YÜMÜN ZÜ, KAM E. JOTCSA. 2020; 7(2); 517- 524.

RESEARCH ARTICLE

Radionuclide Potential of Holocene Sediments in the West of Marmara Sea (Turkey)

Zeki Ünal YÜMÜN^{1*} 🖂 🝺 and Erol KAM² 🖂 🝺

¹Namık Kemal University, Çorlu Engineering Faculty, Environmental Engineering Department, 59860 Çorlu, Tekirdağ, TURKEY, <u>zyumun@nku.edu.tr</u>

²Yildiz Technical University, Faculty of Arts and Sciences, Physics Department, Davutpaşa Campus, 34220 Esenler/ İstanbul, TURKEY, <u>erolkam@yildiz.edu.tr</u>

Abstract: Radionuclides that cause radioactive pollution descend to the bottom in marine and water environments such as heavy metals and accumulate in bottom sediments. It is useful to determine the radionuclides in these environments to control the radionuclide release and its damage. Radioactive pollution can harm people's life directly or through the food chain. In this study, natural and artificial radionuclide values were measured in Recent sediment samples taken from the seabed in the western part of the Marmara Sea. Gamma spectrometry method was used in radionuclide examinations. In gamma spectrometry studies of sediments, values of radionuclides (40K, 137Cs, 226Ra, 54Mn, 95Z, and 232 Th) were determined. Sea depths where 18 analyzed seafloor sediments are taken vary between 15-50 m. The determined radionuclide concentration activity values of the study area are ¹³⁷Cs (0.9 - 9.4 (Bq / kg)), 232 Th (18.9 - 86 (Bq / kg)), 226 Ra (10 - 50 (Bq / kg)), 40 K (24.4 - 670 (Bq / kg)), 54 Mn (0.71-0.9 (Bq / kg)) and 95 Zr (0.18 - 0.19 (Bq / kg)). These values were correlated with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The ²²⁶Ra series, ²³²Th series, and 40K radionuclides accumulate naturally, and their concentrations increase gradually due to anthropogenic impurities. ²²⁶Ra values obtained across the study areas are within normal limits according to UNSCEAR values. ⁴⁰K and ²³²Th values were higher than UNSCEAR values in all locations. ¹³⁷Cs (0.9 - 9.4 (Bq / kg)) from almost all locations reveals a risky situation in terms of ambient conditions because this element cannot be found in the natural environment and can be found artificially as an end of radioactivity.

Keywords: ⁴⁰K, ¹³⁷Cs, ²²⁶Ra, ⁵⁴Mn, ⁹⁵Z, ²³²Th, radionuclide, Marmara Sea.

Submitted: March 02, 2020. Accepted: May 15, 2020.

Cite this: YÜMÜN ZÜ, KAM E. Radionuclide Potential of Holocene Sediments in the West of Marmara Sea (Turkey). JOTCSA. 2020;7(2):517–24.

DOI: <u>https://doi.org/10.18596/jotcsa.696731</u>.

*Corresponding author. E-mail: zyumun@nku.edu.tr.

INTRODUCTION

Humanity has lived with radiation continuously from the beginning of our existence. With the formation of the Earth, very long-lived (order of billion years) radioactive elements, inherently a part of nature, have created a natural and inevitably accepted natural radiation level in the environment (1). Natural and anthropogenic radioactivity is related to the primary sources of radioactive composition encountered in marine, terrestrial, and atmospheric environments.

Natural airborne radiation is caused either by radioactive gases from various cracks in the earth (especially from radon gas) or by cosmic rays. The radioactivity in the soil is due to uranium, thorium, and other radioactive substances included in the YÜMÜN ZÜ, KAM E. JOTCSA. 2020; 7(2); 517- 524.

decomposition series of those radioisotopes. Radiation in water is due to the interaction of the radioactive sources in both the air and the soil with water (2).

Natural radionuclide concentrations are continually increasing in terrestrial and mainly marine environments. The reason for that is the rapid increase in the use of artificial fertilizers, fossil fuels, detergents, and pesticides and also the proliferation of phosphate processing plants (3). The most critical radioactive substances found in natural waters are uranium, thorium, radium, strontium, potassium, carbon, radon, and hydrogen (4). Radionuclides that cause artificial radioactivity are spread to the environment as a result of radiological activities, radioactive waste heaps, or nuclear accidents. Although those activities create a variety of different radionuclides, the ones that play an essential role in the radiation exposure of humans are the products of diffusion (¹³⁷Cs and activation and others). Those radionuclides may lead to internal and external radiation damage in the human body. Therefore, the radioactivity levels in environmental samples must be measured with an acceptable error so that the exposure dose can be accurately assessed (5).

Nuclear weapons trials that began in 1945 and continue to date, along with the Chernobyl (1986) and Fukushima (2011) nuclear reactor accidents, have resulted in high levels of artificial radionuclides spreading to the atmosphere.

Among radionuclides spreading to the environment since 1945 are the long-half-life radionuclides, including ¹⁴C, ¹³⁷Cs, and ⁹⁰Sr, which are important for environmental and human health. Those radionuclides accumulate in the marine environment and the living body, damaging both living spaces and living things (6).

In Turkey, Aközcan (2012) (7) studied the distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay. In his study, the activity concentrations of 238 U, 226 Ra, 232 Th, and 40 K in sediments collected from two different locations in the Aegean Sea have been defined. The highest activity concentrations of 238 U and 232 Th were observed in sediments from the Gulf of Izmir. The highest activity concentrations of 40 K in sediments were measured from Didim (7). Aytaş et al. (2012)(8) evaluated thirty sediment samples from different distances along the Maritza and Tundja River. These samples were analyzed by gamma spectroscopy for 238 U, 232 Th, and 40 K.

The measured average activity concentrations of 238 U and 232 Th are above the world average, but the average activity concentration of 40 K is within the world average value (8).

Natural and artificial radioactivity assessment of dam lakes sediments in the Coruh River (Turkey) was studied by Kobya et al. (2015) (9). In the ²³²Th, ⁴⁰K, and ¹³⁷Cs activity study, ²³⁸U, concentrations were determined. The mean concentrations of $^{238}\text{U},~^{232}\text{Th},~^{40}\text{K},$ and ^{137}Cs were found to be 15.8, 13.9, 551.5 and 18.1 Bq/kg respectively in Deriner Dam Lake (zone 1); 3.7, 12.5, 473.8 and 6.8 Bg/kg in Borcka Dam Lake (zone 2); 14.4, 30.0, 491.7 and 18.2 Bq/kg in Muratlı Dam Lake (zone 3) was determined. The fact that the activity concentration values of radionuclide are maximum in the Deriner Dam Lake, where the sediment deposition is at its maximum level (9).

This study aims to determine natural and artificial radionuclide distribution in both intense industrialization and non-industrialized areas of the West of Marmara Sea by using gamma spectrometry and bring out the risky areas for human life.

MATERIALS AND METHOD

The study area covers the area between Silivri (Istanbul) and Tekirdağ-Gelibolu (Çanakkale) in the north and between Lapseki (Çanakkale) and Bandırma (Balıkesir) in the south in the Western Marmara Sea (Figure 1).

The bathymetry of the sea from which the samples were taken ranges from 20 m to 35 m. In the Marmara Sea, the Anatolian (Southern Marmara) and Thrace (Northern Marmara) shores show different characteristics. Thrace shores, which meet the sea with large plateaus, feature gulfs (Tekirdağ and Silivri Gulfs) with wide arcs and beaches with small coves that have turned into lagoons. On the other hand, the Anatolian coast features the gulfs (Izmit, Gemlik, Bandirma, and Erdek) extending in the east-west and south-north directions and the islands (Kızıladalar, İmralı, and Marmara Islands) located in front of the rugged coasts (10). Core samples taken from 29 locations (sediment from the seafloor) were used in the study (Figure 2). The samples were taken between 15.10.2016 and 20.10.2016, and the coordinates and depth information of the samples are given in Table 1.

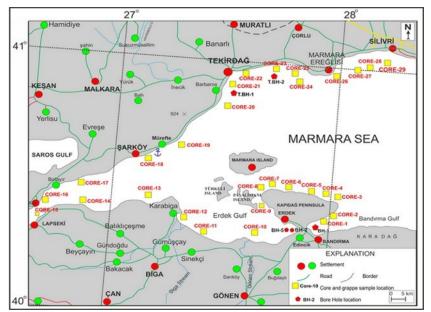


Figure 1. Location map of sample and study area.

Radionuclide analyses of the samples were made at the Çekmece Nuclear Research and Training Center. Samples were first dried at room temperature and prepared for analysis by sieving with 100-micron mechanical sieve. The samples were kept in the dry state for forty days were provided balance in radium, thorium, and other decomposition products. Concentration values of the radionuclides were analyzed using a Canberra GX5020 device.

The gamma activity peaks were: ²³⁸U series, 609.3 keV; ²³²Th series, 583 keV; ²²⁸Ac, 911.2 keV; ²²⁶Ra, 185.7 keV; ¹³⁷Cs, 661.7 keV; and ⁴⁰K, 1460.8 keV. In the gamma spectrometry analysis method, gamma ray-emitting radionuclides that irradiate at the energy range of 40 keV to 2000 keV are usually measured directly, without being separated from the sample matrix (such as air, water, soil, sediment, plant material, vegetable, and animal food.). Therefore, it is one of the most widely-used methods in the environmental analysis (5).

RESULTS

The range of radionuclide activity concentrations in the sediment samples, in Bq/kg, was 0.9-9.4 for 137 Cs; 18.9-86 for 232 Th; 10-50 for 226 Ra, and 24.4-670 for 40 K. Tables 2 and 3 present core sample radionuclide activities. The values were interpreted in comparison with the international average values as given in Table 4 (11).

In all locations, the analyses for ⁴⁰K were obtained in the core samples, the ⁴⁰K levels were above the world limits, whereas the ²³²Th levels were below the limit in eleven locations and above world standard in eighteen locations. The values of ²²⁶Ra were above the limit value at only one location (K-10, 50 Bq/kg). It is noteworthy that the 232 Th values (86-186 Bq/kg) reach the highest level in the Core-10 sample. One of the radioactive isotopes of cesium, ¹³⁷Cs, which is an alkali metal with similar chemical properties to potassium, reaches the highest value (9.4 Bq/kg) at the Core-20 location. That isotope has a considerably long physical half-life of 30.17 years; therefore, it is considered to be biologically hazardous for the ecosystem (12). The distributions of artificial and natural radionuclides at sea may differ from region to region, depending on various factors. The number of radionuclides deposited in marine environments vary with the physical and chemical properties of the radionuclide, dry or wet accumulation pattern, and topographic and meteorological environmental conditions (13).

Therefore, numerical results obtained from sediment samples show large variations. Figures 2, 3, 4, and 5 show the distribution of radionuclides for all sample locations in the west of the Marmara Sea. Figure 2 shows the map of 40 K, and radionuclides have been produced with the kriging method. Similarly, Figure 3 shows 226 Ra and Figure 4 shows 232 Th and Figure 5 shows 137 Cs radionuclides.

Table 1.	Geographic	coordinates o	f core samples.

CORE SAMPLE NUMBER	GPS-NO	DEPT H	GEOGRAPHIC POSITION (WGS-84)		CORE SAMPLE NUMBER	GPS-NO	DEPTH (M)	GEOGRAPHIC POSITION (WGS-84)	
		(M)	East	North				East	North
CORE 1	116	30	058 14 59	447 46 77	Core 14a/b	142	29	049 02 82	447 33 47
CORE 2	117	29	058 49 85	447 66 92	Core 15	143	36	047 39 14	446 99 71
CORE 3	119	30	058 81 05	448 16 39	Core 16	144	43	047 29 08	447 24 87
CORE 3	120	35	058 62 29	448 27 80	Core 17	145	26	048 80 99	448 10 25
CORE 4A	121	30	058 23 93	448 35 51	Core 18	146	41	051 10 08	449 48 09
CORE 4B	123	32	058 22 60	448 39 37	Core 19	147	30	540197	4522435
CORE 4C	124	35	057 98 35	448 54 62	Core 20	148	33	542591	4530386
CORE 5	125	38	057 74 01	448 53 35	Core 21	149	32	546815	4533986
CORE 6A	126	40	056 68 40	448 63 34	Core 22	150	30	560139	4536953
CORE 7	127	48	056 21 01	448 68 10	Core 23	151	32	569767	4535792
CORE 8	128	39.5	055 81 97	448 48 62	Core 24	152	33	580368	4533824
CORE 9A	129	28	055 82 82	448 01 29	Core 25	153	33	588549	4541739
CORE 9B	137	32	055 83 61	447 97 91	Core 26	154	32	596782	4544493
CORE 10	138	19	055 62 81	446 36 87	Core 27	155	30	603222	4545684
CORE 11A/B	139	26	054 24 36	446 46 34	Core 28	156	31	540197	4522435
CORE 12	140	18	052 87 96	447 06 48	Core 29	157	35	542591	4530386
CORE 13	141	46	051 44 52	447 87 84					

Sample	Table 2. Results Radionuclide	Activity ± Bq/kg	Sample	Radionuclide	Activity ± Bq/kg
	⁴⁰ K	490		¹³⁷ Cs	3.5
	¹³⁷ Cs	2.5		²²⁶ Ra	50
CORE-1	²²⁶ Ra	30	CORE-10	²³² Th	86
	²³² Th	42		¹⁵⁵ Eu	3.2
	¹³⁷ Cs	1.9		40K	670
CORE-2	²²⁶ Ra	19.8		²³² Th	57
	²³² Th	27.1		²²⁶ Ra	34
CORE-3	²²⁶ Ra	25	CORE-11	¹³⁷ Cs	3.8
	²³² Th	28		⁵⁴ Mn	1.1
	⁴⁰ K	24.4		²³² Th	49
CORE-4	¹³⁷ Cs	1.4	CORE-12	²²⁶ Ra	28.2
	²³² Th	21.6		¹³⁷ Cs	4.9
	⁵⁴ Mn	0.71		²³² Th	45
	⁴⁰ K	470		²²⁶ Ra	25.7
CORE-5	¹³⁷ Cs	1.8	CORE-13	¹³⁷ Cs	2.2
	²²⁶ Ra	21.5		⁹⁵⁺ Zr	0.27
	²³² Th	30		⁴⁰ K	470
	⁴⁰ K	450	CORE-14	²³² Th	36
CORE-6	¹³⁷ Cs	1.3	CORE-14	²²⁶ Ra	25.2
JUKE-0	²²⁶ Ra	27		¹³⁷ Cs	0.90
	²³² Th	26		¹³⁷ Cs	3.2
	¹³⁷ Cs	1.1	CORE-15	²²⁶ Ra	19.5
	²²⁶ Ra	24	CORE-15	²³² Th	36
CORE-7	²³² Th	39		⁴⁰ K	600
	⁹⁵⁺ Zr	0.2		¹³⁷ Cs	4.7
CORE-8	¹³⁷ Cs	1.1	CORE-16	²²⁶ Ra	24.9
	²²⁶ Ra	18.6		²³² Th	37
	²³² Th	30		¹³⁷ Cs	1.6
CORE-9	⁴⁰ K	470		²²⁶ Ra	18.9
	¹³⁷ Cs	0.9	CORE-17	²³² Th	26
				111	20
	²²⁶ Ra	19			

Table 3. Results of gamma spectrometric analyses of core samples (continuation of Table 2)SampleRadionuclideActivity ± Bq/kgSampleRadionuclideActivity

Sample	Radionaciae	Activity 1 bq/ kg	Sample	Radionaciae	$\pm Bq/kg$
CORE-	¹³⁷ Cs	4.8		²²⁶ Ra	10
18	²²⁶ Ra	29	CORE- 24	²³² Th	21
	²³² Th	36		⁴⁰ K	550
CORE-	⁴⁰ K	650		¹³⁷ Cs	1
19	¹³⁷ Cs	2.3	CORE-	²²⁶ Ra	22
	²²⁶ Ra	27.9	25	²³² Th	38
	²³² Th	39		⁹⁵⁺ Zr	0.19
CORE-	⁴⁰ K	630		⁴⁰ K	480
20	¹³⁷ Cs	9.4		²³² Th	24
	²²⁶ Ra	20.5	CORE-	²²⁶ Ra	19.2
	²³² Th	35	26	¹³⁷ Cs	0.8
CORE-	¹³⁷ Cs	3.7	CORE-	¹³⁷ Cs	1.3
21	²²⁶ Ra	20.6	27	²²⁶ Ra	16.1
	²³² Th	30		²³² Th	21.7
CORE-	¹³⁷ Cs	5.1	CORE-	⁴⁰ K	580
22	²²⁶ Ra	27	28	¹³⁷ Cs	1
	²³² Th	20.7		²²⁶ Ra	18.1
CORE-	¹³⁷ Cs	1.7		²³² Th	24.8
23	226Ra	13.7	CORE-	²²⁶ Ra	20.9
	²³² Th	18.9	29	²³² Th	31

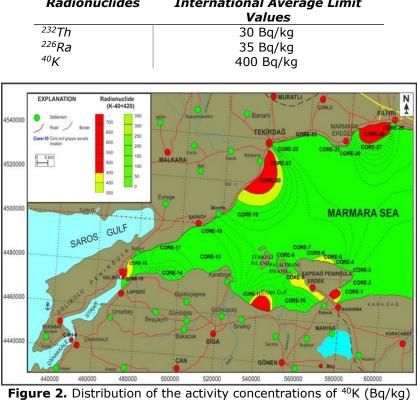


 Table 4. International average values of radionuclides (11)

 Radionuclides
 International Average Limit

Figure 2. Distribution of the activity concentrations of "K (Bq/kg)

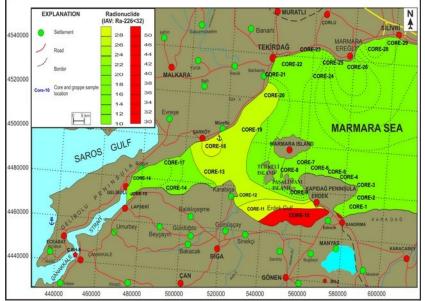


Figure 3. Distribution of the activity concentrations of ²²⁶Ra (Bq/kg).

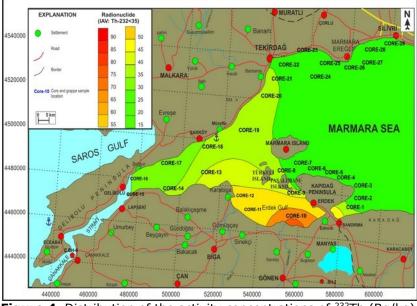


Figure 4. Distribution of the activity concentrations of ²³²Th (Bq/kg).

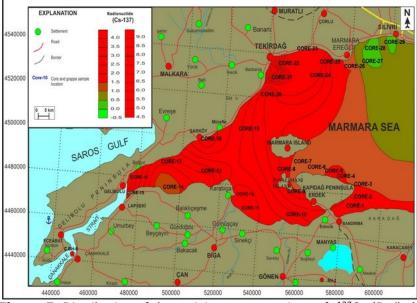


Figure 5. Distribution of the activity concentrations of ¹³⁷Cs (Bq/kg).

DISCUSSION AND CONCLUSION

In this study, core samples were collected from 29 different locations in the Marmara Sea for radioactivity analyses for 40 K, 232 Th, 137 Cs, 226 Ra, 54 Mn, and ${}^{95+}$ Zr on the western coast of the Sea of Marmara. The Gamma Spectrometric Analysis method was used to determine the radioactivity properties of the sediments. The radionuclide concentration activity values in the sediment samples obtained from the locations, in Bq/kg, were 137 Cs, 0.9–9.4; 232 Th, 18.9–86; 226 Ra, 10–50; 40 K, 24.4–670; 54 Mn, 0.71–0.9; and 95 Zr, 0.18–0.19. These values were compared with data from the Turkish Atomic Energy Agency (TAEK) and the United Nations Scientific Committee on the Effects

Radiation (UNSCEAR), of Atomic and environmental analysis was also carried out. As a result of the analyses ⁴⁰K values were found to be zero in Core-2, Core-3, Core-4, Core-7, Core-8, Core-10, Core-12, Core-13, Core-15, Core-17, Core-18, Core-21, Core-23, Core-24, Core-27, and Core-29. The ¹³⁷Cs value was zero in Core-3 and Core-24, whereas it was determined to be 9.4 (Bq/ kg) in Core-20. In the Core-11 sample taken from the Sea of Marmara (between Gönen Creek and Karabiga), the $^{\rm 40}{\rm K}$ value was higher than those of other locations and higher than the average world value. On the contrary, ²²⁶Ra values measured in all the core samples were below the limit values.

ACKNOWLEDGMENTS

The author thanks Yümün Mühendislik Ltd. Şti for their studies on drilling and core sampling and Melike ÖNCE, Sevinç YÜMÜN for the preparation of the samples in the laboratory and also for the separation studies of other fossils.

REFERENCES

1. TAEK. Radyasyon Kaynakları. Web. http://www.taek.gov.tr/ogrenci/r05.htm (In Turkish); 2012

2. Görür Ş. Investigation of the Relationship Between Environmental Radioactivity and Radioactivity in Dental Specimens. Cukurova University Institute Of Science Sciences, Graduate thesis. 2006; 1-74.

3. Topçuoğlu S. Radioactive Pollution of Seas. Web. http://www.gelbalder.org/ literatür/6238deniz-kirliligi-analiz-yontemleri-ilgili-uluslar-arasisozlesmeler-2.html; 2012.

4. Tekirdağ Valiliği. Tekirdağ Province Environmental Status Report. T.C. Tekirdağ Governorship Provincial Environment and Forestry Directorate 285-286. 2009.

5. Ayçik GA, Onat NB, Ertürk MK, Topçuoğlu S, Köksal G, Yaşar S, Güngör N. Sampling, measurement and analysis methods for monitoring environmental radioactivity, Turkish Atomic Energy Authority. 2000.

6. Ergül HA. Investigation of some heavy metal, radionuclide, organic carbon and chlorophyll-a levels of sedimenting material in Oxide Zone in Trabzon region of Black Sea. PhD Thesis, Karadeniz Technical University Institute of Science and Technology, Department of Biology. 2004.

7. Aközcan S. Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey), Journal of Environmental Radioactivity. 2012; 112: 60-63.

8. Aytaş Ş, Yusan S, Aslani MA, Karali T, Turkozu D, A, Gök C, Erentürk S, Gökçe M, Oğuz KF. Natural Radioactivity of Riverbank Sediments of the Maritza and Tundja Rivers in Turkey. Journal of Environmental Science and Health, Part A. 2012; 47: 2163-2172.

9. Kobya Y, Taşkın H, Yeşilkanat CM., Varinlioğlu A, Korcak S. Natural and Artifical Radioactivity Assessment of Dam Lakes Sediments in Çoruh River, Turkey. Journal Radioanal Nucleid Chemical. 2015; 303: 287-295.

10. Bursa GC. Marmara Denizi. Web. http://bgc.org.tr/ansiklopedi/marmara-denizi.html [10].2015.

11. UNSCEAR. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee On The Effects Of Atomic Radiation. Report to General Assembly with Scientific Annexes. United Nations, New York. 2000; 1, 1-659.

12. Aközcan S. Cs-137 Concentrations in Sediment and Waters of Büyük Menderes River and Dilek Peninsula Büyük Menderes Delta. Ekoloji. 2011; 20 (81): 55-60.

13. Aközcan S. Monitoring of Some Radionuclide and Heavy Metal Levels in Sediment, Sea Water and Different Marine Organisms in Didim and İzmir Bay (Turkish with English Abstract). PhD Thesis, Ege University Institute of Science, Department of Nuclear Science, İzmir. 2009.