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Heartbeat sounds are biological signals used in the early diagnosis of cardiovascular diseases. Digital
heartbeat sound recordings, called phonocardiogram (PCG), are used in the determination and automatic
classification of possible heart diseases. Healthy and pathological PCG signals are non-stationary signals
and conventional feature extraction methods are insufficient in classifying these signals. In this study,
PCG signals in healthy and four pathological categories are decomposed into intrinsic mode functions
(IMFs) by Hilbert-Huang transform. Mel-frequency cepstral coefficient (MFCC) features were extracted
from each mode to investigate the effect of the modes obtained by Hilbert-Huang transform on the clas-
sification of PCG signals. Genetic algorithm was used as feature selection method and k-nearest neighbor
(KNN), multilayer perceptron (MLP), support vector machine (SVM) and deep neural network (DNN)
machine learning methods were used as classifier. We have implemented multi classifications of five
PCG classes (healthy, aortic stenosis, mitral stenosis, mitral regurgitation and mitral valve prolapse) by
using 5-fold cross validation and 10 � 5-fold cross validation Data Analysis Protocol (DAP) framework.
The results show that the DNN model provides the highest classification performance with 98.9% preci-
sion, 98.7% recall, 98.8% F1-score and 98.9% accuracy using 5-fold cross validation, and Matthews corre-
lation coefficient of 0.981 using the DAP method.
� 2021 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Heart sounds are biological signals that occur with the move-
ment of heart valves and blood flow in heart. Heart sound signals
are an important and effective biological signal used in the diagno-
sis of cardiovascular disorders (Maglogiannis et al., 2009; Ari et al.,
2010). The measurement of heart sound signals on the skin in the
area of the heart with a stethoscope is called a phonocardiogram
(PCG). Heart sounds are non-stationary signals caused by the
movement of the heart valves due to the blood flow entering and
leaving the heart chambers. Heart valve disorders are a cardiovas-
cular disorder, and failure to detect these disorders early can lead
to blood coagulates inside the blood vessels, heart failure and fatal
diseases. Therefore, the analysis, processing and classification of
heart sound signals by applying signal processing techniques is
an important and effective approach for detection of heart disor-
ders (Zeng et al., 2021a; Zhong et al., 2020). The components of
the heart sound signals are analyzed by signal processing methods
and these components can be used to explain different heart dis-
eases. Healthy and pathological heart sounds differ in terms of
time and frequency components (Kumar and Saha, 2018). The
movements of the heart valves produce sounds in the frequency
range less than 2 kHz. The first part of PCG signal is produced by
mitral and tricuspid valve and is denoted by S1. A complete cardiac
cycle starting at S1 and ending at the beginning of the next S1 is
the heart sound signal wave described as a heartbeat. The second
component of PCG signal is denoted by S2 and is produced by
the aortic and pulmonary valve. S1 usually has a longer duration
and lower frequency than S2. The differences in the frequency of
heart sound signals lead to murmurs which are often associated
with heart valve defects. The murmurs are continuous vibrations
caused by irregular blood flow in the cardiovascular system
(Francisco, 1959).
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Classification of PCG signals into two categories as healthy and
diseased has been the subject area of research and development for
many years. With the existence of different types of PCG diseases
taken by experts in clinical conditions, the need for automatic clas-
sification of disease types has arisen. There is a need for more
effective signal analysis and classification methods since PCG sig-
nals with different disease types such as aortic stenosis (AS), mitral
stenosis (MS), mitral regurgitation (MR) and mitral valve prolapse
(MVP) are similar in nature. Therefore, this study focused on a sig-
nal processing approach that can distinguish the PCG signals
belonging to different disease types which are in the non-
stationary signal structure.

Classification of PCG signals as healthy and pathological has
been studied for a long time (Chen et al., 2020; Li et al., 2020b;
Potes et al., 2016). However, obtaining the correct diagnosis from
heart sounds still emerges as an important problem. Numerous
signal analysis and classification methods based on heart sound
signals have been proposed with the presence of new signal pro-
cessing techniques and artificial intelligence methods. Recently,
many researchers have focused on feature extraction and classifi-
cation studies on automatic heart diagnosis (Shuvo et al., 2021;
Kobat and Dogan, 2021). Time-frequency methods are widely used
due to the non-stationary nature of heart sounds. Bozkurt et al.
(2018) proposed the use of mel-frequency cepstral coefficients
(MFCCs) and spectrogram representation with convolutional neu-
ral networks (CNN) in detecting structural heart abnormalities
from PCG signals. Thiyagaraja et al. (2018) classified sixteen type
PCG signals with MFCCs and the Hidden Markov Model (HMM)
with an average accuracy rate of 92.68%. Tschannen et al. (2016)
proposed a wavelet-based deep CNN model for the healthy and
pathological PCG signals for PhysioNet/CinC Challenge 2016 (Liu
et al., 2016) data set, and the accuracy, sensitivity and specificity
scores were obtained as 81.2%, 84.8% and 77.6%, respectively.
Gonz et al. (2016) classified healthy and pathological heart sounds
with 82.4% accuracy with temporal alignment techniques such as
dynamic time warp (DTW) and spectral MFCCs of PCG signals.
Noman et al. (2019) used the MFCC features obtained from heart-
beat sounds in the PhysioNet/CinC 2016 data set with a deep CNN
model and classified the PCG signals as normal and abnormal, and
the accuracy of the model was determined as 89.22%.

Recently, wavelet transform (WT) and empirical mode decom-
position (EMD), a time–frequency domain methods, are frequently
used in the classification of heartbeat sounds (Meintjes et al., 2018;
Ghosh et al., 2019; Kumar et al., 2020; Zeng et al., 2021b). Ghosh
et al. (2019) used wavelet transform and random forest (RF) classi-
fier to detect heart valve diseases from PCG signals, and the accu-
racy rates of their proposed method are 98.83%, 97.66%, 91.16% and
92.83% for healthy, aortic stenosis (AS), mitral stenosis (MS) and
mitral regurgitation (MR), respectively. In another study based on
the classification of heart valve diseases such as healthy, MR, MS
and AS, local energy and entropy features were obtained by Chir-
plet transform and used with a multi-class composite classifier. It
was determined that the proposed method has a sensitivity of
99.44%, 98.66% and 96.22% for AS, MS and MR categories, respec-
tively (Kumar et al., 2020). Yaseen and Kwon (2018) classified car-
diac audio signals using MFCCs and discrete wavelet transform
(DWT) features with support vector machine (SVM), deep neural
network (DNN) and k-nearest neighbor (KNN) classifiers for five
PCG signal categories which include a healthy and four pathologi-
cal classes. In case MFCC features are used with KNN, SVM and
DNN classifiers, five classes of PCG signals were classified at
72.2%, 87.2% and 82.3% accuracy rates, respectively. Alkhodari
and Fraiwan (2021) classified five types heart sound signal based
on CNN and bi-directional long short-term memory (CNN-
BiLSTM) model combined spatial and temporal features. They
achieved an overall Cohen’s kappa, accuracy, sensitivity, and speci-
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ficity of 97.87%, 99.32%, 98.30%, and 99.50%, respectively. In a sim-
ilar study, PCG signal and its first derivative are decomposed into a
set of frequency sub-bands with a number of decomposition levels
by using the tunable Q-factor wavelet transform method (Zeng
et al., 2021). The experiments have been carried out on a publicly
available PCG database, which include two types of classification,
one for binary classification (normal vs. abnormal) and the other
for multi classification (normal vs. aortic stenosis vs. mitral regur-
gitation vs. mitral stenosis vs. mitral valve prolapse). They reported
the overall average accuracy for binary, four-class and five-class
classification are reported to be 97.75%, 98.69% and 98.48%,
respectively.

Many criteria and methods are used for the performance evalu-
ation of classifier models. It is common to calculate accuracy and
F1-score using the traditional cross-validation method. However,
this method has limitations such as bias selection and overfitting
effect. Therefore, Data Analysis Protocol (DAP), developed within
the scope of the US-FDA led initiatives MicroArray and Sequencing
Quality Control (MAQC/SEQC), is used as an alternative method for
evaluating model performances (Maggio et al., 2018; Chierici et al.,
2020). The DAP approach ensures selection bias and other over fit-
ting effects, and guarantees honest performance estimates on
external validation data subsets, and is performed as a 10x5 fold
cross-validation scheme with the feature selection and ranking
procedure (Fioravanti et al., 2018). The top-ranked features are
selected recursively as kbest in each round. Model performances
are calculated for the increasing number of best ranking features
by the Matthews Correlation Coefficient (MCC), which provides
the best obtain ability of a classifier’s confusion matrix even in
the multi-class case. Repeated experiments with random features
and labels are performed with the best results.

In this study, we have proposed an automatic PCG classifica-
tions using several machine learning models with features that
obtain by Hilbert-Huang transform. For this purpose, we have used
KNN, MLP, SVM and DNN models to obtain higher prediction accu-
racies for PCG dataset including signals of normal (healthy), aortic
stenosis (AS), mitral stenosis (MS), mitral regurgitation (MR) and
mitral valve prolapse (MVP) patients. It is aimed to increase the
efficiency of the conventional MFCC method, which is frequently
used in feature extraction for non-stationary signals, by applying
the Hilbert-Huang transform. The conventional MFCC features
were extracted from PCG signals, which were decomposed into
modes by Hilbert-Huang transform, and the effects of modes on
classification performance were investigated. Genetic algorithm
was used to select the most distinctive features for KNN, MLP
and SVM methods. In the training and testing of the DNN model,
the features obtained directly from the modes features were used.
Also, all classifier models based on 10 repetitions of 5-fold cross
validation become the core of an experimental setup designed
according to the DAP framework. The training set goes through
10 rounds of 5-fold cross validation with Anova-F value as classifi-
cation score and k-best as feature selection algorithm. In each
round, several models are built using the performance measure
MCC to increase the number of features ranked. The novelty and
originality of proposed study are summarized as follows:

� The proposed model classifies five different PCG signals, one
healthy and four pathological, instead of the binary classifica-
tion frequently encountered in the literature.

� A new and effective stable feature generator is presented by
Hilbert-Huang transform.

� It has been studied and compared with four different classifier
models, namely KNN, MLP, SVM and DNN.

� A high accurate PCG sound classification model is presented and
this model attained accuracy values of 98.9% by employing DNN
classifier with 5-fold cross validation.
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� The 10 � 5-fold cross validation DAP results show that the DNN
classifier, with an MCC value of 0.981, is more successful than
other classifiers on categorizing PCG signals.

� A high-accuracy decision support system has been proposed to
experts for the automatic diagnosis and detection of patients
with suspected cardiovascular disorders and follow-up.

The remainder of this work is organized as follows. In section 2,
the proposed method for the classification of PCG signals are
explained. In section 3, the experimental results and detailed
explanations of the proposed approach are presented. In section
4 and 5, the discussions and conclusions of this paper are provided,
respectively.
2. Materials and methods

2.1. Dataset

The PCG database used in the study consists of five categories
which are healthy and four pathological sounds (Yaseen and
Kwon, 2018). This PCG sound dataset is an open-access and is pub-
lished on GitHub publicly. This dataset includes aortic stenosis
(AS), mitral stenosis (MS), mitral regurgitation (MR), mitral valve
prolapse (MVP) and normal (healthy). The number of PCG records
in each category is 200, and the total number of PCG signals is
1000. The length of each category is 548.36, 451.31, 471.33,
496.22 and 476.27 s. The sampling frequency of PCG signals is
8 kHz. The healthy and pathological PCG signals collected in this
database are filtered and standardized for analysis and processing.
2.2. Method

The stages of the proposed method are illustrated in Fig. 1. In
the signal decomposition stage, the PCG signals, which include nor-
mal and four pathological signals, are decomposed into modes by
EMD method and the first six modes were selected for each signal.
In the feature extraction stage, MFCC features are obtained for each
selected modes. Genetic algorithm was used to select the most dis-
tinctive features for KNN, MLP and SVMmethods. And, the selected
Fig. 1. Block diagram of the presented
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mode features are used in the training and testing of the deep neu-
ral network and the classification of PCG signals is provided.
2.2.1. Hilbert-Huang transform
Hilbert-Huang transform (HHT) is an effective signal processing

method used in the analysis of non-stationary and non-linear sig-
nals. HHT is a combination of empirical mode decomposition
(EMD) and Hilbert transform approaches. In the first step of HHT,
the signals are decomposed into modes by EMD.

EMD is an adaptive method that is used extensively to decom-
pose non-stationary signals (Arslan and Engin, 2019). The EMD
separates the signals into modes from high to low frequencies. In
the decomposition process with EMD, the signal itself is used as
a basis function unlike Fourier transform and wavelet transform
(Khaldi, 2012). Therefore, the EMD is an adaptive method com-
pared to other decomposition methods. The coefficients in the
modes obtained by the decomposition of the signal are called
intrinsic mode functions (IMFs). Each of the IMFs in the modes rep-
resents different frequency components of the signal. Thus, the
number of samples in each mode is fixed unlike the down-
sampling based wavelet transform method. The flowchart of the
EMD is illustrated in Fig. 2.

In Fig. 2, all extrema of original signal is defined in separating
the signal into IMFs with the sifting process. Then, the envelopes
of the extrema are calculated by cubic spline interpolation. In the
next step, the average of the envelopes is defined and h tð Þ is
obtained and assessed as it ensures stopping criterion SD < 0.3 or
two IMF conditions. Two conditions of the IMF are determined as
the difference between the number of extrema and zero crossing
is less than one and the average of envelopes is zero. The stopping
criterion (SD) is expressed as in Eq. (1):

SD ið Þ ¼
XN
t¼0

hi�1 tð Þ � hi tð Þj j
h2
i�1 tð Þ

ð1Þ

where h tð Þ and i represent the IMF and mode number, respectively.
The h tð Þ that satisfies the IMF condition or the stopping criterion is
considered to be the first IMF tð Þ.
PCG sound classification models.



Fig. 2. The flowchart of EMD algorithm.

Fig. 3. Basic structure of Genetic algorithm.
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2.2.2. Feature extraction
Mel-frequency cepstral coefficients (MFCCs) are a method used

extensively in sound processing and classification (Zheng et al.,
2001; Sahidullah and Saha, 2012). The first step in extracting the
MFCC features is to increase the amount of energy at high frequen-
cies. The technique of MFCC basically involves discrete fourier
transform (DFT), logarithm, mel-scale and discrete cosine trans-
form (DCT) operations.

The sound signal is a non-stationary signal that changes over
time and the sound must be examined within short segments.
Short-term spectral measurements are typically performed at win-
dows and it is ensured that the temporal properties of sounds are
monitored. Hanning or Hamming window functions are generally
used for windowing signal. The MFCC is expressed as in Eq. (2):

c nð Þ ¼
XM�1

m¼0

log10 s mð Þð Þ cos pn m� 0:5ð Þ
M

� �
;n ¼ 0;1; � � � ; C � 1 ð2Þ

where s mð Þ, c nð Þ and M represent mel spectrum, cepstral and total
mel filter number, respectively. And, C is the number of MFCC coef-
ficients. The cepstrum plays an important role in improving perfor-
mance in sound/audio recognition systems. Generally, the first 13
cepstral values are used in the sound/voice recognition system
(Kim, 2013).

2.2.3. Feature selection
Feature selection is a very important technique in machine

learning and requires heuristic processes to find the optimal
machine learning subset. One of the most advanced algorithms
for feature selection is the Genetic algorithm (Fröhlich et al.,
4

2003; Tan et al., 2008; Babatunde et al., 2014). Genetic algorithm
(GA) is an optimization method based on the natural selection pro-
cess and work on a population of individuals to generate better
approximations. The GA includes three basic operations: selection,
crossover, and mutation. The selection describes which solutions
are retained for further replication, while the crossover describes
how new solutions are created from existing solutions. Mutation
aims to bring diversity and innovation to the solution pool by ran-
domly changing or turning off the solution bits. The basic structure
of GA is shown in Fig. 3.

In the presented study, binary GA is applied to discard irrele-
vant features to find the best possible combination of features
and create an effective model to increase the accuracy in classifica-
tion of PCG signals. The initial population was randomly generated
and updated at every iteration. Chromosome length is 13 and con-
sists of 00s and 10s indicating absence and presence of features,
respectively. In the machine learning model, the inverse of the
squared error is accepted as the fitness function.

2.3. Machine learning methods

2.3.1. K-nearest neighbor
The basic principle of nearest neighbor methods is to find the

nearest predetermined number of training samples to the new
point and estimate the label. The number of samples can be a
user-defined constant (k-nearest neighbor learning) or it can vary
depending on the local density of points (Narendra, 1975).
Distance can generally be any metric measure: for example, the
standard Euclidean distance is the most common choice.
Neighbor-based methods are known as non-generalized machine
learning methods and classification is sample-based learning. The
classification is calculated by a simple majority vote of each point’s
nearest neighbors, and a query point is assigned the data class with
the most representative among the point’s nearest neighbors
(Laaksonen and Oja, 1996; Kramer, 2013).

2.3.2. Multilayer perceptron
Multilayer perceptron (MLP) is one of the methods used in the

early stages of deep learning. MLP is a nonlinear function estimator
for classification given a set of features X ¼ x1; x2; � � � :; xm and a tar-
get y by training on a dataset. MLP neural networks consist of an
input layer to which input parameters are applied, an output layer
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that makes a prediction about the input, and an arbitrary number
of hidden layers that are a computational tool between the input
and output layer (Taud and Mas, 2018). MLP is generally used in
supervised learning applications and it is provided to learn a model
that gives the correlation between input and output. In the training
phase, the parameters and weight coefficients of the model that
minimize the error are obtained (Saravanan and Sujatha, 2018).
2.3.3. Support vector machine
Support vector machine (SVM) is basically a two-class classifier

that fits a discriminating hyperplane between two classes (Hearst
et al., 1998; Brereton and Lloyd, 2010). The optimal hyperplane
is selected according to the maximum margin criterion and it is
chosen to maximize the Euclidean distance to the nearest data
points on each side of the plane. The data points closest to each
separating hyperplane are known as support vectors
(Mavroforakis and Theodoridis, 2006). The non-linear SVM can
be expressed as (Bishop, 2006):

f xð Þ ¼
XN
i¼1

aitiK x; xið Þ þ d ð3Þ

where ti{+1–1} are ideal output values. The support vectors xi and
their corresponding weights ai and the bias term d are determined
from a training set using an optimization process. Kernel function
K x; xið Þ can be expressed as:

K x; xT
� � ¼ / xð ÞT/ xð Þ ð4Þ

where / xð Þ is a mapping from the input space to the high-
dimensional kernel feature space. The kernel function calculates
the inner product of two vectors in the kernel feature space.
Table 1
Parameter setting of DNN model.

DNN Parameter Value

Learning rate 1e-5
Number of epochs 100
Batch size 32
Dropout rate 0.35
Hidden layers 64–64-16
Hidden layer activation ReLU
Optimizer ADAM
Loss categorical cross-entropy
Output activation softmax
2.3.4. Deep neural network
Deep neural networks (DNN) are an effective method that has

been used extensively in biomedical signal processing in recent
years (Cao et al., 2018; Li et al., 2020b; Deperlioglu et al., 2020).
Deep learning algorithms have very high computational power to
process large numbers of data. DNN are a self-learning structure
using distinctive features according to input. In this learning struc-
ture, the data itself can be used as distinctive inputs or can be used
by obtaining important and effective features from input data.
Deep learning structure includes input, output and hidden layers.

In the deep learning model, many layers consisting of neurons
such as dense layer, dropout layer and soft-max layer are used.
The rectified linear unit (ReLU) activation function in dense layers
and softmax activation function in output layer are used exten-
sively (Baydoun et al., 2020; Deng et al., 2020). The ReLU activation
function used in the dense layer is mathematically expressed as:

h aj
� � ¼ max 0; aj

� � ð5Þ

where aj and h represent first hidden layer output and ReLU activa-
tion function, respectively.

The softmax is an activation function that allows the output to
be represented in categorical ways and handles multiple classifica-
tion problems. The softmax function is defined as follows:

r akð Þ ¼ eakPK
j¼1e

aj
ð6Þ

where ak is calculated using the weight parameters. r and K denote
the softmax activation function and neuron number of the output
layer, respectively.
5

2.4. Experimental setup

MATLAB2019b was used for feature extraction by Hilbert-
Huang transform from PCG sound signals and Python program-
ming language was used for training and testing machine learning
methods. The neighbor value k for the KNN model was set to 5.
SVM model was trained with penalty term (C = 1), gamma value
(0.001) and 3rd degree poly kernel function for all experiments.
MLP model was trained with random initialization weights by
adaptive moment estimation (ADAM) optimizer and ReLU activa-
tion function was used. In MLP models, hidden layer size, learning
rate and number of epochs were set to 100, 0.001 and 300, respec-
tively. In all experiments, the parameter setting of DNN model is
shown in Table 1.

All datasets were randomly split into two independent datasets
with 80% and 20% for training and testing, respectively. In the
evaluation of the models, the k-fold cross validation method was
preferred. Results were obtained according to the k-fold value
(k = 1–5) shown in the Fig. 4, and these results were averaged.

To achieve high predictive power and limit the effect of overfit-
ting, the experimental setup was performed Data Analysis Protocol
(DAP) developed within the US-FDA led initiatives MAQC/SEQC,
which led to the development of predictive models for efficient
data analysis. All classifier models based on 10 repetitions of 5-
fold cross validation become the core of an experimental setup
designed according to the DAP framework (Fioravanti et al.,
2018) shown in Fig. 5. In the DAP method, the dataset is first split
into a non-overlapping training set and test set, and in subsequent
experiments, the training set size is 80% of the original dataset.
Then, the training set goes through 10 rounds of 5-fold cross-
validation with Anova-F value as classification score and k-best
as feature selection algorithm. In each round, several models are
built using the performance measure MCC (Chicco et al., 2021) to
increase the number of features ranked. The number of ranked fea-
tures for each model is increased to 25%, 50%, 75% and 100% of the
total features. MCC is an elective choice to efficiently combine the
confusion matrix of a classification task and evaluate the results of
classifiers even when the classes are unbalanced (Chicco and
Jurman, 2020). MCC values range from �1 to 1; where 1 indicates
perfect classification, �1 indicates perfect misclassification. The
lists of ranked features produced within the cross-validation
scheme are then combined into a single ranked list. A portion of
the combined list of ranked features corresponding to the higher
MCC value is selected as the most appropriate set of distinguishing
features for classification task. Finally, the same methodology is
applied several times to samples of the original dataset after select-
ing random features instead of selecting random labels on basis of
model performances.

2.5. Performance metrics

The precision, recall, F1-score, accuracy and Matthews correla-
tion coefficient (MCC) criteria are used extensively in testing the
classifier performance. These measures are determined from the



Fig. 4. Display of testing and training datasets for five-fold cross validation.
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classifier’s true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) values. The confusion matrix used to deter-
mine the classifier performance is shown in Fig. 6.

The precision, recall, F1-score and accuracy are given in Eqs. (7)-
(10):

Precision ¼ TP
TP þ FP

ð7Þ

Recall ¼ TP
TP þ FN

ð8Þ

F1� score ¼ 2 � Precision � Recall
Precisionþ Recall

ð9Þ
Fig. 5. Data Analysis Protocol (DAP)
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Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð10Þ

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP � FPð Þ TP � FNð Þ TN � FPð Þ TN � FNð Þp ð11Þ
3. Results

In this study, we perform Hilbert-Huang transform (HHT) based
mel-frequency cepstral approach with four machine learning mod-
els for PCG sound classification. The pathological (AS, MR, MS and
MVP) and normal (healthy) PCG signals were first decomposed into
six modes by the EMD method which is the first step of HHT. The
framework for the experiments.



Fig. 6. Confusion matrix.
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time waveform of PCG sounds, Hilbert spectrum of the signal using
the calculated IMFs and visualize the instantaneous energy distri-
butions of the signals are shown in Fig. 7.

As can be seen from Fig. 8, all PCG signals are limited in the fre-
quency range from 0 Hz to 500 Hz. The energy distribution of dif-
ferent disease types and healthy PCG sounds varies according to
time and frequency. Considering the time–frequency properties
of PCG sounds according to the modes, MFCC approach was used
Fig. 7. PCG signals (a) time waveform (b) Hilbert spectr
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as the feature extraction method. A total of 78 (6x13) cepstral coef-
ficients, 13 coefficients for each mode, were used in the training
and testing of the models. The boxplots for 5th MFCC features for
mode 1–6 are shown in Fig. 8 (a)–(f). It is clear that MFCC features
have lower mean value in mode 1 and 6 for MR, in mode 2 and 5 for
normal (healthy), in mode 3 for MVP, and in mode 4 for MS classes.

Five-fold cross-validation has been used in this study per-
formed with four different models that are KNN, MLP, SVM, and
DNN. In calculating the performance of the models, 80% of the data
is reserved for training and the remaining 20% for testing. GA was
used to select the most distinctive features for KNN, MLP and SVM
models. GA with an initial population of 1000*13, with a mutation
rate of 0.25%, and the single point crossover is implemented. The
results of the GA algorithm further aid us to conclude that some
of the features in modes are strongly associated with the PCG
classes. For the dataset of size 1000*13, the genetic algorithm is
applied, optimized feature subset is obtained, and results are com-
pared. The accuracy results of the each PCG category based on four
machine learning methods for each mode (from 1 to 6) is shown in
Fig. 9. As can be seen from Fig. 9, the classification performance of
the models decreased as the number of modes increased. These
results reveal that in high modes the signals are located in the
low frequency bands and the MFCC coefficients are in the same fre-
quency band. It can be said that the mode 1 and 2 features provide
higher accuracy values among values of other modes for all PCG
um, (c) instantaneous energy distributions of IMFs.



Fig. 8. Boxplot of features for all PCG classes (a) 5th MFCC feature for mode 1 (b) 5th MFCC feature for mode 2 (c) 5th MFCC feature for mode 3 (d) 5th MFCC feature for mode
4 (e) 5th MFCC feature for mode 5 (f) 5th MFCC feature for mode 6.

Fig. 9. Accuracy results of healthy (N) and diseased (AS, MR, MS and MVP) PCG signals by models for each mode.
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classes. It is observed that DNN and SVM models reach higher val-
ues among the accuracy values of other models.

Table 2 summarizes the performances of the four models for all
modes and the combined version of these modes. While MFCC fea-
tures are used directly without feature selection for the DNN
model, feature selection is performed with genetic algorithm in
KNN, MLP and SVM models. For the dataset of size 1000*13 for
each mode and 1000*78 for combined all modes, the genetic algo-
rithm is applied, optimized feature subset is obtained, and results
are compared. In all versions, the DNN model has provided the
highest precision (Pr), recall (Rc), F1-score (F1) and accuracy
(Acc) results compared to other models with five-fold cross
validation.

As seen in Table 2, 89.1% accuracy is achieved when the DNN
model is used with MFCC features, and 97.1% and 93.5% accuracy
when used with MFCC features in mode 1 and mode 2, respec-
tively. This result shows that the frequency components of healthy
and pathological PCG signals are transferred to different modes
with the decomposition process. The highest accuracy value of
98.9% is reached when the 78 (6x13) MFCC features obtained by
combining all modes are used in the training and testing of the
DNN model. The DNN model is followed by the SVM model with
96.2% accuracy. Also, it is clearly seen that quite low values are
reached for all models in mode 3 and higher. Finally, the overall
performance of all models degrades in mode 3 and higher. Exper-
imental results show that the features obtained from the first
two modes play a decisive role in the classification of healthy
and diseased PCG sound signals.

The 10 � 5-fold CV DAP are applied to the EMD-based MFCC
features obtained from PCG signals to compare the performance
of KNN, SVM, MLP and DNN classifier models. The DAP results of
all models for one healthy and four diseased PCG classes are given
in Table 3. The performance measure in DAP internal validation is
MCC with 95% studentized bootstrap confidence intervals (min CI,
max CI). The total number of features is 78 (6 modes � 13 MFCCs)
and the models are calculated for p = {25%, 50%, 75% and 100%} of
the total number of features for each task. The DAP framework
Table 2
Overall performances of the classification models for all modes with 5-fold cross validatio

Features Machine Learning Techniques

KNN MLP

Pr Rc F1 Acc Pr Rc F1

MFCCs 84.3 84.2 84.2 84.3 81.6 80.8 80.8
Mode-1 MFCCs 91.3 90.9 90.8 90.9 90.7 90.6 90.4
Mode-2 MFCCs 87.2 86.5 86.6 86.5 77.2 77.0 76.5
Mode-3 MFCCs 71.6 70.9 70.8 71.1 60.4 60.3 58.9
Mode-4 MFCCs 57.8 57.7 57.2 57.8 42.1 39.2 33.1
Mode-5 MFCCs 44.0 43.9 43.6 44.0 23.0 29.1 21.1
Mode-6 MFCCs 37.3 37.4 36.8 37.4 13.2 25.3 16.2
All Mode MFCCs 88.8 88.4 88.3 88.4 89.4 88.9 88.6

Table 3
Performance of classification models using DAP framework.

Features KNN MLP

p MCC min CI max CI MCC min CI max

20 0.749 0.738 0.757 0.785 0.779 0.789
39 0.795 0.788 0.804 0.811 0.803 0.820
59 0.841 0.837 0.845 0.857 0.852 0.861
78 0.873 0.870 0.877 0.891 0.887 0.894
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results given in Table 3 show that the DNN classifier, with an
MCC value of 0.981 (min CI = 0.977 and max CI = 0.985), is more
successful in categorizing PCG signals than other classifiers.
4. Discussion

The use of machine learning-based systems in disease detection
of PCG sound signals has been the subject of research for a long
time. Table 4 summarizes the studies in the literature on this sub-
ject. The binary classification of PCG signals as healthy and dis-
eased is widely discussed. However, the development of new
signal processing methods and technology enables the detection
of the disease type. There are a limited number of multi-
classification studies in the literature for the detection of disease
types.

The objective of this study is to classify various kinds of cardio-
vascular abnormalities from PCG signals using HHT based analysis
and classification approach. The MFCC features are extracted from
the HHT modes to capture the frequency changes in the PCG sig-
nals. It has been observed that the mode 1 and 2 MFCC features
are discriminative and these features have provided higher perfor-
mance for classification of PCG signals with DNN model. The pro-
posed study is compared with previous studies for automatic
classification of PCG signals and the results are given in Table 4.

In recent years, in studies on binary classification for PCG sig-
nals, (Potes et al., 2016; Li et al., 2020a; Chen et al., 2020) have used
time–frequency, high-order statistics and wavelet features with
CNN classifier, respectively. Results of the studies show that the
higher accuracy value of 94% have been obtained by (Chen et al.,
2020) using the same dataset. The method reported by Raza
et al. (2019) used frames from PCG signals and LSTM-RNN classifier
for the detection of normal, murmur and systole. They have
obtained overall accuracy of 80.45% using LSTM-RNN model. Sim-
ilarly, in (Aziz et al., 2020), authors have extracted MFCCs and LTPs
features and used the SVM model for the detection of normal, ASD
and VSD signals. The classification of HVDs based Table Abbrevia-
n.

SVM DNN

Acc Pr Rc F1 Acc Pr Rc F1 Acc

80.9 86.2 86.1 86.1 86.1 89.1 89.0 89.0 89.1
90.5 95.2 94.8 94.9 94.9 97.2 96.9 97.0 97.1
76.7 90.9 90.5 90.5 90.5 93.3 93.5 93.4 93.5
60.0 76.8 76.6 76.4 76.5 84.3 84.2 84.2 84.3
39.6 57.7 57.4 56.6 57.2 67.9 67.7 67.8 67.8
29.6 46.9 47.3 44.5 47.2 58.9 58.7 58.8 58.9
25.5 39.4 39.9 39.2 39.9 51.4 51.3 51.3 51.4
88.8 96.4 96.1 96.1 96.2 98.9 98.7 98.8 98.9

SVM DNN

CI MCC min CI max CI MCC min CI max CI

0.806 0.801 0.812 0.862 0.857 0.866
0.882 0.877 0.886 0.904 0.896 0.913
0.948 0.945 0.952 0.959 0.956 0.962
0.960 0.955 0.966 0.981 0.977 0.985



Table 4
Comparison of proposed method and related works.

Authors Dataset Feature extraction methods Classifier Acc. (%)

Potes et al. (2016) PhysioNet/CinC time-freq. features CNN 89
Yaseen and Kwon (2018) Own dataset MFCCs and DWT features SVM 97.9
Li et al. (2020a) PhysioNet/CinC high-order statistics 1D-CNN 86.8
Raza et al. (2019) Pascal signal frames LSTM-RNN 80.45
Ghosh et al. (2019) Yaseen and Kwon (2018) dataset magnitude and phase features RF 95.13
Chen et al. (2020) PhysioNet/CinC wavelet features CNN 94
Aziz et al. (2020) Own dataset MFCCs and 1D-LTPs SVM 95.24
Kumar et al. (2020) Yaseen and Kwon (2018) dataset Chirplet transform Composite 98.33
He et al. (2021) PhysioNet/CinC Signal segmented on U-net CNN 96.40
Zeng et al. (2021b) Yaseen and Kwon (2018) dataset Tunable Q-factor wavelet transform Deep Wavelet 98.48
This study Yaseen and Kwon (2018) dataset MFCCs based on EMD SVM 96.2
This study Yaseen and Kwon (2018) dataset MFCCs based on EMD DNN 98.9
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tions on the time–frequency analysis using Chirplet transform of
the PCG signal has been reported by (Kumar et al., 2020). They
have obtained an overall accuracy of 98.33% using multiclass com-
posite classifier for detection of AS, MR, MS and healthy PCG sig-
nals. Yaseen and Kwon (2018) reported that they extracted MFCC
and DWT features from PCG signals and used SVM and DNN mod-
els for the classification of AS, MS, MR, MVP and normal PCG sig-
nals. The results of this study were reported with accuracy of
91.6% when using MFCC features with SVM, and accuracy of
92.1% and 97.9% when combining both MFCC and DWT features
with DNN and SVM models, respectively. Similarly, in (Ghosh
et al., 2019), authors have extracted magnitude and phase features
from PCG signals for the detection of heart abnormalities. They
have reported an accuracy of 95.13% using a RF classifier. However,
our proposed method has yielded higher performance compared to
the methods outlined in Table 4. In this study, in addition to the
traditional cross validation method, the 10x5-fold cross validation
DAP method was used, which provides a strong estimation and
minimizes the overfitting effect. According to DAP framework
results, DNN classifier is superior to other classification models.

The originality and motivation of our proposed method are as
follows. MFCC features are obtained from the signals decomposed
into modes by performing time–frequency analysis with Hilbert-
Huang transform. In the classification of PCG signals, the extracted
features for each mode are used with the KNN, MLP, SVM and DNN
models and the effects of the modes on the classification are ana-
lyzed. The proposed classification approach is effective in that it
decomposes signals into modes according to frequency compo-
nents. The proposed approach is based on the Hilbert-Huang trans-
form, which uses the signal itself as a basis function, and is
superior to other approaches based on the Fourier and wavelet
transform in detecting pathological signals. Our proposed
approach can be implemented in real-time systems in disease
detection from PCG signals which can be recorded using the digital
stethoscope.
5. Conclusions

In this work, classification of healthy and diseased PCG signals
based on time–frequency analysis using the HHT has been pro-
posed. The MFCC features have been computed and evaluated
using decomposed modes of PCG signal. In detection disease of
PCG signals, MFCC features extracted from PCG modes have been
used with various classifiers such as KNN, MLP, SVM and DNN.
Genetic algorithm has been used in feature selection for KNN,
MLP and SVM models. In the training and testing of the DNN
model, all features have been used without feature selection. The
proposed Hilbert-Huang transform based feature extraction
approach has shown better performance (overall accuracy of
10
98.9%) for classification of PCG signals using the DNN classifier.
In addition, according to the performed the DAP method, the
DNN classifier has MCC of 0.981 (min CI = 0.977 and max
CI = 0.985) value and is more successful than other models. In
the future, noise robust ensemble EMD and complementary
ensemble EMD decomposition methods can be developed to
extract features from the PCG signal.
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Appendix A

Abbreviations
PCG
 Phonocardiogram

HHT
 Hilbert-Huang transform

EMD
 Empirical mode decomposition

IMFs
 Intrinsic mode functions

MFCC
 Mel-frequency cepstral coefficient

GA
 Genetic algorithm

ML
 Machine learning

KNN
 K-nearest neighbor

MLP
 Multilayer perceptron

SVM
 Support vector machine

DNN
 Deep neural network

ReLU
 Rectified linear unit

ADAM
 Adaptive moment estimation
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