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Abstract

The subject of this paper are partial geometries pg(s, t, α) with
parameters s = d(d′ − 1), t = d′(d − 1), α = (d − 1)(d′ − 1), d, d′ ≥
2. In all known examples, q = dd′ is a power of 2 and the partial
geometry arises from a maximal arc of degree d or d′ in a projective
plane of order q via a known construction due to Thas [28] and Wallis
[34], with a single known exception of a partial geometry pg(4, 6, 3)
found by Mathon [22] that is not associated with a maximal arc in
the projective plane of order 8. A parallel class of lines is a set of
pairwise disjoint lines that covers the point set. Two parallel classes
are called orthogonal if they share exactly one line. An upper bound
on the maximum number of pairwise orthogonal parallel classes in
a partial geometry G with parameters pg(d(d′ − 1), d′(d − 1), (d −
1)(d′ − 1)) is proved, and it is shown that a necessary and sufficient
condition for G to arise from a maximal arc of degree d or d′ in a
projective plane of order q = dd′ is that both G and its dual geometry
contain sets of pairwise orthogonal parallel classes that meet the upper
bound. An alternative construction of Mathon’s partial geometry is
presented, and the new necessary condition is used to demonstrate
why this partial geometry is not associated with any maximal arc in
the projective plane of order 8. The partial geometries associated with
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all known maximal arcs in projective planes of order 16 are classified
up to isomorphism, and their parallel classes of lines and the 2-rank of
their incidence matrices are computed. Based on these results, some
open problems and conjectures are formulated.

Keywords: partial geometry, projective plane, maximal arc, strongly
regular graph.

1 Introduction

We assume familiarity with basic facts and notions from combinatorial design
theory [3], [33].

A partial geometry with parameters s, t, α, or shorty, pg(s, t, α), is a pair
(P, L) of a set P of points and a set L of lines, with an incidence relation
between points and lines, satisfying the following axioms:

1. A pair of distinct points is not incident with more than one line.

2. Every line is incident with exactly s+ 1 points (s ≥ 1).

3. Every point is incident with exactly t + 1 lines (t ≥ 1).

4. For every point p not incident with a line l, there are exactly α lines
(α ≥ 1) which are incident with p, and also incident with some point
incident with l.

In terms of the parameters s, t, α, the number v = |P | of points, and the
number b = |L| of lines of a partial geometry pg(s, t, α) are given by eq. (1).

v =
(s+ 1)(st+ α)

α
, b =

(t+ 1)(st+ α)

α
. (1)

If G = (P, L) is a partial geometry pg(s, t, α), the incidence structure G′

having as points the lines of G, and having as lines the points of G, where a
point and a line are incident in G′ if and only if the corresponding line and
a point of G are incident, is a partial geometry pg(t, s, α), called the dual of
G.

Partial geometries were introduced by R. C. Bose [4]. In the original
Bose’s notation, the number t + 1 of lines incident with a point is denoted
by r, and the number s + 1 of points incident with a line is denoted by k.
The (s, t, α)-notation was adopted later to match the notation for general-
ized quadrangles, which are partial geometries with α = 1 [25]. A partial
geometry pg(s, t, α) is called proper if 1 < α < min(s, t).
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In this paper, we consider proper partial geometries with parameters

s = q − d, t = q(d− 1)/d, α = (q − d)(d− 1)/d, (2)

where q > d ≥ 2 are integers and d divides q. All known partial geometries
with parameters (2) arise from maximal arcs1 of degree d = 2m in projective
planes of order q = 2h, h ≥ 2, via a construction due to Thas [28], [29],
[31, Construction 41.21], and Wallis [34], with a single exception for h = 3
and m = 1, when in addition to the partial geometry pg(6, 4, 3) arising from
a maximal arc of degree 2, that is, a hyperoval in PG(2, 8), there exists a
second nonisomorphic partial geometry with the same parameters that was
found by Rudi Mathon [21], and is not associated with any hyperoval in
PG(2, 8).

If d = 2m and q = 2h, (m < h), the parameters (2) can be written as

s = 2h − 2m, t = 2h − 2h−m, α = (2m − 1)(2h−m − 1), (1 ≤ m < h). (3)

The parameters (3) correspond to partial geometries of Type 1 in the classi-
fication of the known proper partial geometries given in [31, Theorem 41.31].
(The only known ”improper” partial geometry with parameters (3) is a gen-
eralized quadrangle pg(2, 2, 1), (m = 1, h = 2), arising from a hyperoval in
the projective plane of order 4.)

In Section 2, we prove a necessary and sufficient condition for a partial
geometry with parameters (2) to be associated with a maximal arc of degree
d in a projective plane of order q in terms of parallel classes of lines (Theorem
2.4).

In Section 3, we give an alternative construction of Mathon’s partial ge-
ometry with parameters s = 6, t = 4, α = 3, and use Theorem 2.4 to show
why this partial geometry is not associated with a maximal arc in PG(2, 8).

In Section 4, we examine the partial geometries associated with maximal
arcs in projective planes of even order q ≤ 16. The partial geometries as-
sociated with all known maximal arcs in projective planes of order 16 are
classified up to isomorphism, and their parallel classes of lines and the 2-
rank of their incidence matrices are computed. Based on the results of these
computations, some open problems and two conjectures are formulated.

2 Maximal arcs and partial geometries

Let k and d be positive integers such that k > d > 1. A (k, d)-arc (or an
arc of size k and degree d) in a projective plane P of order q is a set A of k

1A maximal arc of degree d in a projective plane of order q = dd′ is a set A of qd−q+d

points such that every line is either disjoint from A or meets A in exactly d points.
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points such that d is the greatest number of collinear points in A. It follows
that k ≤ dq − q + d, and the equality k = dq − q + d holds if and only if
every line is either disjoint from A or intersects A in exactly d points. A
(dq− q + d, d)-arc is called a maximal arc. A maximal arc of degree d = 2 is
called also a hyperoval.

A necessary condition for the existence of a maximal arc of degree d in a
projective plane of order q is that d divides q. If A is a maximal (dq−q+d, d)-
arc in a projective plane P of order q, then the lines of P that are disjoint
from A form a maximal (q(q − d + 1)/d, q/d)-arc A′ in the dual plane P ′,
called the dual arc of A.

Maximal arcs of degree d, 1 < d < q, do not exist in any Desarguesian
plane of odd order q (Ball, Blokhuis, and Mazzocca [2]), as well as in any of
the four projective planes of order 9 (Lunelli and Sce [20]), and are known to
exist in every Desarguesian plane of order q = 2t (Denniston [8], Hamilton
and Mathon [14], [15], Mathon [22], Thas [29]), as well as in some non-
Desarguesian planes of even order (Gezek, Mathon and Tonchev [9], Gezek,
Tonchev and Wagner [10], Hamilton [11], [12], [13], Hamilton, Stoichev and
Tonchev [16], Penttila, Royle, and Simpson [26], Thas [30]).

If P is a projective plane of order q = dd′, then a maximal arc A in P of
degree d has d(q− d′+1) points, while its dual arc A′ is of degree d′ and has
d′(q − d+ 1) points. The set of points of a maximal (d(q − d′ + 1), d)-arc A
and the non-empty intersections of A with lines of P considered as blocks,
form a Steiner 2-(d(q − d′ + 1), d, 1) design D. We say that D is associated
with the maximal arc A, or that D is embeddable in P as a maximal arc.
Similarly, the points of the dual arc A′ define a Steiner 2-(d′(q− d+1), d′, 1)
design D′ embeddable in the dual plane P ′.

A necessary and sufficient condition for a Steiner 2-(d(q − d′ + 1), d, 1)
design D to be embeddable as a maximal (d(q−d′+1), d)-arc in a projective
plane of order q = dd′ was proved by the second author in [32]. This condition
was used in [10] to show that five of the known projective planes of order 16
contain maximal (52, 4)-arcs whose associated Steiner 2-(52, 4, 1) designs are
embeddable in two nonisomorphic planes of order 16.

Construction 2.1 (Thas [28], [31], Wallis [34]). Let A be a maximal (qd−
q+d, d)-arc in a projective plane P of order q = dd′, 2 ≤ d < q, and let X be
the set of points of P. Let P = X \ A, and let L be the set of all lines of P
that intersect A in d points. Then G = (P, L) is a partial geometry pg(s, t, α)
with parameters (2). Similarly, the dual arc A′ determines a partial geometry
G′ with parameters t, s, α, being the dual geometry of G.

We note that if q = dd′, then the parameters (2) of a partial geometry
associated with a maximal arc A of degree d via Construction 2.1 can be
rewritten as in eq. (4), while the numbers of points and lines (1) can be

4



written as in eq. (5).

s = d(d′ − 1), t = d′(d− 1), α = (d− 1)(d′ − 1). (4)

v = (s+ 1)(dd′ + 1), b = (t+ 1)(dd′ + 1). (5)

Let d ≥ 2, d′ ≥ 2 be integer numbers, and let G = (P, L) be a partial
geometry with parameters s, t, α given by eq. (4). Thus, by eq. (5), the
line size s + 1 of G divides the number of points v, while t + 1, that is, the
line size the dual geometry G′, divides b. A parallel class of G is a set of
v/(s+ 1) = dd′ + 1 pairwise disjoint lines of G. Similarly, a parallel class of
the dual geometry G′ is a set of b/(t+ 1) = dd′ + 1 pairwise disjoint lines of
G′.

Definition 2.2 Two parallel classes of G (resp. G′) are called orthogonal if
they share exactly one line.

The following theorem gives an upper bound on the maximum number of
pairwise orthogonal parallel classes.

Theorem 2.3 Let G = (P, L) be a partial geometry pg(s, t, α) with param-
eters (4), where d ≥ 2, d′ ≥ 2 are given integer numbers, and let G′ be its
dual partial geometry.
(a) If C is a set of m pairwise orthogonal parallel classes of G then

m ≤ d(dd′ − d′ + 1), (6)

and the equality m = d(dd′ − d′ + 1) holds if and only if every line of G
appears in exactly d parallel classes from C.

(b) If C ′ is a set of m′ pairwise orthogonal parallel classes of G′ then

m′ ≤ d′(d′d− d+ 1), (7)

and the equality m′ = d′(d′d − d + 1) holds if and only if every line of G′

appears in exactly d′ parallel classes from C ′.

Proof. (a) Let ki denote the number of parallel classes from C that contain
the ith line Li of G, 1 ≤ i ≤ b, where the number b of lines of G is equal to
b = (d′(d−1)+1)(dd′+1) by eq. (5) and (4). Let C1, . . . , Cm be the parallel
classes from C. Counting in two ways the ordered pairs (Ci, Lt), where Lt

belongs to Ci gives
b

∑

i=1

ki = m(dd′ + 1). (8)
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Similarly, counting in two ways the ordered pairs ({Ci, Cj}, Lt), where Lt

belongs to Ci and Cj (i 6= j), gives

b
∑

i=1

ki(ki − 1) = m(m− 1). (9)

Adding equations (8) and (9) gives

b
∑

i=1

k2

i = m(m+ dd′).

Applying the Cauchy-Schwarz inequality, we have

(
b

∑

i=1

ki)
2 = m2(dd′ + 1)2 ≤ b

b
∑

i=1

k2

i = (d′(d− 1) + 1)(dd′ + 1)m(m+ dd′),

whence
m(dd′ + 1) ≤ (d′(d− 1) + 1)(m+ dd′).

Solving the last inequality for m implies (6). Clearly, the equality

m = d(dd′ − d′ + 1)

holds if and only if

k1 = k2 = · · · = kb =
1

b

b
∑

i=1

ki =
d(dd′ − d′ + 1)(dd′ + 1)

(d′d− d′ + 1)(dd′ + 1)
= d.

This completes the proof of part (a).
(b) Switch d and d′, b and v, s and t in the proof of part (a). ✷
The following theorem shows that a partial geometry G with parameters

(4) arises from a maximal arc if and only if G and its dual geometry G′ both
meet the bounds of Theorem 2.3.

Theorem 2.4 Let d ≥ 2, d′ ≥ 2 be integer numbers, and let G be a partial
geometry pg(s, t, α) with parameters (4).

A necessary and sufficient condition for G to be associated with a maximal
arc of degree d in a projective plane P of order q = dd′ is that the following
two conditions hold:

(i) G admits a set of pairwise orthogonal parallel classes that meets the
upper bound (6) of Theorem 2.3, part (a).

(ii) The dual geometry G′ admits a set of pairwise orthogonal parallel
classes that meets the upper bound (7) of Theorem 2.3, part (b).
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Proof. Assume that P is a projective plane of order q = dd′ with a
maximal (qd−q+d, d)-arc A, and let A′ be the dual (qd′−q+d′, d′)-arc. Let
G be the partial geometry with parameters given by (4) and (5) that arises
from A via Construction 2.1. Thus, if X is the point set of P then X \ A is
the set of points of G.

A pencil is a set of q + 1 lines of P that pass through a point x. If x is a
point from the arc A, the pencil through x determines

v/(s+ 1) = q + 1 = dd′ + 1

pairwise disjoint lines of G via Construction 2.1, and these q + 1 lines of G
form a parallel class. Since every two points x, y ∈ A, x 6= y are incident
with exactly one line l of P, the pencils through x and y determine two
parallel classes C1, C2 of lines of G that share exactly one line, being the
restriction of l on the point set X \A of G. Thus C1 and C2 are orthogonal.
It follows that the qd− q+ d = d(dd′− d′ +1) points of A determine a set of
d(dd′−d′+1) pairwise orthogonal classes of lines of G that meets the bound
(6) of Theorem 2.3.

Similarly, the d′(d′d−d+1) points of A′ determine a set of d′(d′d−d+1)
pairwise orthogonal parallel classes of lines of the dual geometry G′ that
meets the bound (7) of Theorem 2.3.

Suppose now that G = (P, L) is a partial geometry with parameters (4)
for some integers d ≥ 2, d′ ≥ 2, and assume that G and its dual geometry
G′ satisfy the conditions (i) and (ii) respectively. Then one can construct a
projective plane P of order q = dd′ as follows.

Let C = {C1, . . . , Cm} be a set of m pairwise orthogonal parallel classes
of lines of G, where m = d(dd′ − d′ + 1) meets the bound (6), and let
C ′ = {C ′

1, . . . , C
′

m′} be a set of m′ pairwise orthogonal parallel classes of
lines of the dual geometry G′, where m′ = d′(d′d − d + 1) meets the bound
(7). According to Theorem 2.3, every line of G appears in exactly d parallel
classes from C, and every line of G′ appears in exactly d′ parallel classes from
C ′. By (4) and (5), every parallel class Ci ∈ C , as well as every parallel
class C ′

i ∈ C ′ , consists of q + 1 pairwise disjoint lines.
We define an incidence structure P with a set of points X and a collection

of lines L, where X consists of the v = |P | points of G plusm = d(dd′−d′+1)
new points labeled by the m parallel classes from C, and L consists of b = |L|
lines labeled by the lines of G plus m′ = d′(d′d − d+ 1) lines labeled by the
m′ parallel classes from C ′. Thus, by (4) and (5), P has q2 + q + 1 points
and q2 + q + 1 lines.

A line l∗ of P which is labeled by a line l of G consists of the s+1 points
of l and d points labeled by the d parallel classes from C that contain the
line l. It follows from (4) that l∗ is incident with s+ 1 + d = q + 1 points.

7



A line l′i of P which is labeled by a parallel class C ′

i ∈ C ′, consists of the
q + 1 points of G that correspond to the q + 1 lines of G′ belonging to C ′

i,
1 ≤ i ≤ m′. It follows from (4) that every point of P which is also a point of
G is incident with t + 1 + d′ = q + 1 lines of P, and every point of P which
is labeled by a parallel class Ci of G is also incident with q + 1 lines of P.

Thus, P = (X,L) is an incidence structure with |X|=q2 + q + 1 points
and |L|=q2 + q + 1 lines, such that every line is incident with q + 1 points,
and every point is incident with q + 1 lines. To show that P is a projective
plane of order q, it is sufficient to check that every two lines of L meet in
exactly one point of X .

Any two distinct parallel classes C ′

i, C
′

j ∈ C ′ share exactly one line l′ of G′

due to the orthogonality condition. Consequently, the two lines of P labeled
by C ′

i and C ′

j meet in exactly one point x ∈ P , being the point of G that
corresponds to the line l′ of G′.

A line l∗ of P which is labeled by a line l of G meets any line of P which is
labeled by a parallel class C ′

i ∈ C ′ in exactly one point, because l is incident
with exactly one of the q+1 points of G that correspond to the q+1 parallel
lines of G′ belonging to C ′

i.
Let l∗1, l

∗

2 be lines of P that are labeled by two distinct lines l1, l2 of G.
If l1 and l2 belong to a parallel class Ci ∈ C, then l∗1 and l∗2 meet in exactly

one point, being the point of P labeled by Ci. On the other hand, if l1 and l2
are two distinct lines of G that belong to two different parallel classes from
C, then l∗1 and l∗2 cannot share any point labeled by a parallel class from C,
and can possibly share at most one point, being a point of G.

To prove that every two lines of P share a point, we count the set of
ordered pairs

S = {(x, {l∗i , l
∗

j})},

where x ∈ X is a point of P, and l∗i , l
∗

j ∈ L, 1 ≤ i < j ≤ q2 + q + 1, are two
distinct lines of P that are both incident with x.

Since for every two distinct lines l∗i , l
∗

j there is at most one point x incident
with both l∗i and l∗j , we have

|S| ≤

(

q2 + q + 1

2

)

. (10)

On the other hand, since every point x belongs to q + 1 lines, there are
(

q+1

2

)

pairs of lines that are incident with x. Thus, counting the ordered pairs
from S by ranging x over the set of all q2 + q + 1 points implies that |S| is
given by eq. (11).

|S| = (q2 + q + 1)

(

q + 1

2

)

=
(q2 + q + 1)(q + 1)q

2
. (11)
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Since
(q2 + q + 1)(q + 1)q

2
=

(

q2 + q + 1

2

)

, (12)

it follows from (10), (11) and (12) that each pair of distinct lines share exactly
one point, thus P is a projective plane of order q = dd′.

Since every line of P which is labeled by a line of G meets the set A of
m = d(dd′ − d′ + 1) points labeled by the parallel classes from C in exactly
d points, and every line of P which is labeled by a parallel class from C ′

is disjoint from A, the set A is a maximal (d(dd′ − d′ + 1), d)-arc in P.
Similarly, the m′ = d′(d′d − d + 1) lines of P labeled by the parallel classes
of C ′, determine a maximal (d′(d′d − d + 1), d′)-arc A′ in the dual plane of
P, and A′ is the dual arc of A. ✷.

Note 1 In all known partial geometries with parameters of the form (4),
d and d′ are both powers of 2. It is an interesting open question whether
partial geometries for other values of d and d′ may exist.

For example, it is not known if a partial geometry pg(6, 6, 2), (d = d′ = 3)
exists or not. However, a partial geometry with these parameters cannot be
associated with a maximal (21, 3)-arc in a projective plane of order 9, because
no such maximal arcs exist in any of the four projective planes of order 9
[20].

Another open small parameter set is s = 12, t = 10, α = 8, that corre-
sponds to d = 3 and d′ = 5. The existence of a partial geometry pg(12, 10, 8)
that satisfies the conditions of Theorem 2.4 would imply the existence of a
projective plane of order 15 with maximal arcs of degree 3 and 5.

3 Partial geometries pg(4, 6, 3)

A strongly regular graph Γ with parameters n, k, λ, µ (or srg(n, k, λ, µ)) is
an undirected graph without loops or multiple edges, having the following
properties:

• Γ has n vertices.

• Every vertex has exactly k neighbors.

• Every two adjacent vertices have exactly λ common neighbors.

• Every two nonadjacent vertices have exactly µ common neighbors.

The complementary graph Γ̄ of a strongly regular graph Γ with param-
eters n, k, λ, µ is also strongly regular, with parameters n̄, k̄, λ̄, µ̄ given by
(13).

n̄ = n, k̄ = n− 1− k, λ̄ = n− 2k + µ− 2, µ̄ = n− 2k + λ. (13)

9



Strongly regular graphs were introduced by Bose in the same paper [4],
where he introduced partial geometries.

The eigenvalues of the (0,1)-adjacency matrix of a strongly regular graph
Γ with parameters n, k, λ, µ, as well as their multiplicities, are easily ex-
pressed in terms of the graph parameters [4]: k is a simple eigenvalue, and
up to multiplicity, there are two more eigenvalues ρ1, ρ2, being the solutions
of the quadratic equation (14).

x2 + (µ− λ)x+ µ− k = 0. (14)

The following statement is a special case of a more general result due to
Hoffman [18] that applies to regular graphs.

Theorem 3.1 (Hoffman bound) Let Γ be a strongly regular graph with pa-
rameters n, k, λ, µ, and let ρ be the smallest eigenvalue of the (0,1)-adjacency
matrix of Γ, being the negative root of equation (14). The size of any coclique
C of Γ satisfies the inequality

c = |C| ≤
n(−ρ)

k − ρ
, (15)

and the equality holds if and only if every vertex outside C is adjacent to
exactly

d =
kc

n− c
vertices of C.

If G = (P, L) is a partial geometry pg(s, t, α) with point set P and line set
L, the point graph ΓP of G is the graph with vertex set P , where two vertices
are adjacent if the corresponding points of G are collinear. The line graph
ΓL of G is the graph having as vertices the lines of G, where two lines are
adjacent if they share a point. Both ΓP and ΓL are strongly regular graphs
[4]. The parameters n, k, λ, µ of ΓP are expressed in terms of s, t, α as in eq.
(16), while the parameters n′, k′, λ′, µ′ of ΓL are given by eq. (17).

n = (s+ 1)(st+ α)/α, k = s(t+ 1), λ = s− 1 + t(α− 1), µ = α(t+ 1). (16)

n′ = (t+1)(st+α)/α, k′ = t(s+1), λ′ = t−1+s(α−1), µ′ = α(s+1). (17)

A strongly regular graph Γ whose parameters n, k, λ, µ can be written as
in eq. (16) for some integers s, t, α is called pseudo-geometric, and Γ is called
geometric if there exists a partial geometry G with parameters s, t, α such
that Γ is the point graph of G; otherwise Γ is non-geometric.

Applying the Hoffman bound (15) from Theorem 3.1 to the complemen-
tary graph Γ̄ of a pseudo-geometric graph Γ with parameters (16) implies
that every clique of Γ is of size smaller than or equal to s + 1, and every
clique C of maximum size s + 1 has the property that every vertex outside
C is adjacent to exactly α vertices from C.

10



Theorem 3.2 (Bose [4]). A pseudo-geometric strongly regular graph Γ with
parameters (16) is geometric if and only if Γ possesses a set of b = (t+1)(st+
α)/α cliques of size s+ 1, every two of which share at most one vertex.

Next, we consider partial geometries with parameters s, t, α of the form (4)
for some integer d ≥ 2 and d′ = 2, namely

s = d, t = 2d− 2, α = d− 1. (18)

The parameters (16) of the point graph of a partial geometry with parameters
(18) are given by eq. (19).

n = (d+1)(2d+1), k = d(2d−1), λ = (d−1)(2d−3), µ = (d−1)(2d−1). (19)

The triangular graph T (m), where m ≥ 4 is an integer, has as vertices the un-
ordered 2-subsets of {1, 2, . . . , m}, where two distinct 2-subsets are adjacent
in T (m) whenever they are not disjoint. The graph T (m) is strongly regular
with parameters (20), while its complementary graph T̄ (m) has parameters
(21).

n =

(

m

2

)

, k = 2(m− 2), λ = m− 2, d = 4. (20)

n̄ =

(

m

2

)

, k̄ =

(

m− 2

2

)

, λ̄ =

(

m− 4

2

)

, µ̄ =

(

m− 3

2

)

. (21)

Let d ≥ 2 be an integer. By (21), the parameters of T̄ (2d+ 2) are

n̄ = (d+1)(2d+1), k̄ = d(2d−1), λ̄ = (d−1)(2d−3), µ̄ = (d−1)(2d−1). (22)

Since the parameters (22) and (19) coincide, the graph T̄ (2d+ 2) is pseudo-
geometric for s, t, α given by (18). It is known that every strongly regular
graph with parameters (20) is isomorphic to T (m), except when m = 8, in
which case in addition to T (8), there are three other graphs [6], [17], known
as the Chang graphs.

The question about the values of d for which a strongly regular graph
with parameters (22) is geometric has been settled in the following cases:

1. d = 2i, i ≥ 0. The graph T̄ (2i+1+2) is geometric, and the corresponding
partial geometry arises from a hyperoval in a projective plane of order
2i+1 via Construction 2.1.

2. d = 3. Neither T̄ (8), nor any of the Chang graphs is geometric, thus,
a partial geometry with parameters s = 3, t = 4, α = 2 does not exist
(De Clerck [7]).
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3. d = 4. The graph T̄ (10) is geometric, and up to isomorphism, there
exist exactly two partial geometries pg(4, 6, 3) (Mathon [21]). The dual
geometry of one of these two geometries arises from a hyperoval in the
projective plane of order 8, PG(2, 8), via Construction 2.1, while the
dual of the second geometry is not associated with any hyperoval in
PG(2, 8).

4. d = 5. The graph T̄ (12) is not geometric, thus a partial geometry
pg(5, 8, 4) does not exist (Lam, Thiel, Swiercz, and McKay [19]).

We will give a brief description of the two partial geometries pg(4, 6, 3) having
T̄ (10) as point graph. A convenient way to describe a partial geometry
G1 associated with a maximal arc of degree 4 (dual arc of a hyperoval) in
PG(2, 8) is by using a collineation f of order 9 acting fixed-point-free on the
set of points P = {1, 2, . . . , 45}, as

fP = (1, 2, . . . , 9)(10, . . . , 18) · · · (37, . . . , 45),

and on the set of 63 lines L = {L1, . . . , L63}, as

fL = (L1, . . . , L9)(L10, . . . , L18) · · · (L55, . . . , L63).

Representatives of the seven orbits of lines are listed in Table 1. The order
of the full automorphism group of G1 is 1512, which is also the order of the
stabilizer of a hyperoval in PG(2, 8). The 2-rank (that is, the rank over the
finite field of order 2) of the incidence matrix of G1 is equal to 28. We note
that 28 is also the 2-rank of the incidence matrix of the projective plane of
order 8.

We define a graph L having as vertices the lines of G1, where two lines are
adjacent in L if they are disjoint, or in other words, L is the complementary
graph of the line graph of G1. Clearly, the maximum clique size in L is
45/5 = 9, and every clique of size 9 is a parallel class of lines. Using the
clique finding algorithm Cliquer developed by Niskanen and Österg̊ard [24],
one quickly finds by computer that L contains exactly 28 cliques of size 9,
every two sharing one vertex, that give a set C of 28 pairwise orthogonal
parallel classes of lines, listed in Table 2, where the indices of the lines in
each parallel class are given. Note that 28 is equal to the upper bound (6) of
Theorem 2.3, (a). Similarly, the parallel classes of lines of the dual geometry
G′

1, each consisting of nine pairwise disjoint lines of G′

1, can be found as
cliques of size 9 in the complementary graph of the line graph of G′

1, or
equivalently, the complementary graph of the point graph of G1, the latter
being isomorphic to the triangular graph T (10). Clearly, there are exactly
ten such cliques meeting pairwise in one vertex. The set C ′ of ten specific
cliques found by Cliquer are listed in Table 3, where each line of the dual
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geometry G′

1 is labeled by a point of G1. We note that the set of ten pairwise
orthogonal parallel classes meets the upper bound (7) of Theorem 2.3 (b).
Thus, a projective plane of order 8 is uniquely determined from G1 and the
sets of parallel classes C and C ′ by the construction described in the proof
of Theorem 2.4.

The second partial geometry G2 with parameters s = 4, t = 6, α = 3,
found by Mathon [21], can be described in terms of a permutation g of order
6 and representatives of the line orbits under the group generated by g as
follows. The permutation g acts on the 45 points as

gP = (1, . . . , 6)(7, . . . , 12) · · · (31, . . . , 36)(37, 38, 39)(40, 41)(42, 43)(44)(45),

and g acts on the set of 63 lines {l1, . . . , l63} as

gL = (l1, . . . , l6) · · · (l49, . . . , l54)(l55, l56, l57)(l58, l59, l60)(l61, l62)(l63).

We take as line orbit representative the first line from each orbit. These
representatives are given in Table 4. The order of the full automorphism
group of G2 is 216 [21]. The 2-rank of the incidence matrix of G2 is equal
to 34, thus, G2 does not arise from a maximal arc in a projective plane of
order 8, because the 2-rank of the incidence matrix of the (unique up to
isomorphism) projective plane of order 8 is equal to 28. To find all parallel
classes of lines of G2, we consider each parallel class as a clique of size 9 in
the complementary graph of the line graph of G2. Using Cliquer, we found
that G2 contains only one parallel class of lines. Thus, G2 does not satisfy
the first codition of Theorem 2.4, and consequently, this partial geometry is
not associated with a maximal arc of degree 4 (dual arc of a hyperoval) in a
projective plane of order 8. The indices of the lines form the unique parallel
class are

25, 26, 27, 28, 29, 30, 61, 62, 63,

and the points of these lines are listed in Table 5. The parallel classes of lines
of the dual geometry G′

2, each consisting of nine pairwise disjoint lines of G′

2,
can be found as maximal cliques of size 9 in the complementary graph of the
point graph of G2, being isomorphic to the triangular graph T (10). There
are exactly ten such cliques, and the cliques found by Cliquer are listed in
Table 6, where each line of the dual geometry G′

2 is labeled by a point of
G2. The partial geometries pg(4, 6, 3) having T̄ (10) as a point graph were
classified by Mathon [21] by enumerating and classifying up to isomorphism
the collections of 63 5-cliques of T̄ (10) meeting pairwise in at most one vertex.
A pencil through a point x of a partial geometry pg(4, 6, 3) is the set of lines
though x. To reduce the search, Mathon [21] enumerated and classified the
pencils through a pair of vertices of T̄ (10), and analyzed their completion to
a partial geometry. An alternative construction of Mathon’s partial geometry
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L1 9 11 22 34 42
L10 1 2 18 22 30
L19 1 3 15 27 42
L28 11 12 14 19 30
L37 10 19 40 42 45
L46 1 5 19 32 41
L55 19 28 29 34 44

Table 1: Line orbit representatives of G1

based on over-large Steiner systems was proposed recently by Reichard and
Woldar [27].

Using Cliquer, we enumerated and classified up to isomorphism all partial
geometries pg(4, 6, 3) by computing all maximal cliques in a graph Ω having
as vertices the 10!/(255!) = 945 5-cliques of T̄ (10), where two 5-cliques of
T̄ (10) are adjacent in Ω if and only if they share at most one vertex. Clearly,
any set of 63 5-cliques of T̄ (10) that is a clique in Ω is the line set of a partial
geometry pg(4, 6, 3), and vice versa. It took Cliquer less than one minute on
a personal computer MacBook Pro to find all cliques of size 63 in Ω, an their
number is 19200.

According to the order of the stabilizer of a 63-clique in the symmetric
group S10, which acts as the full automorphism group of both T̄ (10) and Ω,
the 19200 63-cliques of Ω are partitioned into two sets: 2400 cliques with a
stabilizer of order 1512, and the remaining 16800 63-cliques with a stabilizer
of order 216. Since

10!

1512
+

10!

216
= 2400 + 16800 = 19200,

it follows that the 19200 distinct partial geometries pg(4, 6, 3) having T̄ (10)
as point graph, are split into two ismoprphism classes, one geometry with
automorphism group of order 1512, being isomorphic to the geometry arising
from a maximal arc of degree 4 in PG(2, 8), and a second geometry with au-
tomorphism group of order 216, which is isomorphic to Mathon’s geometry.
Thus, our computations give an alternative and independent confirmation of
Mathon’s classification [21], and Theorem 2.4 provides an alternative expla-
nation why the dual of Mathon’s geometry does not arise from a hyperoval
in a projective plane of order 8.
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7 10 13 17 36 41 42 48 62
2 12 14 17 31 37 45 52 57
3 13 15 18 32 37 38 53 58
5 26 28 33 45 47 48 50 58
2 23 30 34 42 47 53 54 55
6 12 16 18 35 40 41 47 61
3 17 19 22 23 28 44 59 61
2 16 21 22 27 36 43 58 60
6 11 22 25 26 31 38 55 62
9 14 19 20 25 34 41 56 58
9 10 12 15 29 43 44 50 55
9 21 28 32 40 51 52 54 62
4 25 32 36 44 46 47 49 57
6 27 29 34 37 48 49 51 59
7 19 30 35 38 49 50 52 60
8 11 14 18 28 42 43 49 63
7 12 23 26 27 32 39 56 63
5 11 15 17 34 39 40 46 60
8 20 31 36 39 50 51 53 61
4 10 14 16 33 38 39 54 59
5 10 21 24 25 30 37 61 63
4 18 20 23 24 29 45 60 62
3 24 31 35 43 46 48 54 56
8 13 19 24 27 33 40 55 57
1 2 3 4 5 6 7 8 9
1 22 29 33 41 46 52 53 63
1 15 20 21 26 35 42 57 59
1 11 13 16 30 44 45 51 56

Table 2: Parallel classes of G1

19 20 21 22 23 24 25 26 27
6 9 10 15 25 30 32 43 44
4 7 13 17 23 28 30 41 42
2 8 12 17 27 32 34 37 45
2 5 11 15 21 28 35 39 40
5 8 14 18 24 29 31 42 43
3 9 13 18 19 33 35 37 38
3 6 12 16 22 29 36 40 41
1 4 10 14 20 34 36 38 39
1 7 11 16 26 31 33 44 45

Table 3: Parallel classes of G′

1

15



l1 14 22 30 35 40
l7 12 25 34 38 40
l13 1 21 28 35 45
l19 1 13 26 27 43
l25 1 9 18 30 34
l31 1 8 23 39 42
l37 1 11 12 22 32
l43 1 16 17 36 38
l49 1 10 15 24 33
l55 7 10 27 30 44
l58 13 16 20 23 44
l61 19 21 23 40 43
l63 37 38 39 44 45

Table 4: Line orbit representatives of G2

1 9 18 30 34
2 10 13 25 35
3 11 14 26 36
4 12 15 27 31
5 7 16 28 32
6 8 17 29 33
19 21 23 40 43
20 22 24 41 42
37 38 39 44 45

Table 5: The unique parallel class of G2

31 32 33 34 35 36 42 43 44
2 8 15 20 21 26 30 32 38
5 11 18 23 24 27 29 35 38
6 12 13 19 24 28 30 36 39
4 10 17 22 23 26 28 34 37
8 10 12 14 16 18 41 43 45
1 7 14 19 20 25 29 31 37
7 9 11 13 15 17 40 42 45
1 2 3 4 5 6 40 41 44
3 9 16 21 22 25 27 33 39

Table 6: Parallel classes of G′

2
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4 Partial geometries arising from planes of

small order

The upper bounds (6) and (7) of Theorem 2.3 apply only to sets of parallel
classes that are pairwise orthogonal. It is an interesting open question if the
total number of parallel classes of any partial geometry with parameters (4)
or its dual geometry can exceed any of these bounds.

Motivated by this question, we examined the parallel classes of lines in
partial geometries arising from maximal arcs of degree d, 2 ≤ d < q in the
projective planes of even order q = 2r ≤ 16 via Construction 2.1.

The smallest q that meets the condition 2 ≤ d < q is q = 4. In this
case d = d′ = 2, and any maximal arc is a hyperoval. The projective plane
PG(2, 4) of order 4 contains 168 hyperovals, all being in one orbit under the
collineation group of the plane. Thus, up to isomorphism, there is a unique
partial geometry pg(2, 2, 1) associated with a hyperoval in PG(2, 4), known
also as the generalized quadrangle W (2) (Payne and Thas [25]). The total
number of parallel classes of lines of W (2) is exactly six, and the six parallel
classes are pairwise orthogonal. We note that the 2-rank of the incidence
matrix of W (2) is 10, and is equal to the 2-rank of the incidence matrix of
the projective plane of order 4.

If q = 8, the possible degrees of maximal arcs are d = 2 and d = 4. All
hyperovals in PG(2, 8) are projectively equivalent. Thus, up to isomorphism,
there is a unique partial geometry pg(6, 4, 3) arising from a hyperoval in
PG(2, 8), being isomorphic to the dual of the partial geometry G1 from
Section 3, while every partial geometry pg(4, 6, 3) arising from a maximal
arc of degree 4 in PG(2, 8) is isomorphic to G1. It was shown in Section 3
that G1 has a total of exactly 28 parallel classes of lines, every two being
orthogonal, and its dual geometry has exactly 10 parallel classes of lines,
every two being orthogonal. As we mentioned in Section 3, the 2-rank of the
incidence matrix of G1 is 28, which is also the 2-rank of the incidence matrix
of the projective plane of order 8.

If q = 16, the possible degrees of a maximal arc are d = 2, d = 4, and
d = 8. If d = 2, a maximal arc of degree 2, that is, a hyperoval H , gives rise
to a partial geometry pg(14, 8, 7), while the dual arc of H is of degree 8 and
gives rise to the dual partial geometry with parameters pg(8, 14, 7). If d = 4,
a maximal arc of degree 4 and its dual arc of degree 4 give rise to two not
necessarily isomorphic partial geometries with parameters pg(12, 12, 9).

It follows from Theorem 2.4 that a partial geometry pg(14, 8, 7) associated
with a hyperoval in a projective plane of order 16 must have a set of 18
pairwise orthogonal parallel classes of lines, and its dual geometry must have
120 pairwise orthogonal parallel classes of lines, while any pg(12, 12, 9) arising
from a maximal arc of degree 4, as well as its dual geometry each must have
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a set of 52 pairwise orthogonal parallel classes.
Up to duality, there are 22 nonisomorphic projective planes of order 16

that are known currently: four planes are self-dual and nine planes are not
self-dual (see [23], [26]). All hyperovals in the known 22 projective planes of
order 16 were enumerated and classified up to equivalence2 by Penttila, Royle,
and Simpson [26]: altogether, there are 93 equivalence classes of hyperovals
in the 22 planes, and by duality, 93 equivalence classes of maximal arcs of
degree 8. The specific line sets of the known projective planes of order 16
and representatives of the equivalence classes of hyperovals were graciously
provided to the second author by Gordon F. Royle.

Using Magma [5] and Cliquer [24], we checked by computer that the 93
equivalence classes of hyperovals give rise to 93 nonisomorphic partial geome-
tries pg(14, 8, 7) arising from hyperovals, and, by duality, 93 nonisomorphic
pg(8, 14, 7) arising from maximal arcs of degree 8 in projective planes of order
16. We computed all parallel classes of lines, and in all cases, a partial geom-
etry pg(14, 8, 7) associated with a hyperoval has exactly 18 parallel classes,
while its dual geometry has exactly 120 parallel classes: note that 18 and 120
are the upper bounds (6) and (7) from Theorem 2.3 respectively. In addi-
tion, the 2-rank of the incidence matrix of each partial geometry pg(14, 8, 7)
is equal to the 2-rank of the underlying projective plane.

Table 7 contains data about the partial geometries pg(8, 14, 7) arising
from maximal arcs of degree 8.

Note 2 An interesting open problem is to find an analogue of Mathon’s
partial geometry when q = 16, that is, a partial geometry pg(14, 8, 7) that
does not arises from any hyperoval in a projective plane of order 16, or
equivalently, according to Theorem 2.4, its dual geometry does not contain a
set of 120 pairwise orthogonal parallel classes of lines. The line graph of such
a partial geometry has to be isomorphic to T̄ (18), and every line corresponds
to a clique of size nine of T̄ (18). Since the graph T̄ (18) contains

18!

299!
= 34, 459, 425

cliques of size 9, finding a collection of 255 cliques of size 9, every two sharing
at most one vertex, would be a very challenging computational problem, at
the least.

If d = 4, the only projective plane of order 16 for which all maximal arcs
of degree 4 have been classified up to equivalence, is the Desarguesian plane
PG(2, 16) (Ball and Blokhuis [1]). The maximal arcs of degree 4 have not

2Two hyperovals, or more generally, two maximal arcs in a projective plane P are
equivalent if one can be obtained from the other by applying an automorphism of P .
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been classified completely in any of the known non-Desarguesian planes of
order 16, although such arcs have been found in all but four of the known non-
Desarguesian planes of order 16 [9], [10], [16]. All currently known maximal
arcs of degree 4 are available online at

http://pages.mtu.edu/~tonchev/pointsetsOFmaxArcs.txt,

where the maximal arcs are listed as sets of points in the the projective planes
of order 16 that are available online at

http://pages.mtu.edu/~tonchev/planesOForder16.txt

Using Magma [5], we classified, up to isomorphism, the partial geometries
pg(12, 12, 9) arising from the known maximal arcs of degree 4 in projective
planes of order 16, and computed the 2-rank of their incidence matrices and
all parallel classes of lines. Table 8 summarizes the data about these partial
geometries. Up to isomorphism, there are 59 such geometries (13 self-dual
and 23 non-self-dual ones). Similarly to the previous cases for degrees other
than 4, or planes of smaller order, the 2-rank of each partial geometry turned
out to be equal to the 2-rank of the corresponding plane, and the total number
of parallel classes always matches the upper bound of Theorem 2.3.

These observations motivate us to formulate the following conjectures.

Conjecture 4.1 Let G be a partial geometry with parameters (4) for some
integer numbers d ≥ 2, d′ ≥ 2. Then either G does not arise from a maximal
arc of degree d in a projective plane of order q = dd′, or G is obtainable from
exactly one projective plane of order q = dd′ via Construction 2.1.

Conjecture 4.2 If a partial geometry G with parameters (4) for some d =
2i ≥ 2, d′ = 2j ≥ 2 arises from a maximal arc of degree d in a projective
plane P of order q = 2i+j via Construction 2.1, then the 2-rank of the (0, 1)-
incidence matrix of G is equal to the 2-rank of the (0, 1)-incidence matrix of
P.
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5 Appendix

No. Hyperoval |Aut(G)| 2-rank # Par. cl.
1 PG(2,16)hyp.1 144 82 120
2 PG(2,16)hyp.2 16320 82 120
3 DEMPhyp.1 16 102 120
4 DEMPhyp.2 16 101 120
5 DEMPhyp.3 16 102 120
6 DEMPhyp.4 16 102 120
7 DEMPhyp.5 16 100 120
8 DEMPhyp.6 16 102 120
9 DEMPhyp.7 16 101 120
10 DEMPhyp.8 16 102 120
11 DEMPhyp.9 16 101 120
12 DEMPhyp.10 16 102 120
13 DEMPhyp.11 16 101 120
14 DEMPhyp.12 64 100 120
15 DEMPhyp.13 64 100 120
16 DEMPhyp.14 64 100 120
17 DEMPhyp.15 80 102 120
18 dDEMPhyp.1 2 102 120
19 dDEMPhyp.2 6 102 120
20 SEMI4hyp.1 16 98 120
21 SEMI4hyp.2 16 98 120
22 SEMI4hyp.3 16 98 120
23 SEMI2hyp.1 3 98 120
24 SEMI2hyp.2 8 98 120
25 SEMI2hyp.3 8 98 120
26 SEMI2hyp.4 16 98 120
27 SEMI2hyp.5 16 98 120
28 SEMI2hyp.6 16 97 120
29 SEMI2hyp.7 16 98 120
30 SEMI2hyp.8 16 97 120
31 SEMI2hyp.9 16 98 120
32 SEMI2hyp.10 16 97 120
33 SEMI2hyp.11 16 98 120
34 SEMI2hyp.12 16 98 120
35 SEMI2hyp.13 16 97 120
36 SEMI2hyp.14 26 98 120
37 SEMI2hyp.15 16 98 120
38 SEMI2hyp.16 32 98 120
39 SEMI2hyp.17 32 97 120
40 LMRHhyp.1 16 100 120
41 LMRHhyp.2 16 103 120
42 LMRHhyp.3 16 103 120
43 LMRHhyp.4 16 103 120
44 LMRHhyp.5 64 103 120
45 LMRHhyp.6 112 99 120
46 dLMRHhyp.1 14 105 120

Table 7: The pg(8,14,7)’s arising from maximal (120,8)-arcs
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No. Hyperoval |Aut(G)| 2-rank # Par. cl.
47 MATHhyp.1 8 107 120
48 dMATHhyp.1 4 108 120
49 dMATHhyp.2 4 108 120
50 dMATHhyp.3 8 109 120
51 HALLhyp.1 16 97 120
52 HALLhyp.2 64 98 120
53 HALLhyp.3 64 97 120
54 HALLhyp.4 320 97 120
55 dHALLhyp.1 2 98 120
56 dHALLhyp.2 2 98 120
57 dHALLhyp.3 6 98 120
58 BBH1hyp.1 8 107 120
59 BBH1hyp.2 16 109 120
60 BBH1hyp.3 32 107 120
61 JOWKhyp.1 16 99 120
62 JOWKhyp.2 16 99 120
63 JOWKhyp.3 16 100 120
64 JOWKhyp.4 16 99 120
65 JOWKhyp.5 64 99 120
66 JOWKhyp.6 112 99 120
67 dJOWKhyp.1 14 99 120
68 JOHNhyp.1 16 111 120
69 DSFPhyp.1 16 103 120
70 DSFPhyp.2 16 103 120
71 DSFPhyp.3 16 103 120
72 DSFPhyp.4 16 103 120
73 DSFPhyp.5 16 103 120
74 DSFPhyp.6 16 103 120
75 DSFPhyp.7 16 103 120
76 DSFPhyp.8 16 103 120
77 DSFPhyp.9 16 103 120
78 DSFPhyp.10 16 103 120
79 DSFPhyp.11 16 103 120
80 DSFPhyp.12 16 103 120
81 DSFPhyp.13 16 103 120
82 DSFPhyp.14 16 103 120
83 DSFPhyp.15 16 103 120
84 DSFPhyp.16 16 102 120
85 DSFPhyp.17 16 103 120
86 DSFPhyp.18 16 103 120
87 DSFPhyp.19 16 103 120
88 DSFPhyp.20 16 103 120
89 DSFPhyp.21 16 103 120
90 DSFPhyp.22 64 103 120
91 BBH2hyp.1 4 111 120
92 BBH2hyp.2 4 111 120
93 BBS4hyp.1 16 111 120

Table 7: The pg(8,14,7)’s arising from maximal (120,8)-arcs (continued).
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Maximal 2-rank # Isomorphic Isomorphic
# 52-arc |Aut(G)| of to to

par. clas. its dual? others?
1 PG(2,16).1 68 82 52 Yes No
2 PG(2,16).2 408 82 52 Yes No
3 DEMP.1 24 102 52 No No
4 DEMP.2 144 102 52 No No
5 DEMP.3 24 102 52 No No
6 DEMP.4 48 102 52 No No
7 DEMP.5 4 102 52 No No
8 SEMI4.1 96 98 52 Yes No
9 SEMI2.1 24 98 52 Yes No
10 SEMI2.2 144 98 52 Yes No
11 SEMI2.3 32 98 52 Yes No
12 SEMI2.4 32 98 52 Yes No
13 SEMI2.5 16 98 52 Yes No
14 SEMI2.6 48 98 52 No SEMI2.7
15 SEMI2.7 48 98 52 No SEMI2.6
16 LMRH.1 96 106 52 No No
17 LMRH.2 32 106 52 No No
18 MATH.1 24 109 52 No No
19 MATH.2 32 108 52 No No
20 MATH.3 32 108 52 No No
21 MATH.4 32 108 52 No No
22 MATH.5 16 109 52 No No
23 MATH.6 16 109 52 No No
24 MATH.7 16 109 52 No No
25 HALL.1 24 98 52 No No
26 HALL.2 4 98 52 No No
27 BBH1.1 24 110 52 Yes No
28 BBH1.2 32 110 52 Yes No
29 BBH1.3 4 110 52 Yes No
30 JOWK.1 16 100 52 No No
31 JOWK.2 32 100 52 No No
32 JOHN.1 32 113 52 No No
33 JOHN.2 32 113 52 No No
34 JOHN.3 32 113 52 No No
35 JOHN.4 32 113 52 No No
36 DSFP.1 24 106 52 No No

Table 8: The pg(12,12,9)’s arising from maximal (52,4)-arcs
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