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Abstract—Offline analysis pipelines have been developed and
evaluated for the detection of covert attention from electroen-
cephalography recordings, and the detection of overt attention
in terms of eye movement based on electrooculographic measure-
ments. Some additional analysis were done in order to prepare the
pipelines for use in a real-time system. This real-time system and
a game application in which these pipelines are to be used were
implemented. The game is set in a virtual environment where
player is a wildlife photographer on an uninhabited island. Overt
attention is used to adjust the angle of the first person camera,
when the player is tracking animals. When making a photograph,
the animal will flee when it notices it is looked at directly, so
covert attention is required to get a good shot. Future work
will entail user tests with this system to evaluate usability, user
experience, and characteristics of the signals related to overt and
covert attention when used in such an immersive environment.

Index Terms—Multimodal interaction, brain-computer inter-
facing, covert attention, eye tracking, electroencephalography,
electrooculography, virtual environment.

I. INTRODUCTION

So far, most brain-computer interfaces seek to replace tradi-

tional input modalities, like mouse or keyboard. However, cur-

rent electroencephalography-based brain-computer interfaces

(EEG-based BCIs) have considerable problems: low speed,

low detection accuracies varying highly between users, low

bandwidth, sensitivity to noise and movement, often requiring

training, and expensive and cumbersome hardware [1]. These

make it difficult to make BCIs an interesting input method

for able-bodied users. Allison et al. mention a number of

considerations for BCI applications for this healthy user group

[1]. In this report we touch upon some of them (extending the

term BCI to interface using neurophysiological signals):

• Hybrid BCI: using BCI in combination with other input

signals, either as independent command signal or as a

modifier of commands from other inputs.

• Induced disability: in circumstances where conventional

interfaces are not usable, BCI could function as a replace-

ment, or when they provide not enough bandwidth, BCI

could function as an extra input channel.

• Mapping between cognition and output: making sys-

tems natural in their use by letting the system respond in a

way that corresponds to what the user would expect. The

interaction does not only consist of the system response

however, but also of the user action [2]. Therefore, we

propose to extend this definition to include: to use brain

activity or mental tasks that come naturally given the situ-

ation. This ensures that the system is most intuitive in the

interaction, requiring no user learning or memorization.

• Accessing otherwise unavailable information: some

processes have no outside expression (whether it is only a

mental process, or the user is purposefully inhibiting such

expressions), but could be detected from brain signals.

We have developed a system that makes use of naturally-

occurring neurophysiological activity in a natural way, to

augment the user interaction with a virtual environment, which

already uses conventional mouse and keyboard controllers.

The main mode of feedback from any computer system is

visual, through the computer screen. Thus, for natural interac-

tion, it makes sense to look into tasks that are related to vision:

overt and covert attention. Jacob and Karn mention that it is

difficult to have the system respond to eye gaze in a natural

way, as also happens in the real world [2]. The only example

they give is human beings: people respond to being looked at,

or what other people are looking at. In our prototype, we use

this natural response by letting an animal flee when looked at

directly. This induces a situational disability (animals cannot

be looked at directly), which is solved by using covert attention

to get a good view of the creature. But we also show another

option for the natural mapping of eye input: when we move our

eyes, our view changes. This natural mapping can be translated

to adjusting a first person camera in a virtual environment

based on the user’s eye movement.
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The paper first dives into covert and overt attention, pro-

viding background information, design and evaluation for the

signal processing and classification pipelines. As the pipelines

are planned to be used in an online, real-time setting, issues

that are relevant in such a situation are investigated. Finally,

the whole system is described, including the game application,

followed by conclusions and future work.

II. COVERT ATTENTION

Covert attention is the act of mentally focusing on a target

without head or eye movements [3]. While overt attention is

said to be an indication of place of focus, covert attention

is a possible confound. By detecting both, all options for

spatial attention are covered. There is also a theory that covert

attention guides saccadic movement, and that it is possibly a

mechanism to scan the visual field for points of interest [4].

Offline experiments have shown that when attention is

directed to the left visual hemifield, alpha activity decreases

in the right posterior hemisphere while increasing in the left

hemisphere (and vice versa) [5]–[8]. It is also shown in [9]–

[11] that not only left-right but also other directions of covert

attention are strongly correlated with the posterior alpha.

Covert attention was measured using EEG, which is one of

the most suitable methods for healthy users at the moment,

because no surgery is required, the equipment can be used

outside of a laboratory setup, and the equipment is relatively

portable and affordable [1].

Besides evaluating two potential pipelines, this section also

addresses another important question: does this correlation of

spatial attention with posterior alpha depend on whether a

participant fixates centrally, or is the same pattern observed

irrespective of the location the participant’s fixation point?

While a central fixation point has been the norm in clinical

laboratory experiments, in a practical application, this may

only rarely be the case. Finally, some other research questions

that are relevant for the online situation were looked into:

what directions can we detect, how many trials are needed

for training, and how long the trial window needs to be for

classification?

A. Methods

The experiment is covert attention to the four directions of

visual hemifields with three different fixation points. The task

is to fixate at each fixation point in the screen which is 70

cm away from the eye of the participant and covertly attend

to the direction of the pre-specified arrow. See Figure 1 for

a screen shot of the situation. There are three fixation points:

left, middle, and right, with six degrees of visual angle distance

between them. The target focus can be one of five positions:

either the fixation point itself (neutral), or one of the four

diagonal directions. The focus targets were placed diagonally

as earlier research indicated that this is best discriminable [11].

Distance from the diagonal targets from the center is about

seven degrees. It was verified that when focusing on one of the

diagonal targets, the other diagonal targets did not disappear

in the blind spot.

Fig. 1. Covert attention screen with fixation point in the center, potential
target squares (distractors), and the arrow on the actual target. The darker
squares to the left and right would normally not be visible, but indicate the
alternative fixation positions.

Fig. 2. During a trial first the fixation cross is shown, then the diagonal
positions appear, after which the focus position for covert attention is
indicated. After a little while an up or down arrow is shown in the focus
position. The participant then presses the corresponding button.

Fifty trials were recorded for each of these conditions

consisting of a fixation position and target position. A trial

starts with half a second showing the fixation cross, then

for half a second the focus position for covert attention is

indicated with a yellow circle inside one of the five potential

positions. The other positions remain visible as distractors.

After a period of 2 seconds plus a random duration of up

to half a second, an up or down arrow is shown in the

focus position. The participant then has a short period of

time to press the corresponding arrow button (arrow up or

down). This task ensures that the focus area is relevant to the

participant, which may increase the effect on the brain activity

for this paradigm. The trials were split up in five blocks, each

containing ten repetitions for each condition in randomized

order. The breaks in between blocks lasted until the participant

pressed a key to continue.

Brain activity is measured during the task using the BioSemi

ActiveTwo EEG system, at 512 Hz sampling frequency, with

32 electrodes according to the montage shown in Figure 3.

Electrooculogram (EOG) was also recorded to control for

confounds in eye movements.



Fig. 3. Electrode positioning for EEG measurement: 32 electrodes positioned
mainly on the parieto-occipital area as this is where the relevant alpha
modulations for spatial covert attention are expected, and some others to look
at artifacts and to offer the possibility to apply certain spatial filters.

TABLE I
DETECTION ACCURACIES OF THE COVERT ATTENTION PIPELINES PER

PARTICIPANT, FOR FOUR AND TWO CLASSES.

4 classes CA1 CA2 2 classes CA1 CA2

S1 33% 31% S1 62% 60%

S2 31% 31% S2 57% 59%

S3 52% 42% S3 78% 85%

S4 44% 35% S4 72% 62%

Avg 40% 35% Avg 67% 67%

B. Results

a) Which pipeline performs best?: The two pipelines

that were tested both used the occipito-parietal EEG channels

as input, and they also used the same time window: from

0.5 to 2.0 seconds relative to the focus indication stimulus.

The difference is in the feature extraction and classification.

Pipeline CA1 consists of the following steps: downsampling

to 256 Hz, CAR (Common Average Reference), bandpass

8-14 Hz, whitening, covariance, logistic regression. Pipeline

CA2 is: CAR, bandpower 9-11 Hz STFT (Short-Term Fourier

Transform), z-score normalization, SVM (Support Vector Ma-

chines, error cost set to 2.0).

Table I shows the performance accuracies per pipeline

on average but also per participant. CA1 gives the highest

performance with 67% and 40% on average on the same

datasets for two and four-class classification respectively. The

difference in performance between CA1 and CA2 is not

significant, however.

b) Does the position of the fixation point matter, with
respect to the correlation of focus direction with parietal
alpha, and with respect to detection accuracy?: To answer this

question, scalp plots were computed for each participant for

each fixation position (left, middle, right), showing the relative

difference in the alpha band (8–12 Hz) of each diagonal

focus direction with the fixation point, see Figures 4-6. A

time window from 0.5 to 2 seconds after the cue was used.

The scalp plots were averaged over four participants. The

lateralization pattern is in line with what has been shown

in literature [8], [9], [11]. As the eyes fixate on a different

position, the excitation of the retina remains the same, and the

mapping of the image to the occipital cortex is not expected to

change. However, surprisingly, the patterns are a bit different

for the different blocks, showing a migration of the alpha

sources from one side to the other.

On average, there did not seem much of an accuracy

difference between each of the fixation point conditions (28%,

30%, 32% and 30% for left, center, right, and pooled fixation

points). When looking at our best participant however, we see

an increase for the center fixation: 36% for left and right, 40%

for pooled, but 45% for center fixation cross only.

c) Which directions can be detected?: Results based

on datasets recorded from 4 different participants analyzed

with pipeline CA1 indicate a performance above random.

For a 4-class situation (each of the four directions) yields

a 40% performance accuracy on average, and 52% on our

best participant. The samples for the three different fixation

points were pooled, so the classes indicate the covert attention

direction relative to fixation. Random for four classes would

have been 25%. For the two-class situation the bottom and

top targets were merged to result in one class with samples to

the left, and one class with samples to the right. For this,

the average performance accuracy over 4 participants with

pipeline CA1 was 67%, with 78% for our best participant,

against a random performance of 50% for two classes. The

other pipeline shows a similar pattern in performance.

The classification performances for the different pairs of

target directions (like top right vs. top left) were also analyzed.

This confirms the information from literature that diagonally

opposing targets (top left vs down right, and top right vs down

left) are easier to distinguish than the other pairs.

d) How many trials are needed for training?: The two-

class detection performance with pipeline CA1 was evaluated

for different training set sizes using 10-fold cross validation.

The results show no consistent increase in performance. After

a peak at 120 trials, performance drops and flattens out.

e) What is the optimal window size?: For the online

situation, preferably, the window size is minimal, because

that way the data can be processed faster, which in turn

could mean that updates can be computed more frequently.

On the other hand, the classification accuracy is expected

to be higher for longer window sizes (because you simply

have more information). Windows always start at 0.5 seconds

after the stimulus, and then continue for the indicated window

duration, except for the two-second window which starts at



Fig. 4. Relative differences of each focus direction with respect to the fixation
position, with the fixation on the left. Averaged over four participants. The
positions of the scalp plot indicate the direction of the corresponding target
square.The top right scalp plot shows the relative brain activity for attending
to the top right target square.

Fig. 5. Relative differences of each focus direction with respect to the fixation
position, with the fixation on the center. Averaged over four participants.

Fig. 6. Relative differences of each focus direction with respect to the fixation
position, with the fixation on the right. Averaged over four participants.
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Fig. 7. Two-class covert attention performance for different window sizes,
averaged over 6 participants. It shows an incremental increase for longer
windows.

0.0 seconds. Figure 7 shows the average performance for the

increasing window sizes: the longer the window, the higher

the performance.

f) Does a blocked protocol yield a better performance?:
In standard covert attention experiments there is only one

fixation point, whereas in our experiment, this fixation point

was randomized. To test whether this had unwanted side

effects, we recorded one dataset which had the fixation points

steady within each block, and one in which within a block

this fixation point could jump around. The result was a 75%

accuracy for both the blocked and not blocked condition

of fixation points using pipeline CA1. Based on this one

participant, there does not seem to be a difference between

the two conditions.

C. Discussion and Conclusions

Pipeline CA1 (CAR, bandpass 8–14 Hz, whitening, covari-

ance, logistic regression) performs a little better than pipeline

CA2, on average, although this difference is not significant.

It could be interesting to also investigate other variations for

covert attention detection.

Different fixation points (left, middle, right) did not seem to

have a significant impact on classification performance. When

looking at the relative difference in parietal alpha between

the focus direction and central fixation point, similar spatial

patterns show which correspond to what is expected from

literature.

Although the four-class performance is above random, for

an online game situation performance should be at a usable

level. For this reason we decided to use two-class covert

attention in the game.

The number of windows in the training dataset, strangely

enough, does not seem to have a large impact on the clas-

sification performance. The performance does increase from



20 to trials samples, but after that it drops again, stabilizing

around the same performance is is shown at around 90 trials.

As this is evaluated with 10-fold cross validation, about 80

trials would be enough if all trials are used.

The larger the trial window, the higher the performance.

This is to be expected, but less fortunate for the online

situation: the longer the window size, the longer it will take to

get feedback on that particular window. However, we did not

test beyond a size of two seconds, and the test for two seconds

could not start at 0.5 seconds as the other windows did. This

makes it possible that there are task-related eye movements in

those 0.5 seconds that increase the performance.

III. EYE MOVEMENT

Using eye movement provides a number of features that make

it an interesting input modality. Eye movements are not as

intentional as mouse and keyboard input. This means it can

provide information on an intentional but also on a more

subconscious level. A side effect is the Midas Touch problem:

not every eye gaze has intentional meaning, so the system

should somehow discern what to react to, and what not. Eye

movement is faster than other input modalities, and indicates

the user’s goal before any other action has been taken. Besides,

no user training is required, as the relationship between the eye

movement and the display is already established [2].

Bulling et al. distinguish between the following types of eye

movements. Fixations are stationary states during which gaze

is focused on a particular point. Saccades are very quick eye

movements between two fixations points. The duration of a

saccade depends on the angular distance the eyes travel during

this movement. For a distance of 20 degrees, the duration is

between 10 ms and 100 ms. Eye blinks cause a huge variation

in the potential in the vertical electrodes around the eyes, and

lasts between 100 ms and 400 ms [12]. For our application,

saccades are the most relevant type of movement to detect.

There are a number of methods to determine eye move-

ment or eye gaze, for example with special contact lenses,

infrared light reflections measured with video cameras, or with

electrodes around the eyes: electrooculography (EOG). These

electrodes measure the resting potential that is generated by

the positive cornea (front of the eye) and negative retina (back

of the eye). When the eye rotates, the dipole rotates as well.

By positioning the electrodes around the eyes as shown in

Figure 8, one bipolar signal will be an indication of vertical

eye rotation and the other for the horizontal axis.

For this system, we decided to use EOG for eye tracking.

EOG signal analysis requires very little processing power, and

can easily be done in real-time. Although this method is not

that suitable for tracking slow eye movements (that occur when

following a moving object), for fast saccades it is very robust.

Slow eye movements cause slow voltage changes, which can

be difficult to distinguish from signal drift. The fast voltage

changes that result from saccades are easy to detect. EOG can

be used in bad lighting conditions (although it works better

with good lighting), and in combination with glasses. The

participant does not need to be restricted in the orientation

Fig. 8. Electrode positioning for EOG measurement: bipolar measurements
of top minus bottom vertical electrodes around the right eye and right minus
left horizontal electrodes near the canthi.

to the screen (though for absolute eye gaze, then the position

of the head would need to be tracked separately), nor do they

have to wear an uncomfortable video camera system firmly

mounted on the head [2]. Also, it is easy to incorporate in a

wearable and unobtrusive setup [12].

A. Pipeline

As described in [13], saccade detection can be used to

construct an eye-tracker. The pipeline for eye movement is

similar for both the vertical and horizontal EOG signals, is

based on [13]. Itakura and Sakamoto have shown that using

the integral as feature yields higher accuracies than using the

maximum amplitude of the EOG derivative [14]. Our pipeline

is a combination of these two algorithms:

1) High pass filter (0.05 Hz) for drift correction which is

very strong in the EOG signal.

2) Low pass filter (20 Hz) to reduce high frequency noise

without affecting the eye movements.

3) Derivative in order to detect the rapid variations.

4) Thresholding to detect saccades and remove noise.

5) Integration yields the regression features.

6) Linear regression between the angle and the integration

result.

7) Conversion to x,y position.

The main steps are shown in Figures 9–12 and Figure 13.

B. Methods

The offline analysis protocol of the eye movement is twofold.

In order to get enough data for training the linear regression,

25 trials were used. Each trial was composed of one target in

the center of the screen and one of five possibilities: extreme

top, bottom, left, right and center targets. For horizontal and

vertical eye movement there are separate pipelines, and the

regression is also trained separately – for the pipeline details

refer to the Pipeline section above.

For evaluation 100 trials were assessed. Because the sys-

tem will be used as a kind of eye mouse, the performance

evaluation was based on the accuracy of the system at N
centimeters maximum deviation from the target. Although it

is more common to evaluate the gaze position errors in terms
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Fig. 9. EOG data is noisy and drifts over time.
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Fig. 10. Filtered EOG data without the drift and high frequency noise.
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Fig. 11. The high values of the derivatives indicate saccades.
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Fig. 12. Integration of the above-threshold saccade derivative provides the
input for the linear regression
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Fig. 13. The regression shows a high correlation between the parameter of
each saccade and the jump in angle.

TABLE II
PERFORMANCE OF THE EYE MOVEMENT PIPELINE PER PARTICIPANT.

HORIZONTAL AND VERTICAL ACCURACIES (HACC AND VACC) ARE FOR A

PRECISION WITHIN 4CM. THE ERROR DISTANCE (HERR AND VERR)
MEANS (AVG) AND STANDARD DEVIATIONS (STD) ARE MEASURED FROM

ACTUAL TARGET POSITION TO REGRESSION RESULT IN HORIZONTAL AND

VERTICAL DIRECTIONS.

Hacc Herr avg Herr std Vacc Verr avg Verr std

S1 100.0% 1.0 0.8 94.9% 2.0 6.1

S2 90.9% 2.0 1.6 57.6% 3.9 3.7

S3 70.7% 3.2 3.2 34.3% 7.9 9.4

S4 77.8% 2.4 1.8 51.5% 5.3 4.5

of angular degrees of eye rotation, looking at the resulting

error in centimeters on the screen is more useful for evaluating

the performance in an on-screen application. The screen was

divided in a 5 by 5 grid, resulting in 25 potential target

positions, which were selected randomly. To use the screen

estate to the fullest, this means that the distance between the

different target positions is larger horizontally than vertically,

as the screen is more wide than high. The jump between the

center and the target (Figure 15) of each trial is considered

correct when the Euclidean distance between the EOG-based

estimation point on the screen and the actual point is lower

than N centimeters.

These trials were recorded using the BioSemi ActiveTwo

hardware, with flat active electrodes positioned according to

Figure 8. The distance between user and screen was 70 cm.

C. Results

The results are quite good for horizontal movement (Table II).

Figure 17 shows the precision at N cm for four participants.

The curve is sharply increasing which shows the precision of

this technique. However, for vertical movement, the results are

less good (see Table II, Figures 16, 18, and 14, the plots are

again based on the data of the same four participants).
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Fig. 14. Data shows less correlation between EOG features and known angle
change for vertical eye movement.
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Fig. 15. The jumps between the center and the target provided by the system
and the actual ones are quite similar for the horizontal axis.
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Fig. 16. The predictions of the system are quite less good than for the
horizontal jumps.

D. Discussion and Conclusions

Horizontal eye movement appears to be easily detectable: at

a precision within 4 centimeters, the accuracy is about perfect

for the best half of the participants. Within 4 centimeters it

is about 90%. For vertical eye movement, the performance is

less good: around 50% precision within 4 centimeters.

Visual inspection of the vertical EOG data shows that

sometimes there is no sign of the vertical movement when

there should be one. Maybe the sensors were not positioned

optimally. As the computer screen is wide screen, the vertical

distance is smaller than the horizontal distance. The eyes will

turn less vertically, resulting in a smaller potential change.

Moreover, eye blink correction was not applied in the pipeline.

This could also improve performance [12].

IV. APPLICATION AND SYSTEM

In the Wild Photoshoot game that was developed, you are a

wildlife photographer. You take pictures of rare wild animals,

but they are not that easy to catch on camera. First you have
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Fig. 17. Horizontal precision at N curve is sharp at the beginning which is
good.
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Fig. 18. Vertical precision at N curve is less sharp at the beginning than
the corresponding horizontal curve.

to follow animal tracks to find the creature. Then you go into

photoshoot mode in which you try to get a good picture. When

you look directly at the animal, it will flee and you will have

to track it again. Thus you have to covertly look at the animal

to focus the camera to get a good shot.

This game uses multiple input modalities: mouse, keyboard,

EOG-based overt attention, and EEG-based covert attention. It

also creates situational disability for eye movement by letting

the animal flee when looked at directly, introducing a natural

need for covert attention. The mental tasks for both overt and

covert attention come naturally given the situation, and the

mapping to system response is based on real-world interaction.

Through covert attention, we access information about the user

that would not be available through other means.

Figure 19 shows how the different system components

interact. EEG is measured to detect covert attention, and

EOG for eye movement. The raw data is sent over USB to

the computer, where Biosemi ActiView sends the data over

TCP/IP to the signal analysis software. SnakeStream reads



Fig. 19. The different components and communication between them within
the Wild PhotoShoot system.

the data, passes it in the appropriate formats to the signal

analysis pipelines, and sends the prediction results on to the

game environment of Wild Photoshoot. Snakestream works

together well with the Golem and Psychic Python libraries,

and supports the use of different markers and different sliding

windows for each pipeline. Within the game, keyboard input

is used to move around, eye movement to adjust the camera

angle, and covert attention to take a picture of the animal.

The game can send markers to the EEG stream to give

commands to the signal analysis software, and to annotate the

data for later offline analysis. Because of limitations of the

game engine software, it has to do this through a the marker

server. This is a small application that receives marker values

over TCP/IP and forwards them to the parallel port so it is

added to the EEG stream. It also implements a simple queuing

mechanism to ensure that markers do not get overwritten.

V. DISCUSSION AND CONCLUSIONS

We designed a prototype that uses naturally occurring

neurophysiological activity for natural user tasks, applying

them in a way that supports intuitive interaction, with natural

system responses. Pipelines for overt and covert attention have

been developed and evaluated. A game that uses them in an

intuitive manner has been designed and implemented, as well

as a platform that provides the communication glue between

each of these components.

Covert attention into four directions is detectable, but not

well enough to be used as such in a game. The current game

therefore only uses left and right. Detection accuracy did not

decrease significantly for different fixation points. Around 80

trials will be enough for a training set for two classes. Larger

trial windows result in higher performances, but this has not

been tested beyond 1.5 seconds.

Horizontal eye movement is well detectible with EOG.

Vertical eye movement seems a little bit more problematic:

sometimes it does not show even though it is expected. This

could be an inherent problem as the vertical distance between

targets is smaller than the horizontal distance on a normal

computer screen. Applying eye blink correction could improve

performance. Optimal window length and training protocol

still need to be determined.

Future work consists of an online evaluation of the system,

to investigate the influence of the immersive game environment

on the signals measured and the classification performance, but

also to look into the resulting usability and user experience.

It is also possible to improve the online system, for example

by correcting the eye movement detection for eye blinks. A

template-based algorithm for the detection of eye blinks has

already been designed.
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