 

3x10
-2

 x 0.10 nM/s (note that for a healthy person Bcl-2 formation rate was assumed to 

be equal to 3x10
-2

 nM/s - reference
3
). This cell is sensitive to treatment. On the other 

hand, if the hypothetical malfunctioning cells did not undergo apoptosis even with zero 

production rates of Bcl-2 and IAP, then this case is presented as “Apoptosis impossible 

(denoted by x)” in the Tables. For these cases, the steady-state caspase-3 concentration 
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was either zero, or equal to a value smaller than 1 nM and the corresponding hypothetical 

malfunctioning cells are resistant to treatment. For example, in Table 6 and parameter set 

1, when the production rate of procaspase-3 is 15 % of its nominal value, steady state 

caspase-3 concentration is 0.80 nM.  

 

The results for parameter sets 1 and 2 presented in Tables 6 and 7 show that an individual 

with a Bax production rate reduced to 15 % of its nominal value could be successfully 

treated by a Bcl-2 inhibitor but not by an IAP inhibitor. Also, Bcl-2 inhibitor therapy can 

only be effective on people with Bax deficiency (sensitive to treatment) but not on others 

(resistant to treatment). The reason for Bcl-2 inhibitor being effective on Bax deficiency 

is possibly because of the fact that Bcl-2 directly interacts with Bax (Figure S1). These 

simulation results suggest that molecular heterogeneity in patients can be a reason for 

different treatment consequences. On the other hand, these qualitative results were not 

obtained for the parameter set 3. Hence, the model is not robust to the choice of 

parameter values of ΩIAP, Ωproc9, Ωproc3, Ωcytcmito in assessing the outcomes of Bcl-2 and 

IAP inhibitors treatment methods. When Bcl-2 inhibitor treatment is employed for the 

patients whose proapoptotic protein production rates are reduced to 1% of their nominal 

values, no variations are detected between the groups of parameter set 1 and 3 and also 

within the groups of each set (Table 8). However, some differences are observed when 

the production rates are reduced to 15% of their nominal values for Bax production 

deficiency.  
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Possible outcomes of Bid-like synthetic peptides treatment. 

 

In order to induce apoptosis in hypothetical malfunctioning cells, we then increased the 

production rate of Bid in the parameter sets by three-fold. Increase in Bid production rate 

may be induced biologically by the penetration of Bid-like synthetic peptides into the 

cells by endocytosis.
40

 Apoptosis was not possible in response to Bid-like synthetic 

peptides treatment for the parameter sets 1, 2 and 3 even though the production rate of 

Bid was increased by 20-fold (Table 9).  

 

Results for modified mitochondria-dependent apoptosis model 

 

In this study, we increased the IAP production rate (ΩIAP) as large as 1000 fold and 

simulated the caspase-3 concentration. Under these conditions the caspase-3 

concentration reached a steady-state value of 1.8 nM, still above the assumed threshold 

value (1 nM). This is contrary to the expectations since at such a high value of inhibitor 

production rate, one would expect a very low caspase-3 concentration
8, 17, 32, 44-45

). 

Therefore, we modified the mitochondria dependent apoptosis model and included the 

inhibition of caspase-3 by IAP through ubiquitination and subsequent degradation by the 

proteasome. (See Methods section). The resulting model for parameter set 1 and 2 are 

again found to be bistable but monostable cell survival for parameter set 3. However, our 

modified model for this parameter set is bistable when the production rate of 

mitochondrial cyt c is increased by two-fold. Thousand-fold increase in the production 

rate of IAP did not produce cells with malfunctioning apoptosis in the existing model. 
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When the IAP degradation mechanism is modified (see Methods section) then, a 

reasonable increase in the IAP production rate has resulted in monostable cell survival.  

 

 Comparison of theoretical results with experiments. 

 

A recent experimental study
29

 focused on the effect of IAP and Bcl-2 inhibitors in 

restoring cyt c release from mitochondria to cytoplasm and apoptosis in chondrosarcoma 

cells. We used the modified model to see if we can see this effect in silico. To this end, 

we assigned a nominal production rate value of 0.06 nM/s to IAP and 0.08 nM/s to Bcl-2 

which ensured bistability. Then, we increased both production rates by six-fold so as to 

create hypothetical malfunctioning cells. Later, we simulated the effect of Bcl-2 or IAP 

inhibitors which resulted in cyt c release and caspase-3 activation which were used to 

treat cell one at a time (Figure 3). The simulation of IAP inhibition is presented in Figure 

3A. The IAP production rate is set at its nominal value (corresponds to a level in a 

healthy cell) whereas Bcl-2 production rate is set at six-fold of its nominal value. The 

model predicts cyt c release to cytoplasm and caspase-3 activation under these conditions 

in agreement with observations in the reference
29

. The simulation of Bcl-2 is presented in 

Figure 3B. Again, the model predicts cyt c release to cytoplasm and caspase-3 activation 

in agreement with the study in the reference.
29

 Hence, inhibition of either Bcl-2 or IAP is 

sufficient to restore normal apoptotic function in states where both proteins are 

constitutively upregulated. Therefore, the computations are in agreement with the 

observation that changes in more than one protein’s levels can play a role in causing 

malfunctioning of apoptosis. 
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Di Pietro et al.
30

 conducted an extensive study on Genomics, Transcriptomics, 

Proteomics, Interactomics, Oncogenomics, and Pharmacogenomics of Apoptotic 

Machinery in Homo sapiens. They report mRNA levels of proteins in apoptotic 

machinery in normal and cancer cells for 13 cancer types. We compared their findings 

related to transcriptomics of apoptotic machinery with our theoretical predictions. They 

utilized the data available in Human Transcriptome Map, NCI60 Cancer Microarray 

Project and Oncogenomics for cancer and normal tissues.
46-48

 The authors reported the 

upregulation and downregulation of gene expression when the gene is up or 

downregulated by at least three fold in a cancer tissue compared to a normal one. 

Accordingly, we increased or decreased the protein expression rates that are present in 

our model by at least three fold in the simulations and checked whether apoptosis can be 

induced with enough caspase-3 activation. The results are summarized in Table 10 where 

column number 1 lists the 13 different cancer types, column numbers 2-7 list the change 

in the levels of mRNA of proteins which are present in our model (extracted from Figure 

7A in their paper) and the last column gives our simulation results. In this table 0 denotes 

no level change, and + and – denote up and downregulation (black, red and green regions, 

respectively, in their Figure 7A). For example, for ovary cancer, caspase-3 concentration 

level predicts cell survival (0.9 nM) which corresponds to casp9, Bcl-2, Bid and Apaf-1 

expression rates remaining constant and Bax increasing by three fold in cancer cells 

compared to normal cells and only when caspase-3 expression rate is decreased by 85% 

(0.15x), do we get cell survival. Among those 13, our theoretical results predict apoptosis 

malfunctioning in six cancer types. Interestingly, out of seven types that we failed to 
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predict apoptosis malfunction, the three cancer types (pancreas, skin, thyroid cancers) 

have mutations in BRAF, CDKN2A and TP53 genes (the remaining ten cancers do not 

have these mutations) that are either not included (BRAF, CDKN2A) or not represented 

adequately (TP53, data not shown) in our model. These theoretical results suggest that 

the transcription of these three genes should be included in an apoptosis model to 

correctly predict the apoptosis malfunction. 

 

To assess the statistical significance of the prediction of deregulated apoptosis in 6 out of 

13 cancer types (since the data is taken from real patients who suffer from cancer), we 

have simulated the 729(=3
6
) combinations of  +, - or 0 (+ obtained by multiplying the 

production rate of target protein by three, - by dividing by three and zero by leaving 

unchanged) in the six target genes and found that 435 out of 729 has led to tumor 

formation.  The fact that the ratio of 6/13 is lower than the background rate 435/729, 

suggests that we might not have included all the necessary proteins into the model which 

may lead to cell accumulation and this is conjectured in the previous paragraph.  The 

expression dynamics of BRAF, CDKN2A and TP53 genes and the subsequent dynamics 

of their protein product concentrations are not exactly being understood and hence not 

included in the model. Had these been included, the prediction ratio could have been as 

high as 9/13 which is higher than the background rate. 
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Conclusion 
 

 

We have used an ODE model composed of 31 dependent variables obtained from mass-

action kinetics with 52 parameters most of which are coming from the kinetics of the 

reactions. Out of these 52 parameters caspase-3 concentration was found to be sensitive 

to 10 of them. A subset of these parameters was changed to create 3 healthy cells which 

are further changed to create hypothetical malfunctioning cells and four different in silico 

treatment methods are used on the hypothetical malfunctioning cells. It is found that the 

proteasome inhibitor treatment may be the most effective one compared to other 

treatment methods as this restores apoptosis in cells for all proapoptotic protein 

deficiencies. On the other hand, in Bcl-2 and IAP inhibitors and Bid upregulation 

treatment methods only some of the proapoptotic protein deficiencies may be treated. 

Consequently, depending on the type of the treatment and the identity of the deficient 

proapoptotic protein, apoptosis may not be induced in a hypothetical malfunctioning cell. 

It is to be noted that the response to treatments is studied by considering malfunction only 

in apoptosis but not in other pathways such as multi drug resistance gene pathway. We 

speculate that the present study is in line with the view that the reason of different 

outcomes of a chemotherapy method in different people may be their molecular 

heterogeneity that can be observed through their cancer biomarkers. Our reasoning for 

this speculation is that a problem occurring in one stage of cancer, i.e., a malfunction in 

apoptosis, can also be a factor in the overall picture of cancer progression and 

chemotherapy resistance. Hence, the effect of molecular heterogeneity in apoptosis may 

also have a role on cancer chemotherapy resistance.  
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It is argued that biological processes are highly robust to parameter changes.
49

 However, 

the detailed analysis of the existing mitochondria-dependent apoptosis model and its 

modified version has shown the parameters and the reactions that are more effective than 

others. Therefore, computational studies like these may be beneficial to help 

experimentalists to decide which interactions to study and which kinetic parameters to 

measure. 

 

The results imply that targeted treatments on one protein only i.e., Bcl-2 and IAP 

inhibitors treatments and Bid-like synthetic peptides treatment are not very effective 

except when the problem is in the targeted protein. For example, Bcl-2 inhibitor 

treatment will very likely restore apoptosis in a malfunctioning cell with a defect in its 

Bcl-2 protein but not on any other proteins. On the other hand, proteasome inhibitor 

treatment may be much more efficient since this affects all of the proteins in the model. 

This hypothesis remains to be tested by experiments. Another hypothesis to be tested by 

experiments which is raised in this study is that a treatment is not likely to be effective if 

the target protein is not close in the sequence of reactions/interactions in the pathway to 

the problematic protein. A close interaction between experimentalists and theoreticians 

may be useful to test the hypothesis arising from computations which will in turn 

improve the models to generate new hypotheses.
50

 

 

It is to be noted that out of ten parameters that are found to be sensitive to caspase-3 

production, only three out of four randomly chosen four parameters are varied. However, 

this small subset of parameter variations resulted in qualitative differences in all therapy 
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methods and quantitative differences in proteasome inhibitor therapy method. We 

speculate that although the apoptosis model used can explain healthy and unhealthy 

functioning of apoptosis, it is insufficient for designing and guiding cancer chemotherapy 

methods. We also speculate that if the current apoptosis model is further modified, and 

presently unknown more accurate values of the sensitive parameters are used while also 

including other hallmarks of cancer then, the resulting model may facilitate the decision 

of which chemotherapy drug or combinations of drugs to be used when treating patients 

with known cancer biomarkers. An interesting recent study by Spencer et al.
51

 suggested 

that a significant amount of cell-to-cell variability in TRAIL-induced apoptosis arises 

from natural differences in protein expression levels hence, not only due to differences in 

genotype. We plan to compare the contribution of this effect to the contribution of 

genotypic differences on resistance to treatments in a future computational study. 

 

 

Acknowledgments 

We thank Ivet Bahar for insightful comments, Nesrin Ozoren for helpful discussions. We 

also thank Turkan Haliloglu for providing computational facilities for this study Elife 

Zerrin Bagci gratefully acknowledges fellowship provided by TÜBİTAK-BİDEB. 

 

 

 

 

 

 



 29 

References 

1. R.A. Betensky, D.N. Louis and J.G. Cairncross, J. Clin. Oncol., 2002, 20, 2495-2499. 

 

2. Y. Pommier, O. Sordet, S. Antony, R.L. Hayward and K.W. Kohn, Oncogene, 2004, 

23, 2934-2949. 

 

3. E.Z. Bagci, Y. Vodovotz, T.R. Billiar, G.B. Ermentrout and I. Bahar, Biophys. J., 

2006, 90, 1546-1559. 

 

4. S. Hector and J.H.M. Prehn, Biochim. Biophys. Acta., 2009, 1795, 117-129. 

 

5. S. Fulda and S. Pervaiz, Int. J. Biochem. Cell. Biol., 2009, 

doi:10.1016/j.biocel.2009.06.010. 

 

6. H. Li, T. Yi and Z. Wu, BMC Cancer, 2008, 8, 135-141. 

 

7. M. Fussenegger, J.E. Bailey and J. Varner, Nat. Biotechnol., 2000, 18,768-774.  

 

8. T. Eissing, H. Conzelmann, E.D. Gilles, F. Allgower, E. Bullinger and P. Scheurich J. 

Biol. Chem., 2004, 279, 36892-36897.  

 



 30 

9. S. Salvioli, M. Capri, P. Tieri, J. Loroni, C. Barbi, L. Invidia, S. Altilia, A. Santoro, C. 

Pirazzini, M. Pierini, E. Bellavista, L. Alberghina and C. Franceschi, Curr. Pharm. Des., 

2008, 14, 226-236.  

 

10. J.G. Albeck, J.M. Burke, S.L. Spencer, D.A. Lauffenburger and P.K. Sorger, PLoS 

Biol., 2008, 6, e299.  

 

11. J.G. Albeck, J.M. Burke, S.L. Spencer, D.A. Lauffenburger and P.K. Sorger, Mol. 

Cell, 2008, 30, 11-25. 

 

12. E.Z. Bagci, Y. Vodovotz, T.R. Billiar, B. Ermentrout and I. Bahar, PLoS One, 2008, 

3, e2249. 

 

13. E.N. Golovchenko, L.G. Hanin, S.H. Kaufmann, K.V. Tyurin and M.A. Khanin, 

Math. Biosci., 2008, 212, 54-68. 

 

14. L. Han, Y. Zhao and X. Jia, Apoptosis, 2008, 13, 198-1204. 

 

15. K.A. Harrington, K.L. Ho, S. Ghosh and K.C. Tung, Theor. Biol. Med. Model., 2008, 

5, 26-40. 

 

16. I.N. Lavrik, A. Golks, D. Riess, M. Bentele, R. Eils and P.H. Krammer, J. Biol. 

Chem., 2007, 282, 13664-13671. 



 31 

17. S. Legewie, N. Blüthgen and H. Herzel, PLoS Comput. Biol., 2006, 2, e120. 

 

18. C.L. O’Connor, S. Anguissola, H.J. Huber, H. Dussmann, J.H.M. Prehn and M. Rehm 

Biochim. Biophys. Acta., 2008, 1783, 1903-1913. 

 

19. N. Okazaki, R. Asano, T. Kinoshita and H. Chuman, J. Theor. Biol., 2008, 250, 621-

633. 

 

20. P. Rangamani and L. Sirovich, Biotechnol. Bioeng., 2007, 97, 1216-1229. 

 

21. S. Raychaudhuri, E. Wilgohs, T.N. Nguyen, E.M. Khan and T. Golkorn, Biophys. J., 

2008, 95, 3559-3562. 

 

22. L. Calzone, L. Tournier, S. Fourquet, D. Thieffry, B. Zhivotovsky, E. Barillot and A. 

Zinovyev, PLoS Comput. Biol., 2010, 6, e1000702. 

 

23. L. Neumann, C. Pforr, J. Beaudouin, A. Pappa, N. Fricker, P.H. Krammer, I.N. 

Lavrik and R. Eils, Mol. Sys. Biol., 2010, 6, Art. No. 352. 

 

24. T. Zhang, M. Wu, Q. Chen and Z.R. Sun, Acta Biochim. Biophys. Sin., 2010, 42, 98-

108. 

 

25. T.L. Zhang, P. Brazhnik and J.J. Tyson, Biophys. J., 2009, 97, 415-434. 



 32 

26. Y. Dogu and J. Diaz, Biophys. Chem., 2009, 143, 44-54. 

 

27. H.A. Harrington, K.L. Ho, S. Ghosh and K.C. Tung, Theor. Biol. Med. Model., 2008, 

5, Art. No. 26. 

 

28. H.J. Huber, M. Plchut, P. Weisova, H. Dussmann, J. Wenus, M. Rehm, M.W. Ward 

and J.H.M. Prehn, J. Neurosci. Methods, 2009, 176, 270-275. 

 

29. D.W. Kim, K.O. Kim, M.J. Shin, J.H. Ha, S.W. Seo, J. Yang and F.Y. Lee, Mol. 

Cancer, 2009, 8, 28-39. 

 

30. C. di Pietro, M. Ragusa, D. Barbagallo, L.R. Duro, M.R. Guglielmino, A. Majorana, 

R. Angelica, M. Scalia, L. Statello, L. Salito, L. Tomasello, S. Pernagallo, S. Valenti, V. 

D'Agostino, P. Triberio, I. Tandurella, G.A. Palumbo, P. La Cava, V. Cafiso, T. 

Bertuccio, M. Santagati, G. Li Destri, S. Lanzafame, F. Di Raimondo, S. Stefani, B. 

Mishra, M. Purrello, BMC Med. Genomics, 2009, 2, 20-54. 

 

31. B. Ermentrout, in Simulating, Analyzing and Animating Dynamical Systems. A Guide 

to XPPAUT for Researchers and Students. SIAM, Philadelphia, 2002. 

 

32. T. Ni, L. Wenjing, F. Zou, Life, 2005, 57, 779-785. 

33. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, 

Chemistry and Engineering, Westview Press, Cambridge, 2000.                                    



 33 

34. J.E. Shoemaker and F.J. Doyle, Biophys. J., 2008, 95, 2610-2623. 

 

35. G.E. Box, W.G. Hunter and J.S. Hunter, Statistics for Experiments. An Introduction 

to Design, Data Analysis, and Model Building, John Wiley and Sons, 1978. 

 

36. V. K. Sharma, A. Sharma, N. Kumar, M. Khandelwal, K.K. Mandapati, S. Horn-

Saban, L. Strichman-Almashanu, D. Lancet and S.K. Brahmachari, BMC Genomics, 

2006, 7, 258-265. 

 

37. R.A. Weinberg, The Biology of Cancer, Garland Science, New York, 2007. 

 

38. D.J. McConkey and K. Zhu, Drug Resist. Updat., 2008, 11, 164-179. 

 

39. M. Arkin, Curr. Opin. Chem. Biol., 2005, 9, 317-324. 

 

40. L.D. Walensky, A.L. Kung, I. Escher, T.J. Malia, S. Barbuto, R.D. Wright, G. 

Wagner, G.L. Verdine, S.J. Korsmeyer, Science, 2004, 305, 1466-1470. 

 

41. H. Ludwig, D. Khayat, C. Giaccone and T. Facon, Cancer, 2005, 104, 1794-1807. 

 

42. V. Poulaki, C.S. Mitsiades, V. Kotoula, J. Negri, D.G. McMillin, J.W. Miller and N. 

Mitsiades, Invest. Opthalmol. & Vis. Sci., 2007, 48, 4706-4719. 

 



 34 

43. M.L. Tan, J.P. Ooi, N. Ismail, A.I.H. Moad and T.S.T. Mohammed, Pharma. Res., 

2009, 26, 1547-1556. 

 

44. T. Eissing, S. Waldherr, F. Allgower, P. Scheurich and E. Bullinger E, Biophys. J., 

2007, 92, 3332-3334. 

 

45. P. Liston, W.G. Fong, R.G. Korneluk, Oncogene, 2003, 22, 8568-8580. 

 

46. H. Caron, B. van Schaik, A. van der Mee, F. Baas, G. Riggins, P. van Sluis, M.C. 

Hermus, R. van Asperen, K. Boon, P.A. Voute, S. Heisterkamp, A. van Kampen and R. 

Versteeg, Science, 2001, 291, 1289-1292. 

 

47. NCI60 Cancer Microarray Project [http://genome-www.stanford.edu/nci60/] 

 

48. Oncogenomics datasets [http://home.ccr.cancer.gov/oncology/oncogenomics/] 

 

49. N. Barkai and S. Leibler, Nature, 1997, 387, 913-917. 

 

50. H. Kitano, Nature, 2002, 420, 206-210. 

 

51. S.L. Spencer, S. Gaudet, S.G. Albeck, J.M. Burke and P.K. Sorger, Nature, 2009, 

459, 428-433. 

 



 35 

Figure legends 

 

Figure 1: Representation of healthy tissues that have homeostasis in cell number and 

unhealthy tissues that have cell accumulation. A. Phase plane for a mathematical model 

of apoptosis with suitable values of parameters that ensures bistability in response to 

apoptotic stimulus. B. Phase plane for an apoptosis model with parameter values that 

ensure monostable cell survival. 

 

Figure 2: Bifurcation diagram for mitochondria-dependent apoptosis model. The 

parameter values are those in parameter set 1 except for Apaf-1 production rate is 

decreased by 100 fold with respect to the nominal value. Inset: Enlargement of the lower 

portion of the diagram that depicts the limit points clearly. 

 

Figure 3: Model predictions for an apoptosis resistant cell that is treated by IAP and Bcl-

2 inhibitors. Model prediction of time evolutions of cyt c and caspase-3 concentrations 

when the apoptosis resistant cell is assumed to be treated by (A) an IAP inhibitor (steady 

state concentration of caspase-3 is 0.006 M) (B) a Bcl-2 inhibitor (steady state 

concentration of caspase-3 is 0.001 M). 
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Table 1. Sensitivity analysis of the parameters in mitochondria dependent apoptosis 

model. Steady-state values of caspase-3 when the parameters are perturbed are presented. 

  

Parameters 

 

[caspase-3] (nM) 

parameter value x 100 parameter value / 100 

kd 0 4827 

ΩApaf-1 7 0 

ΩIAP 0 5.4 

Ωprocaspase3 543 0 

Ωprocaspase9 47 0 

ΩBid 2.2 0 

ΩBcl2
o
 0 5.5 

ΩBax
o
 5.9 0 

Ωcytcmito 7 0 

p53 5.5 0 
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Table 2. The three parameter sets used in simulations of mitochondria-dependent 

apoptosis model 

 Parameter set 1 

Bagci et al. [3] 

model 

Parameter set 2 Parameter set 3 

ΩIAP 3x10
-2

 nM/s 4.5x10
-2

 nM/s 9x10
-2

 nM/s 

Ωprocaspase3 3x10
-1

 nM/s 3.6x10
-1

 nM/s 9x10
-1

 nM/s 

Ωprocaspase9 3x10
-1

 nM/s 2.85x10
-1

 nM/s 3x10
-1

 nM/s 

Ωcytcmito 3x10
-1

 nM/s 3x10
-1

 nM/s 1x10
-1

 nM/s 
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Table 3. Degradation rate constant range in which apoptosis occurs – possible outcomes 

of proteasome inhibitor treatment 

 

 

Deficiency in 
proapoptotic  

protein (nominal value 
multiplied by a factor) 

Parameter  
set 1 

Parameter  
set 2 

Parameter  
set 3 

ΩApaf-1 x 0.01 0 – L* x 0.35 s
-1

 0 - L x 0.35 s
-1

 0 -L x 0.27 s
-1

 

Ωprocaspase-3 x 0.01 0 – L x 0.31 s
-1

 0 - L x 0.33 s
-1

 0 - L x 0.53 s
-1

 

Ωprocaspase-9 x 0.01 0 – L x 0.42 s
-1

 0 - L x 0.43 s
-1

 0 - L x 0.50 s
-1

 

ΩBid x 0.01 0 – L x 0.88 s
-1

 0 - L x 0.89 s
-1

 0 - L x 0.79 s
-1

 

ΩBax x 0.01 0 – L x 0.42 s
-1

 0 - L x 0.42 s
-1

 0 - L x 0.36 s
-1

 

Ωcytcmito x 0.01 0 – L x 0.35 s
-1

 0 - L x 0.35 s
-1

 0 - L x 0.27 s
-1

 

ΩApaf-1 x 0.15 0 – L x 0.78 s
-1

 0 - L x 0.79 s
-1 0 - L x 0.62 s

-1
 

Ωprocaspase-3 x 0.15 0 – L x 0.95 s
-1

 0 -L x 0.97 s
-1 0 - L x 0.90 s

-1
 

Ωprocaspase-9 x 0.15 0 – L x 0.91 s
-1

 0 - L x 0.93 s
-1 0 - L x 0.81 s

-1
 

ΩBid x 0.15 Healthy cell Healthy cell 0 -L x 0.97 s
-1

 

ΩBax x 0.15 0 – L x 0.94 s
-1

 0 - L x 0.94 s
-1 0 - L x 0.81 s

-1
 

Ωcytcmito x 0.15 0 – L x 0.78 s
-1

 0 - L x 0.79 s
-1 0 - L x 0.62 s

-1
 

* L = 0.006 
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Table 4. The parameter sets used in simulations of mitochondria-dependent apoptosis 

model for statistical evaluation 

 

 Parameter set 1  

Bagci et al.
3
  

model  Variation 1A 

Parameter  

set 3  Variation 3A 

ΩIAP 2.85x10
-2

 nM/s 1.002x10
-1

 nM/s 

Ωprocaspase3 1.65x10
-1

 nM/s 7.77x10
-1

 nM/s 

Ωprocaspase9 4.59x10
-1

 nM/s 2.92x10
-1

 nM/s 

Ωcytcmito 3.54x10
-1

 nM/s 1.90x10
-1

 nM/s 

 Parameter set 1  

Bagci et al.
3
 

model  Variation 1B 

Parameter  

set 3  Variation 3B 

ΩIAP 2.803x10
-2

 nM/s 8.39x10
-2

 nM/s 

Ωprocaspase3 1.42x10
-1

 nM/s 9.13x10
-1

 nM/s 

Ωprocaspase9 3.29x10
-1

 nM/s 2.32x10
-1

 nM/s 

Ωcytcmito 4.54x10
-1

 nM/s 1.06x10
-1

 nM/s 

 Parameter set 1  

Bagci et al.
3
 

model  Variation 1C 

Parameter  

set 3  Variation 3C 

ΩIAP 3.82x10
-2

 nM/s 9.33x10
-2

 nM/s 

Ωprocaspase3 2.98x10
-1

 nM/s 8.86x10
-1

 nM/s 

Ωprocaspase9 3.17x10
-1

 nM/s 3.29x10
-1

 nM/s 

Ωcytcmito 3.11x10
-1

 nM/s 2.25x10
-1

 nM/s 

 Parameter set 1  

Bagci et al.
3
 

model  Variation 1D 

Parameter  

set 3  Variation 3D 

ΩIAP 1.66x10
-2

 nM/s 8.81x10
-2

 nM/s 

Ωprocaspase3 1.41x10
-1

 nM/s 1.07 nM/s 

Ωprocaspase9 3.71x10
-1

 nM/s 2.29x10
-1

 nM/s 

Ωcytcmito 2.84x10
-1

 nM/s 2.14x10
-1

 nM/s 

 Parameter set 1  

Bagci et al.
3
 

model  Variation 1E 

Parameter  

set 3  Variation 3E 

ΩIAP 2.41x10
-2

 nM/s 1.029x10
-1

 nM/s 

Ωprocaspase3 2.94x10
-1

 nM/s 8.85x10
-1

 nM/s 

Ωprocaspase9 2.31x10
-1

 nM/s 3.73x10
-1

 nM/s 

Ωcytcmito 2.60x10
-1

 nM/s 1.06x10
-1

 nM/s 

 Parameter set 1  

Bagci et al.
3
 

model  Variation 1F 

Parameter  

set 3  Variation 3F 

ΩIAP 4.19x10
-2

 nM/s 1.06x10
-1

 nM/s 

Ωprocaspase3 1.94x10
-1

 nM/s 9.57x10
-1

 nM/s 

Ωprocaspase9 5.18x10
-1

 nM/s 3.67x10
-1

 nM/s 

Ωcytcmito 2.17x10
-1

 nM/s 1.26x10
-1

 nM/s 
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Table 5. Degradation rate constant range in which apoptosis occurs for different sets of 

parameters around sets 1 and 3 – possible outcomes of proteasome inhibitor treatment 

 

Deficiency in 
proapoptotic  

protein (nominal 
value multiplied by a 

factor) 

Parameter set 1  
Variation 1A 
Variation 1B 
Variation 1C 
Variation 1D 
Varitation 1E 
Varitation 1F 

Parameter set 3 
Variation 3A 
Variation 3B 
Variation 3C 
Variation 3D 
Variation 3E 
Variation 3F 

Difference in means for 
 
90% confidence interval 
95% confidence interval 
99% confidence interval 

ΩApaf-1 x 0.01 

0.35 

0.36 

0.37 

0.35 

0.33 

0.32 

0.32 

0.27 

0.32 

0.26 

0.35 

0.33 

0.28 

0.29 

 

 

0.0060  ( 1- 2)  0.0633 

0.0019  ( 1- 2)  0.0698 

-0.0082  ( 1- 2)  0.0782 

Ωprocaspase-3 x 0.01 

0.31 

0.21 

0.19 

0.30 

0.19 

0.28 

0.25 

0.53 

0.49 

0.49 

0.54 

0.53 

0.55 

0.57 

 

 

0.2471  ( 1- 2)  0.3349 

0.2370  ( 1- 2)  0.3450 

0.2240  ( 1- 2)  0.3580 

Ωprocaspase-9 x 0.01 

0.42 

0.39 

0.33 

0.42 

0.35 

0.37 

0.43 

0.50 

0.53 

0.48 

0.58 

0.54 

0.53 

0.55 

 

 

0.0687  ( 1- 2)  0.2245 

0.0508  ( 1- 2)  0.2424 

0.0277  ( 1- 2)  0.2655 

ΩBid x 0.01 

0.88 

0.90 

0.90 

0.89 

0.85 

0.84 

0.85 

0.79 

0.86 

0.77 

0.90 

0.87 

0.80 

0.83 

 

 

-0.0016  ( 1- 2)  0.0684 

-0.0096  ( 1- 2)  0.0764 

-0.0199  ( 1- 2)  0.0867 

ΩBax x 0.01 

0.42 

0.43 

0.43 

0.41 

0.40 

0.39 

0.39 

0.36 

0.40 

0.35 

0.41 

0.40 

0.37 

0.38 

 

 

-0.0475  ( 1- 2)  0.0946 

-0.0638  ( 1- 2)  0.1104 

-0.0848  ( 1- 2)  0.1314 

Ωcytcmito x 0.01 

0.35 

0.36 

0.37 

0.35 

0.33 

0.32 

0.32 

0.27 

0.32 

0.32 

0.35 

0.33 

0.28 

0.29 

 

 

0.0024  ( 1- 2)  0.0510 

-0.0023  ( 1- 2)  0.0557 

-0.0103  ( 1- 2)  0.0637 
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ΩApaf-1 x 0.15 

0.78 

0.82 

0.83 

0.79 

0.74 

0.72 

0.74 

0.62 

0.73 

0.60 

0.79 

0.75 

0.64 

0.68 

 

 

0.0114  ( 1- 2)  0.1386 

-0.0032  ( 1- 2)  0.1532 

-0.0220  ( 1- 2)  0.1720 

Ωprocaspase-3 x 0.15 

0.95 

0.91 

0.78 

0.96 

0.79 

0.87 

0.93 

0.90 

Healthy cell 

0.88 

Healthy cell 

Healthy cell 

0.94 

0.98 

 

Ωprocaspase-9 x 0.15 

0.91 

0.91 

0.81 

0.92 

0.81 

0.83 

0.89 

0.81 

0.93 

0.79 

Healthy cell 

0.95 

0.84 

0.88 

 

ΩBid x 0.15 

Healthy cell 

Healthy cell  

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

0.97 

Healthy cell 

0.95 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

 

ΩBax x 0.15 

0.94 

0.96 

0.75 

0.94 

0.90 

0.88 

0.90 

0.81 

0.90 

0.79 

0.94 

0.91 

0.84 

0.86 

 

 

-0.0520  ( 1- 2)  0.0820 

-0.0674  ( 1- 2)  0.0974 

-0.0873  ( 1- 2)  0.1173 

Ωcytcmito x 0.15 

0.78 

0.82 

0.65 

0.79 

0.74 

0.72 

0.74 

0.62 

0.73 

0.60 

0.79 

0.75 

0.64 

0.68 

 

 

-0.024  ( 1- 2)  0.01140 

-0.0399  ( 1- 2)  0.1299 

-0.0603  ( 1- 2)  0.1503 

 

* L = 0.006 
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Table 6. Bcl-2 production rate constant range in which apoptosis occurs and possible 

other outcomes of Bcl-2 inhibitor treatment 

 

Deficiency in 
proapoptotic  

protein (nominal 
value multiplied by 

a factor) 

Parameter  
set 1 

Parameter  
set 2 

Parameter  
set 3 

ΩApaf-1 x 0.01 
x * 

[caspase-3] = 0 nM 

x 

[caspase-3] = 0 nM 

x 

 [caspase-3] = 0 nM 

Ωprocaspase-3 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωprocaspase-9 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩBid x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩBax x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωcytcmito x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩApaf-1 x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωprocaspase-3 x 0.15 
x 

[caspase-3] = 0.80nM 

x 

[caspase-3] = 0.92nM 

x 

[caspase-3] = 0 nM 

Ωprocaspase-9 x 0.15 
x  

[caspase-3] = 0.52nM 
x 

[caspase-3] = 0.59nM 
x 

[caspase-3] = 0 nM 

ΩBid x 0.15 Healthy cell Healthy cell 
x 

[caspase-3] = 0 nM 

ΩBax x 0.15 0–3x10
-2

x0.10 nM/s 0–3x10
-2

x0.21 nM/s 
x 

[caspase-3] = 0 nM 

Ωcytcmito x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

* x: Apoptosis impossible 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 43 

Table 7. Possible outcomes of IAP inhibitor treatment 
 

Deficiency in 
proapoptotic  

protein (nominal 
value multiplied by 

a factor) 

Parameter  
set 1 

Parameter  
set 2 

Parameter  
set 3 

ΩApaf-1 x 0.01 
x * 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

x 

[caspase-3] = 0 nM 

Ωprocaspase-3 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωprocaspase-9 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩBid x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩBax x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωcytcmito x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

ΩApaf-1 x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωprocaspase-3 x 0.15 
x  

[caspase-3]=0.79 nM 
x 

[caspase-3]=0.90 nM 
x 

[caspase-3] = 0 nM 

Ωprocaspase-9 x 0.15 
x 

[caspase-3]=0.48 nM 
x 

[caspase-3]=0.55 nM 
x 

[caspase-3] = 0 nM 

ΩBid x 0.15 Healthy cell Healthy cell 
x 

[caspase-3] = 0 nM 

ΩBax x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 

Ωcytcmito x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
* x: Apoptosis impossible 
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Table 8. Bcl-2 production rate constant range in which apoptosis occurs and possible 

other outcomes of Bcl-2 inhibitor treatment obtained for different sets of parameters 

around sets 1 and 3. 

 

Deficiency in proapoptotic  
protein (nominal value multiplied by a 

factor) 

Parameter set 1 
Variation 1A 
Variation 1B 
Variation 1C 
Variation 1D 
Variation 1E 
Variation 1F 

Parameter set 3 
Variation 3A 
Variation 3B 
Variation 3C 
Variation 3D 
Variation 3E 
Variation 3F 

ΩApaf-1 x 0.01 

x * [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

Ωprocaspase-3 x 0.01 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

Ωprocaspase-9 x 0.01 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

ΩBid x 0.01 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

ΩBax x 0.01 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

Ωcytcmito x 0.01 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 
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ΩApaf-1 x 0.15 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

Ωprocaspase-3 x 0.15 

x [caspase-3] = 0.80nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0.48 nM 

x [caspase-3] = 0.86 nM 

x [caspase-3] = 0.44 nM 

x [caspase-3] = 0.52 nM 

x [caspase-3] = 0.72 nM 

x [caspase-3] = 0 nM 

Healthy cell 

x [caspase-3] = 0 nM 

Healthy cell 

Healthy cell 

x [caspase-3] = 0.48 nM 

x [caspase-3] = 0.95 nM 

Ωprocaspase-9 x 0.15 

x [caspase-3] = 0.52nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0.43 nM 

x [caspase-3] = 0.60 nM 

x [caspase-3] = 0.26 nM 

x [caspase-3] = 0.18 nM 

x [caspase-3] = 0.37 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

Healthy cell 

x [caspase-3] = 0.59 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

ΩBid x 0.15 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

Healthy cell 

x [caspase-3] = 0 nM 

Healthy cell 

x [caspase-3] = 0 nM 

Healthy cell 

Healthy cell  

Healthy cell  

Healthy cell 

ΩBax x 0.15 

0–3x10
-2

x0.10 nM/s 

x [caspase-3] = 0 nM 

0–3x10
-2

x0.59 nM/s 

0–3x10
-2

x0.29 nM/s 

x [caspase-3] = 0.54 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0.43 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0.80 nM 

Healthy cell  

x [caspase-3] = 0 nM 

Ωcytcmito x 0.15 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

x [caspase-3] = 0 nM 

             * x: Apoptosis impossible 
 

 

 

 

 

 

 

 

 

 



 46 

Table 9. Possible outcomes of Bid-like synthetic peptides treatment 

Deficiency in 
proapoptotic  

protein (nominal 
value multiplied 

by a factor) 

Parameter 
group 1 

Parameter 
group 2 

Parameter 
group 3 

ΩApaf-1 x 0.01 
x * 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

Ωprocaspase-3 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

Ωprocaspase-9 x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

ΩBax x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

Ωcytcmito x 0.01 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

ΩApaf-1 x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

Ωprocaspase-3 x 0.15 
x 

[caspase-3] = 0.78nM 
x 

[caspase-3] =  0.88nM 
X 

[caspase-3] = 0.32nM 

Ωprocaspase-9 x 0.15 
x 

[caspase-3] = 0.53nM 
x 

[caspase-3] = 0.59nM 
X 

[caspase-3] = 0 nM 

ΩBax x 0.15 
x 

[caspase-3] = 0.21nM 
x 

[caspase-3] = 0.22nM 
X 

[caspase-3] = 0 nM 

Ωcytcmito x 0.15 
x 

[caspase-3] = 0 nM 
x 

[caspase-3] = 0 nM 
X 

[caspase-3] = 0 nM 

* x: Apoptosis impossible 
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Table 10. Comparison of the results from Figure 7A in paper by di Pietro et al.
30

 and the 

present simulation results. 

 

 

 Casp3 Casp9 Bax Bcl-2 Bid Apaf-1 Theoretical Apoptotic 

response 

Leukaemia 0 0 + + - - Monostable cell survival 

neuroblastoma 0 - + + + - Monostable cell survival 

Breast - 0 0 + 0 0 Monostable cell survival 

Colon 0 0 0 0 0 0 [caspase-3]=5.4 nM 

Ovary (x0.15) 0 + 0 0 0 [caspase-3]=0.9 nM 

Kidney 0 + 0 - 0 0 [caspase-3]=14.7 nM 

Skin 0 0 0 0 + 0 [caspase-3]=5.4 nM 

Prostate -   0 0 0 0 0 Monostable cell survival 

Pancreas 0 0 + + + + [caspase-3]=20.7 nM 

Stomach + 0 + 0 0 0 [caspase-3]=17.3 nM 

Lung 0 + + 0 - 0 [caspase-3]=15.1 nM 

Liver 0 0 0 0 - 0 Monostable cell survival 

Thyroid 0 0 0 0 0 0 [caspase-3]=5.4 nM 
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Supplementary Table 1. The chemical reactions and physical interactions used in 

mitochondria-dependent apoptosis model (originally proposed by [1])*. 

 

Binding-unbinding interactions, catalytic reactions Reactions of formation (or 

production) and degradation of 

proteins 

casp8 + Bid ↔ casp8_Bid mRNA → Apaf-1 

casp8_Bid → casp8 + tBid mRNA → IAP 

tBid → tBidmito mRNA → procaspase-3 

tBidmito + Bax → tBid_Baxmito  mRNA → procaspase-9 

tBid.Baxmito + Bax → tBid + (Baxmito)2 mRNA → Bid 

(Baxmito)2 + cytcmito → (Baxmito)2 + cytc mRNA → Bcl-2 

Bcl-2 + Bax → Bcl-2.Bax  mRNA → Bax 

cyt c + Apaf-1 ↔ cytc.Apaf-1  mRNA → mitochondrial cyt c 

7 cytc.Apaf-1 ↔ apop casp8 → aminoacids 

apop + procasp9 ↔ apop.procasp9 Bid → aminoacids 

Apop.procasp9 + procasp9 ↔ apop.(procasp9)2 tBid → aminoacids 

Apop.(procasp9)2 → apop.(casp9)2  tBidmito → aminoacids  

Apop.(casp9)2 ↔ apop.casp9 + casp9 tBid_Baxmito → aminoacids  

Apop.casp9 ↔ apop + casp9 Bax → aminoacids 

casp9 + IAP ↔ casp9.IAP (Baxmito)2 → aminoacids 

Apop.casp9 + IAP ↔ apop.casp9.IAP cytcmito → aminoacids 

Apop.(casp9)2 + IAP ↔ apop.(casp9)2.IAP cytc → aminoacids 

procasp3 + casp9 ↔ procasp3.casp9 Bcl-2 → aminoacids 

procasp3.casp9 → casp3 + casp9 Apaf-1 → aminoacids 

procasp3 +  apop.(casp9)2 ↔ procasp3.apop.(casp9)2 procasp9 → aminoacids 

procasp3.apop.(casp9)2 → casp3 + apop.(casp9)2 casp9 → aminoacids 

casp3 + IAP ↔ casp3.IAP IAP → aminoacids 

casp3 + Bid ↔ cap3.Bid procasp3 → aminoacids 

cap3.Bid → casp3 + tBid casp3 → aminoacids 

casp3 + Bcl-2 ↔ cap3.Bcl-2 Bcl-2cleaved → aminoacids  

cap3.Bcl-2 → casp3 + Bcl-2cleaved   

*p53 increases Bax formation rate and decreases Bcl-2 formation rate [3]. 

 

 

 

Reference 1. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) 

Bistability in apoptosis: Roles of Bax, Bcl-2 and Mitochondrial Permeability Transition 

Pores. Biophys J 90: 1546-1559. 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


