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Abstract 

 

Fractional order circuit elements are successfully used to model circuits and systems in the last few 

decades. There are different types of fractional derivatives. Recently, another one named “the 

conformable fractional derivative” (CFD) has been introduced and shown to give good results for 

modeling supercapacitors. It is imperative to know how circuit elements behave for different current and 

voltage waveforms in circuit theory so that they can be exploited at their full potential. A CFD capacitor is 

not a well-known element, and its usage and circuit solutions are rarely addressed in the literature. In this 

study, it is examined how a CFD capacitor would behave under DC and AC excitations when it is fed by 

not only a current source but also a voltage source.  

 

Keywords: Fractional Order Derivatives, Circuit Analysis, Circuit Theory, Energy Analysis, Circuit 
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1. Introduction 

 
Fractional derivative (FD) is a branch of mathematical 
analysis [1, 2]. A differential operator can be of any 
arbitrary order within it. It has first appeared in the 17th 
century [3]. In the last decades, Fractional Calculus has 
emerged as a popular research area because of its 
applicability in many different fields [4-5]. The self-
taught Oliver Heaviside has used fractional calculus to 
find the solution of the telegrapher's equation around 
1890 [3]. The fractional-order circuit elements are used 
to model circuit elements such as capacitors, inductors 
and memristors [6-10]. Filters, controllers and 
oscillators which are based on fractional-order circuit 
elements are made or can be used to model systems [4-
5, 8-9, 11-14]. Another FD is suggested in [15]. It is 
named as “the conformable fractional derivative” 
(CFD). Its definition is built on the conventional limit 
definition of the derivative of a function. It casts off the 
other FD definitions [15]. This makes it simpler and 
advantageous than the other FDs. The CFD is 
elaborated in [16]. However, a CFD is actually not an 
FD: it can be described as a first-order derivative time a 
power function of the independent variable [15, 16]. 
This new definition is a broadening of the ordinary 
derivative. It is also distinct from the other FDs. The 
CFD is able to accommodate the common features of 

FDs. Well-known calculus theorems such as product 
rule, Rolle’s Theorem, Average Value Theorem, 
partial integration, Taylor series can be easily extended 
or applied to the CFD. The conformal fractional 
derivative has a very important property: while the 
Riemann-Liouville FD of a constant is not zero, the 
CFD of a constant is zero. Due to these properties, the 
conformal fractional derivative has become a hot 
research area. The conformal derivative has also the 
advantage of being physically interpretable compared to 
the other types of fractional derivatives [17]. Usage of 
the FDs in electric circuits has been examined in [18]. 
Supercapacitors have been modelled using fractional-
order models in [19-22]. The oscillation of impulsive 
conformable fractional differential equations has been 
inspected in [23]. Electric circuits modelled with FD 
circuit elements under sinusoidal excitation have been 
analyzed with the enhanced fractional derivative 
method, which is called Caputo FD generalizing the 
differential equations and ordinary integrals are not 
necessary to describe the fractional-order initial 
conditions like Riemann-Liouville FD [24-25]. Several 
electric circuits characterized by CFDs have been 
solved in [26]. Other circuits modelled with the CFD 
have been examined in [27]. The conformable fractional 
derivative has been used to analyze an electric circuit 
containing a supercapacitor in [28]. Analytical solutions 
of electrical circuits described by fractional conformable 
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derivatives in Liouville-Caputo sense is given in [29]. 
Electric circuits of the CFDs with and without singular 
kernels have been solved in [30]. 
 
It is important to analyze new circuit elements for 
different current and voltage waveforms so that they can 
be exploited at full potential. In this paper, the 
conformal fractional derivative capacitor model for DC 
and sinusoidal waveforms have been solved. CFD 
capacitor has been fed with not only voltage sources but 
also for current sources. The analytical solutions were 
given with incomplete gamma function for sinusoidal 
voltage case. The discussions are provided in the 
conclusion section. 
 
The rest of the paper is structured as follows. The CFD 
capacitor model is given in the second section. Its 
analysis for DC and AC signals are given in the third 
section. Op-amp-based differentiator and integrator 
circuits with a CFD capacitor are examined in the fourth 
section. Finally, the paper is concluded in "Conclusions" 
section.  
 
2. Conformal Fractional Derivative and CFD 

Capacitor Constitutional Law 

 

The CFD is described in [15] as the follows: 

Definition 1. Let :[0, )+ →f R  and 0t . The CFD 

for 0 1   is described as 

 
(1 )

0

( ) ( )
( ) lim

−

→

+ −
=

p

f t p f t
D f t
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(2.1) 

 

For t>0 and the conformable fractional derivative at 0 is 

defined as 
0

(0) lim( )( )
+→

=
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1 '( ) ( )−=D f t t f t
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Definition 2. Let (0,1] . The conformable fractional 

integral of a function :[0, )+ →f R of order a is 

denoted by ( )I f t  and is defined as 
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More information about CFD can be found in [15-17]. 
If a capacitor can be modelled using CFD [28], its 
constitutive law can be written as  
 

                        

( )
( ) C

C

d v t
i t C

dt



 
=

                         
(2.5) 

 

Where ( )Ci t , ( )Cv t and C  are CFD capacitor current, 

CFD capacitor voltage and CFD capacitor coefficient, 
respectively.  

3. The CFD Capacitor Fed by a Current Source 

 

In this section, the solutions of a CFD capacitor is found 

if it is fed by a current source as shown in Figure 1 for 

the cases: (a) the current source being constant and (b) it 

being sinusoidal. 

 

 
Figure 1: The CFD capacitor fed by a current source 

 

3.1 Constant Current Solution 
 
If the current source has a constant magnitude or the 
CFD capacitor current is constant; 
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dt
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By arranging both sides, 
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Its voltage can be found as 
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Where K is the integration constant and the capacitor 
voltage at 0t =  is used to find K;  

 

  

0
(0) (0)dc

C C

I
v K K v

C




= + → =

            

(3.5) 

 
Using the integration constant, the CFD capacitor 
current can be obtained as; 
 

   

( ) (0)dc
C C

I t
v t v

C




= +              (3.6) 

 

3.2 Sinusoidal Current Solution 
 

If a sinusoidal current of ( )( ) coss mi t I t = +  is 

applied to the CFD capacitor, its voltage can be 
calculated with the following steps: 
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( ) 1( )
( ) ( ) cos C

s c m

dv t
i t i t I t C t

dt



  −= = + =      (3.7)          

 

By arranging both sides of the equation, the CFD 

capacitor voltage is written as 

 

( )
1

cos( ) mC
I tdv t

dt C t 



 
−

+
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( 1)( ) cos( )m
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Using Wolfram Alpha [31], the solution of the integral 
is found as 
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Using the following identities:  
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The capacitor voltage turns into; 
 

2 2( )
(( ) ) ( , )

( ) 2

( ) ) ( , ))

−
− 

− −  + 
=

 
  − + 

i

m
c

i

t t
i t e a i tI

v t
C

i t e a i t K

 
 

 


 

 

 (3.12) 

 
In mathematics, the upper incomplete gamma function 
is a transcendental function that appears as solutions to 
diverse problems such as definite integrals. 
 
When splitting the incomplete gamma function at s 

point 0x , two types of the incomplete gamma 

functions called upper and lower are obtained. 

The definition of the upper incomplete gamma function 

intervals are explained from x to . 

 

1( , )



− − = 
s t

x

s x t e dt               (3.13) 

 
If the initial condition is used at t=0, 
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Using the integration constant, the CFD capacitor 
voltage can be obtained as 
 

2 2( )
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im
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  (3.15) 

 

Numerical methods can be used to calculate the CFD 
capacitor voltage since the solution requires the upper 
incomplete gamma function which is also evaluated 
numerically.  
 
4. The CFD Capacitor Fed by a Voltage Source 

 

In this section, the solution of the CFD capacitor fed by 

a voltage source shown in Figure 2 is found for both of 

the cases: the voltage source being a constant (a) and a 

sinusoidal (b). 

 

 
Figure 2. The CFD capacitor fed by a voltage source 

 

4.1. Constant Voltage Solution 

 

If a step function voltage is applied to the CFD 

capacitor at time being 0t : 

 

0( ) ( )C dcv t V u t t= −                  (4.1) 

 

The CFD capacitor current becomes  

 

( )01 1
( )( )

( )
dcC

c

d V u t tdv t
i t C t C t

dt dt

 

 

− −
−

= =     (4.2) 

1 1

0 0 0( ) ( ) ( )c dc dci t C V t t t C V t t t 

  − −= − = −         (4.3) 

 

Where 0( )t t −  is the Dirac-delta function [32] shifted 

to time being 0t .
 

 

 
Figure 3. The CFD capacitor fed by a voltage source 
and depends on the time. 
 
 
A CFD capacitor without a series resistor withdraws a 
Dirac pulse as a linear time-invariant resistor does. 
However, its current magnitude depends on the time the 
voltage is applied opposite to the case in which an LTI 
(Linear Time-Invariant) capacitor current pulse 
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magnitude is constant not depending on the time the 
step function is applied as shown in Figure 3. 
 

    
Figure 4. The CFD capacitor voltage and current vs. 
time when it is fed by a constant voltage 
 

4.2. Sinusoidal Voltage Solution 

 

If a sinusoidal voltage of ( ) 0( ) sin ( )C mv t V t u t t = + −

is applied to the CFD capacitor at time being 0t , its 

current is found as 
 

( )01 1
sin( ) ( )( )

( ) − −
−

= =
mC

c

d V t u t tdv t
i t C t C t

dt dt

 

 


 (4.4) 

1

0( ) ( cos( ) sin( ) ( ))−= + −c mi t C V t t t t t

         (4.5) 

 

When the Dirac-delta function rule 

0 0 0( ) ( ) ( ) ( )− = −f t t t f t t t  is used, the CFD capacitor 

current can be written as: 
 

1 1

0 0 0( ) cos( ) sin( ) ( )− −= + −c m mi t C V t t C V t t t t 

       (4.6) 

 

The circuit waveforms are drawn with MatlabTM. The 
CFD capacitor current and voltage for this case is 
shown in Figure 5 and 6. The CFD capacitor current 
magnitude is not constant and varies with time due to 

the term 
1t −

 as shown in Figure 4. When 5=mV V ,

1 = rad/s, 0 = rad/s and 1C =
1/F s −

values are 

used, the CFD capacitor current graph in Figure 6 is 
sketched for three different alpha values.  
 

 
Figure 5. The CFD capacitor voltage vs. time when it is 
fed by a sinusoidal voltage 

 
Figure 6. The CFD current vs. time when it is fed by a 

sinusoidal voltage 

 
All real capacitor models have series and parallel 
resistors used in their equivalent circuit to model their 
losses. In this study, the capacitors are assumed to be 
ideal, ie. without losses and that’s why no resistor is 
used in the analysis. The CFD capacitor current goes to 

infinity due to the term 
1t −

 as seen in Figure 6 because 

of this. Such a situation would not appear in a more 
realistic capacitor model when a series resistor is used. 

 

5. Conclusions 

 
Supercapacitors or ultra-capacitors are becoming more 
common each day. They cannot be modelled with 
capacitor constitutive law. Therefore, easier and robust 
models are needed for their usage and analysis in the 
circuits. Only then, such capacitors can be fully 
exploited. 
 
The conformal fractional derivative provides an easier 
solution than the fractional derivatives such as Caputo 
and Riemann Liouville. Some capacitors can be 
modelled using fractional-order derivatives. In this 
study, the conformal fractional derivative is used to 
model a capacitor. Every circuit element should be 
examined for the basic waveforms such as DC and 
sinusoidal signals. The solutions of the CFD capacitor 
for the waveforms are given. Only in the case when it is 
fed by a current source, its voltage is found using a 
transcendental function the incomplete gamma 
functions. The solutions can be used in the analysis of 
the circuits with a CFD capacitor if a supercapacitor is 
found to be modelled with a good accuracy using 
experimental data. In comparison to the prior studies, 
the CFD derivative is more practical and analytical 
solutions are found to be possible while it has been not 
possible for other fractional derivatives. The analysis 
given here can also be used in modelling renewable 
energy systems or inverters with supercapacitors in the 
future. This paper can also be used as a tutorial for the 
researchers who have just been introduced to the 
research area. 
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