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Abstract: In this study, we investigate the regularized sums of eigenvalues, oscillation of eigenfunctions and solutions of
inverse nodal problems of discontinuous Sturm–Liouville operators with a delayed argument and with a finite number of
transmission conditions. With this aim, we obtain asymptotic formulas for eigenvalues, eigenfunctions and nodal points
of the problem. Moreover, some numerical examples are given to illustrate the results. The problem differs from the other
discontinuous Sturm–Liouville problems with retarded argument in that it contains a spectral parameter in boundary
conditions. If we take the delayed argument ∆ ≡ 0 , the coefficients α+

i = β+
i = 0 ( i = 1, 2) in boundary conditions and

the transmission coefficients δi = 1 ( i = 1,m− 1) the results obtained below coincide with corresponding results in the
classical Sturm–-Liouville operator.

Key words: Differential equation with delayed argument, transmission conditions, regularized trace, nodal points,
inverse problem

1. Introduction
Sturm–Liouville problems with transmission conditions (also known as interface conditons, discontinuity con-
ditions, impulse effects) arise in many applications. Amongst the applications are thermal conduction in a thin
laminated plate made up of layers of different materials and diffraction problems. The main goal of this paper is
to extent and generalize some approaches and results of this kind of boundary value problems to similar types of
problems but with spectral parameter dependent boundary conditions. With this aim, we calculate regularized
traces and solve inverse nodal problems of a class of Sturm–Liouville operators with delayed argument and with
a finite number of transmission conditions.

We consider the following boundary value problem which consists of the differential equation

y′′(t) + q(t)y(t−∆(t)) + µ2y(t) = 0 (1.1)

on Ω = ∪m
j=0Ωj

(
Ω0 = [0, θ1) , Ωi = (θi, θi+1)

(
i = 1,m− 1

)
, Ωm = (θm, π]

)
, spectral parameter dependent

boundary conditions
α−
1 y(0)− α−

2 y
′ (0) + µ

(
α+
1 y(0)− α+

2 y
′ (0)

)
= 0, (1.2)

β−
1 y(π)− β−

2 y′ (π) + µ
(
β+
1 y(π)− β+

2 y′ (π)
)
= 0 (1.3)
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and transmission conditions
y (θi−)− δiy(θi+) = 0, (1.4)

y′ (θi−)− δiy
′(θi+) = 0, (1.5)

where the real-valued function q (t) is continuous in Ω and has finite limits

q (θi±) = lim
t→θi±

q (t) ,

the real-valued function ∆(t) ≥ 0 is continuous in Ω and has finite limits

∆(θi±) = lim
t→θi±

∆(t) ,

if t ∈ Ω1 then t − ∆(t) ≥ 0 ; if t ∈ Ωi then t − ∆(t) ≥ θi (i = 2,m) ; µ is a spectral parameter; α±
j , β

±
j

(j = 1, 2) , δi ̸= 0, θi (i = 1,m) are arbitrary real numbers such that θ0 = 0 < θ1 < θ2 < ...θm < θm+1 = π

and α+
2 β

+
2 ̸= 0 .

In physcial systems, the presence of a time lag is observed experimentally. Therefore, various applied
problems formulated with the use of delayed arguments. Such a consideration is an improvement compared
with the model of an ”ideal” process which is obtained if it is assumed that there are no delays at all, that the
”functioning takes place instantly (The case ∆ ≡ 0). The delayed argument ∆ reflects rather well the real
process in a number of cases, for example, when the delayed argument is connected with the transmission of
an audio signal, in hydraulic shock or in other wave processes. In other cases, such an assumption describes
a process approximately and more roughly. Problems with feedback controls such as the steady states of
a thermostat, where a controller at one of its ends adds or removes heat, depending upon the temperature
registered in another point, can be interpreted with a second-order ordinary differential equation with spectral
parameter dependent boundary conditions. However, the delayed argument in the differential equation (1.1)
allows us to take into consideration the delays (retardations) in time for the abovementioned applied problems.

We want to also note that some eigenvalue problems encountered in areas of data mining requires
the investigation of traces of operators and matrices optimizing the certain properties of given input high-
dimensional data (see [12, 14]).

The paper is organized as follows. In Section 2 notation and definitions used in the paper are stated. In
the same section, we also write the general solution of the (1.1) corresponding to the initial function φ(t, µ) in
terms of fundamental solutions of the initial value problem (1.1), (2.1)–(2.2), investigate the spectrum and find
a formula for the regularized sums of eigenvalues. In Section 3 we obtain asymptotic formulas of nodal points
for the boundary value problem (1.1)–(1.5) and construct the potential function using these formulas. Later
on, in the same section, we give two numerical examples to illustrate and verify the results.

2. Regularized trace

Let φ1(t, µ) be a solution of (1.1) on [0, θ1] , satisfying the initial conditions

φ1 (0, µ) = µα+
2 + α−

2 and φ′
1 (0, µ) = µα+

1 + α−
1 . (2.1)

The conditions (2.1) define a unique solution of Eq. (1.1) on Ω1 ∪ θ1 (see [5, 15]).

306



ŞEN/Turk J Math

After defining the above solution, then we will define the solution φi (t, µ) of (1.1) on Ωi ∪ {θi, θi+1}(
i = 2,m

)
by means of the solution φ1 (t, µ) using the initial conditions

φi+1 (θi, µ) =
φi (θi, µ)

δi
and φ′

i+1(θi, µ) =
φ′
i(θi, µ)

δi
. (2.2)

The conditions (2.2) define a unique solution of (1.1) on Ωi ∪ {θi, θi+1}
(
i = 2,m

)
(see [1–3, 6, 13, 21]).

Let us define the function φ (t, µ) by the equality

φ(t, µ) = φi+1(t, µ), t ∈ Ωi

(
i = 0,m

)
.

Consequently, φ (t, µ) is a solution of (1.1) on Ω , which satisfies one of the boundary conditions and the
transmission conditions (1.4)–(1.5). Then the following integral equations hold:

φ1(t, µ) =
(
µα+

2 + α−
2

)
cos(µt)− µα+

1 + α−
1

µ
sin(µt)− 1

µ

t∫
0

q (τ) sin(µ (t− τ))φ1 (τ −∆(τ) , µ) dτ, (2.3)

φi+1(t, µ) =
1

δi
φi (θi, µ) cos(µ (t− θi)) +

φ′
i (θi, µ)

µδi
sin(µ (t− θi))

− 1

µ

t∫
θi

q (τ) sin(µ (t− τ))φi+1 (τ −∆(τ) , µ) dτ,
(
i = 1,m

)
. (2.4)

If we solve the equations (2.3)–(2.4) by the method of successive approximation then we obtain the following
asymptotic equalities for |µ| → ∞ :

φ1(t, µ) = µα+
2 cos(µt) + α−

2 cos(µt)− α+
1 sin(µt)− α+

2

2

t∫
0

q(τ) sin(µ (t−∆(τ)))dτ

−α+
2

2

t∫
0

q(τ) sin(µ(t− 2τ +∆(τ)))dτ +
1

µ

(
α−
1 sin(µt)− α−

2

2

t∫
0

q(τ) sin(µ(t−∆(τ)))dτ.

−α−
2

2

t∫
0

q(τ) sin(µ (t− 2τ +∆(τ)))dτ +
α+
1

2

t∫
0

q(τ) cos(µ (t−∆(τ)))dτ

−α+
1

2

t∫
0

q(τ) cos(µ (t− 2τ +∆(τ)))dτ

)
+O

(
1

µ2

)
, (2.5)

φi+1(t, µ) =
1

m∏
i=1

δi

(
µα+

2 cos(µt) + (α−
2 cos(µt)− α+

1 sin(µt)).
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−α+
2

2

t∫
0

q(τ) sin(µ (t−∆(τ)))dτ − α+
2

2

t∫
0

q(τ) sin(µ (t− 2τ +∆(τ)))dτ

)
+O

(
1

µ

)
. (2.6)

Differentiating (2.5)–(2.6) with respect to t , we get

φ′
1(t, µ) = −µ2α+

2 sin(µt) + µ

(
− α−

2 sin(µt)− α+
1 cos(µt)− α+

2

2

t∫
0

q(τ) cos(µ (t−∆(τ)))dτ

−α+
2

2

t∫
0

q(τ) cos(µ (t− 2τ +∆(τ)))dτ

)
+ α−

1 cos(µt)

−α−
2

2

t∫
0

q(τ) cos(µ (t−∆(τ)))dτ − α−
2

2

t∫
0

q(τ) cos(µ (t− 2τ +∆(τ)))dτ

−α+
1

2

t∫
0

q(τ) sin(µ (t−∆(τ)))dτ +
α+
1

2

t∫
0

q(τ) sin(µ (t− 2τ +∆(τ)))dτ +O
(
1

µ

)
, (2.7)

φ′
i+1(t, µ) = − 1

m∏
i=1

δi

[
α+
2 µ

2 sin(µt) + µ

(
− α−

2 sin(µt)− α+
1 cos(µt)− α+

2

2

t∫
0

q(τ) cos(µ(t−∆(τ)))dτ

−α+
2

2

t∫
0

q(τ) cos(µ(t− 2τ +∆(τ)))dτ

)]
+O(1), i = 1,m. (2.8)

The solution φ(t, µ) defined above is a nontrivial solution of (1.1) satisfying conditions (1.2) and (1.4)–(1.5).
Putting φ(t, µ) into (1.3), we get the characteristic equation

Ξ(µ) ≡
(
µβ+

1 + β−
1

)
φ(π, µ)−

(
µβ+

2 + β−
2

)
φ′(π, µ) = 0. (2.9)

The set of eigenvalues of boundary value problem (1.1)–(1.5) coincides with the set of the squares of roots of
(2.9) and eigenvalues are simple (see [15], Theorem 2.1.1]). From (2.5)–(2.9), we obtain

Ξ(µ) ≡ µ3α+
2 β

+
2

m∏
i=1

δi

sin(µπ) +
µ2

m∏
i=1

δi

[(
α+
2 β

+
1 + α+

1 β
+
2

+
α+
2 β

+
2

2

π∫
0

q(τ) cos(µ∆(τ))dτ +
α+
2 β

+
2

2

π∫
0

q(τ) cos(µ (2τ −∆(τ)))dτ

)
cos(µπ)

+

(
α−
2 β

+
2 + α+

2 β
−
2 +

α+
2 β

+
2

2

π∫
0

q(τ) sin(µ∆(τ))dτ +
α+
2 β

+
2

2

π∫
0

q(τ) sin(µ (2τ −∆(τ)))dτ

)
sin(µπ)

]
+O(µ)
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which is deduced to

Ξ (µ) =
µ3α+

2 β
+
2

m∏
i=1

δi

sin(µπ) +
µ2

m∏
i=1

δi

[(
α+
2 β

+
1 + α+

1 β
+
2

+α+
2 β

+
2

(
U+(µ) + V +(µ)

) )
cos(µπ) +

(
α−
2 β

+
2 + α+

2 β
−
2 + α+

2 β
+
2

(
U−(µ) + V −(µ)

) )
sin(µπ)

]
+O(µ). (2.10)

Here,

U+ (µ) =
1

2

π∫
0

q(τ) cos (µ∆(τ)) dτ, U− (µ) =
1

2

π∫
0

q(τ) sin (µ∆(τ)) dτ,

V + (µ) =
1

2

π∫
0

q(τ) cos (µ (2τ −∆(τ))) dτ, V − (µ) =
1

2

π∫
0

q(τ) sin (µ (2τ −∆(τ))) dτ.

Define

Ξ0 (µ) ≡
µ3α+

2 β
+
2

m∏
i=1

δi

sin(µπ), (2.11)

and denote by µ0
±n, n ∈ Z, the zeros of the function Ξ0 (µ) , except that zero is multiplicity 4; then µ0

±0 =

µ0
±1 = 0 and

µ0
n =

{
n− 1, n ≥ 1,
n+ 1, n ≤ −1.

Denote by Cn the circle of radius, 0 < ε < 1
2 , centered at the origin µ0

n and by ΓN0 the counterclockwise
square contours with four vertices

A = (N0 − 1 + ε) (1− i) , B = (N0 − 1 + ε) (1 + i) ,

C = (N0 − 1 + ε) (−1 + i) , D = (N0 − 1 + ε) (−1− i) ,

where i =
√
−1 and N0 is a natural number. Obviously, if µ ∈ Cn or µ ∈ ΓN0

, then |Ξ0 (µ)| ≥ M |µ| e|ℑµ|π

(M > 0) by using a similar method in [26]. Thus, on µ ∈ Cn or µ ∈ ΓN0 , from (2.10) and (2.11), we have

Ξ (µ)

Ξ0 (µ)
= 1 +

1

µ

[(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)
cot(µπ) +

α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

]
+O

(
1

µ2

)
.

Expanding ln Ξ(µ)
Ξ0(µ)

by the Maclaurin formula, we find that

ln
Ξ (µ)

Ξ0 (µ)
=

1

µ

[(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)
cot(µπ) +

α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

]

− 1

2µ2

[(
β+
1

β+
2

+
α+
1

α+
2

+ U+(µ) + V +(µ)

)2

cot2(µπ) +

(
α−
2

α+
2

+
β−
2

β+
2

+ U−(µ) + V −(µ)

)2
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+2

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

) (
α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

)
cot(µπ)

]
+O

(
1

µ3

)
.

Using the well-known Rouche Theorem, we get that Ξ (µ) has the same number of zeros inside ΓN0 as
Ξ0 (µ) (see [24]). It is easy to prove that the spectrum of problem (1.1)–(1.5) is

µn ∼ µ0
n +O

(
1

n

)
as |n| → ∞.

Next, we present the more exact asymptotic distribution of the spectrum. Using the residue theorem, we have

µn − µ0
n = − 1

2πi

∮
Cn

ln
Ξ (µ)

Ξ0 (µ)
dµ

= − 1

2πi

∮
Cn

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)
cot (µπ)

µ
dµ

− 1

2πi

∮
Cn

(
α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

)
1

µ
dµ+O

(
1

n2

)

= − 1

µ0
nπ

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (n) + V + (n)

)
+O

(
1

n2

)
.

Thus we have proven the following theorem.

Theorem 2.1 The spectrum of the problem (1.1)–(1.5) has the following asymptotic distribution for sufficiently
large |n| :

µn = µ0
n − 1

µ0
nπ

(
β+
1

β+
2

+
α+
1

α+
2

+ U+
(
µ0
n

)
+ V +

(
µ0
n

))
+O

(
1

(µ0
n)

2

)
. (2.12)

Now, following [16, 24], we will obtain a regularized trace formula for the problem (1.1)–(1.5).
The asymptotic formula (2.12) for the eigenvalues implies that for all sufficiently large N0, the numbers

µn with |n| ≤ N0 are inside ΓN0 and the numbers µn with |n| > N0 are outside ΓN0 . It follows that

∑
Γn

(
µ2
n −

(
µ0
n

)2)
= µ2

−0 + µ2
0 +

N0∑
0 ̸=n=−N0

(
µ2
n −

(
µ0
n

)2)
= − 1

πi

∮
Γn

µ ln
Ξ (µ)

Ξ0 (µ)
dµ

= − 1

πi

∮
Γn

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)
cot (µπ) dµ− 1

πi

∮
Γn

(
α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

)
dµ

+
1

2πi

∮
Γn

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)2
cot2 (µπ)

µ
dµ+

1

2πi

∮
Γn

(
α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

)2
1

µ
dµ
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+
1

πi

∮
Γn

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (µ) + V + (µ)

)(
α−
2

α+
2

+
β−
2

β+
2

+ U− (µ) + V − (µ)

)
cot (µπ)

µ
dµ+O

(
1

N0

)
,

by calculations, which implies that

µ2
−0 + µ2

0 +

N0∑
0 ̸=n=−N0

(
µ2
n −

(
µ0
n

)2
+

4

π

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (n) + V + (n)

))

= − 2

π

(
β+
1

β+
2

− α+
1

α+
2

+ U+ (0) + V + (0)

)
−
(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (0) + V + (0)

)2

+

(
α−
2

α+
2

+
β−
2

β+
2

+ U− (0) + V − (0)

)2

+O
(

1

N0

)
. (2.13)

Passing to the limit as N0 → ∞ in (2.13), we have

µ2
−0 + µ2

0 +

+∞∑
0 ̸=n=−∞

(
µ2
n −

(
µ0
n

)2
+

4

π

(
β+
1

β+
2

+
α+
1

α+
2

+ U+
(
µ0
n

)
+ V +

(
µ0
n

)))

= − 2

π

(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (0) + V + (0)

)
−
(
β+
1

β+
2

+
α+
1

α+
2

+ U+ (0) + V + (0)

)2

+

(
α−
2

α+
2

+
β−
2

β+
2

)2

. (2.14)

The series on the left side of (2.14) is called the regularized trace of the problem (1.1)–(1.5). Thus we state the
following theorem.

Theorem 2.2 For the regularized trace of the problem (1.1)–(1.5) we have the Gelfand–Levitan type formula
(2.14).

We want to note that the trace formulas for different types of boundary value problems with delayed
argument obtained in [4, 11, 16, 19, 20, 24] and approximate calculation of the eigenvalues of the problem
(1.1)–(1.5) can also be obtained via formula (2.14) (see [8, 9, 17]).

3. Inverse problem

Inverse nodal problems for differential operators with or without delayed argument were investigated by a
number of authors (see [10, 16, 18–20, 22, 23, 25, 27] and the references therein). In this chapter, following
[24], we deal with inverse spectral analysis of the problem (1.1)–(1.5) using the nodal points (zeros) of its
eigenfunctions.

Let us rewrite the equation (2.3) as

φ1(t, µ) =
(
µα+

2 + α−
2

)
cos(µt)− 1

µ

(
µα+

1 + α−
1

)
sin(µt)
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−α+
2

2

t∫
0

q(τ)
(
sin(µ (t− 2τ +∆(τ))) + sin(µ (t−∆(τ)))

)
dτ

−α−
2

2µ

t∫
0

q(τ)
(
sin(µ (t− 2τ +∆(τ))) + sin(µ (t−∆(τ)))

)
dτ

−α+
1

2µ

t∫
0

q(τ)
(
cos(µ (t− 2τ +∆(τ)))− cos(µ (t−∆(τ)))

)
dτ +O

(
1

µ2

)
,

and using the fact that

t∫
0

q(τ) sin(µ (2τ −∆(τ)))dτ =

t∫
0

q(τ) cos(µ (2τ −∆(τ)))dτ = O
(
1

µ

)
,

(see [15], Lemma 2.3.3]) it yields that

φ1(t, µ) = µα+
2 cos(µt) + α−

2 cos(µt)− α+
1 sin(µt)− α−

1

µ
sin(µt)

−α+
2 cos(µt)

2

t∫
0

q(τ) sin(µ∆(τ))dτ − α+
2 sin(µt)

2

t∫
0

q(τ) cos(µ∆(τ))dτ

−α−
2 cos(µt)

2µ

t∫
0

q(τ) sin(µ∆(τ))dτ − α−
2 sin(µt)

2µ

t∫
0

q(τ) cos(µ∆(τ))dτ

+
α+
1 cos(µt)

2µ

t∫
0

q(τ) sin(µ∆(τ))dτ +
α+
1 sin(µt)

2µ

t∫
0

q(τ) cos(µ∆(τ))dτ +O
(

1

µ2

)
,

= µnα
+
2 cos(µnt) + α−

2 cos(µnt)− α+
1 sin(µnt)

−α−
1

µn
sin(µnt)−

α+
2

2

t∫
0

q(τ) sin(µn (t−∆(τ)))dτ − α−
2

2µn

t∫
0

q(τ) sin(µn (t−∆(τ)))dτ

+
α+
1

2µn

t∫
0

q(τ) cos(µn (t−∆(τ)))dτ +O
(

1

µ2

)

= µnα
+
2 cos(µnt) + α−

2 cos(µnt)− α+
1 sin(µnt)−

α−
1

µn
sin(µnt)

−α+
2 sin(µnt)

2

t∫
0

q(τ) cos (µn∆(τ)) dτ − α+
2 cos(µnt)

2

t∫
0

q(τ) sin (µn∆(τ)) dτ
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−α−
2 sin(µnt)

2µn

t∫
0

q(τ) cos (µn∆(τ)) dτ − α−
2 cos(µnt)

2µn

t∫
0

q(τ) sin (µn∆(τ)) dτ

+
α+
1 sin(µnt)

2µn

t∫
0

q(τ) sin (µn∆(τ)) dτ +
α+
1 cos(µnt)

2µn

t∫
0

q(τ) cos (µn∆(τ)) dτ +O
(

1

µ2
n

)
.

Let us assume that tjn are the nodal points of the eigenfunction φ (t, µn) . Taking sin (µnt) ̸= 0 into account
for sufficiently large n, we get

T (µn, t) cot(µnt) = α+
1 +

α−
1

µn
+

α+
2

2

t∫
0

q(τ) cos (µn∆(τ)) dτ

+
α−
2

2µn

t∫
0

q(τ) cos (µn∆(τ)) dτ − α+
1

2µn

t∫
0

q(τ) sin (µn∆(τ)) dτ +O
(

1

µ2
n

)
.

Here

T (µn, t) = µnα
+
2 + α−

2 − α+
2

2

t∫
0

q(τ) sin (µn∆(τ)) dτ

− α−
2

2µn

t∫
0

q(τ) sin (µn∆(τ)) dτ +
α+
1

2µn

t∫
0

q(τ) cos (µn∆(τ)) dτ

and it follows easily that

tan
(
µnt+

π

2

)
=

α+
1

T (µn, t)
+

α+
2

2µnT (µn, t)

t∫
0

q(τ) cos (µn∆(τ)) dτ +O
(

1

µ3
n

)
. (3.1)

Thus, solving Equation (3.1), one obtains

tjn =

(
j − 1

2

)
π

µn
+

α+
1

µnT
(
µn, t

j
n

) +
α+
2

2µnT
(
µn, t

j
n

) tjn∫
0

q(τ) cos (µn∆(τ)) dτ +O
(

1

µ3
n

)
. (3.2)

Note that

µ−1
n =

1

µ0
n

−

(
β+
1

β+
2

+
α+

1

α+
2

+ U+ (n)
)

(µ0
n)

3
π

+O
(

1

n4

)
. (3.3)

Substituting (3.3) into (3.2) we have

tjn =

(
j − 1

2

)
π

 1

µ0
n

−

(
β+
1

β+
2

+
α+

1

α+
2

+ U+
(
µ0
n

))
(µ0

n)
3
π
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+
α+
1

µ0
nT0 (n)

+
α+
2

2µ0
nT0 (n)

jπ
n∫

0

q(τ) cos
(
µ0
n∆(τ)

)
dτ +O

(
1

(µ0
n)

3

)
, j = 1,

[n
2

]
. (3.4)

Here T0 (n) = T
(
µ0
n,

jπ
n

)
. Analogically, from (2.4), we get(
m∏
i=1

δi

)
φ2(t, µn) = µnα

+
2 cos (µnt) + α−

2 cos (µnt)− α+
1 sin (µnt)

− α+
2

2

t∫
0

q (τ) sin(µn (t−∆(τ)))dτ +O
(

1

µn

)

and (
m∏
i=1

δi

)
φ2(t, µn) = µnα

+
2 cos (µnt) + α−

2 cos (µnt)− α+
1 sin (µnt)

+
α+
2 cos (µnt)

2

t∫
0

q (τ) sin (µn∆(τ)) dτ − α+
2 sin (µnt)

2

t∫
0

q (τ) cos (µn∆(τ)) dτ +O
(

1

µn

)
.

Thus, for nodal points of φ2(t, µn) , we have the following equality:

0 = α+
2 cos (µnt) +

α−
2

µn
cos (µnt)−

α+
1

µn
sin (µnt)

+
α+
2 cos (µnt)

2µn

t∫
0

q (τ) sin (µn∆(τ)) dτ − α+
2 sin (µnt)

2µn

t∫
0

q (τ) cos (µn∆(τ)) dτ +O
(

1

µ2
n

)
.

Again, taking sin (µnt) ̸= 0 into account for sufficiently large n, we have

0 = α+
2 cot (µnt) +

α−
2

µn
cot (µnt)−

α+
1

µn

+
α+
2 cot (µnt)

2µn

t∫
0

q (τ) sin (µn∆(τ)) dτ − α+
2

2µn

t∫
0

q (τ) cos (µn∆(τ)) dτ +O
(

1

µ2
n

)

and

tan
(
µnt+

π

2

)
=

α+
1

α+
2 µn

+
1

2µn

t∫
0

q (τ) cos (µn∆(τ)) dτ +O
(

1

µ2
n

)
. (3.5)

Thus, solving Equation (3.5), one obtains

tjn =

(
j − 1

2

)
π

µn
+

α+
1

α+
2 µ

2
n

+
1

2µ2
n

tjn∫
0

q (τ) cos (µn∆(τ)) dτ +O
(

1

µ3
n

)
. (3.6)
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Note that

µ−2
n =

1

(µ0
n)

2 +O
(

1

n4

)
. (3.7)

Substituting (3.7) into (3.6) we have

tjn =

(
j − 1

2

)
π

 1

µ0
n

−

(
β+
1

β+
2

+
α+

1

α+
2

+ U+
(
µ0
n

))
(µ0

n)
3
π



+
1

(µ0
n)

2

α+
1

α+
2

+
1

2

jπ
n∫

0

q (τ) cos
(
µ0
n∆(τ)

)
dτ

+O

(
1

(µ0
n)

3

)
, j =

[n
2

]
+ 1, n. (3.8)

Thus we have proven the following theorem:

Theorem 3.1 Let n be sufficiently large. Then we have the formulas (3.4) and (3.8) for the nodal points of
the problem (1.1)–(1.5).

We see that there exists an integer N0 such that for all n > N0 the eigenfunction φ (t, µn) of the problem
has exactly n simple nodes in the interval (0, π) . The set Λ =

{
tjn
}

is called the nodal set of the problem
(1.1)–(1.5). We also define the function jn (t) to be the largest index j such that 0 ≤ tjn ≤ t. Thus, j = jn (t)

if and only if t ∈
[
tjn, t

j+1
n

)
.

Theorem 3.2 For each t ∈ [0, π] , let
{
tjn
}
⊂ Λ be chosen such that limn→∞ tjn = t. Then the following finite

limit exists and corresponding equality holds:

lim
n→∞

(
µ0
n

)2(
tjn −

(
j − 1

2

)
π

µ0
n

)
= f (t) , (3.9)

where

f(t) =


(

β
+
1

β
+
2

+
α
+
1

α
+
2

+U+(0)

)
t

π − α+
1

α+
2

− 1
2

t∫
0

q (τ) dτ, ∆(τ) = 0,(
β
+
1

β
+
2

+
α
+
1

α
+
2

)
t

π − α+
1

α+
2

, ∆(τ) ̸= 0.

(3.10)

Proof Using the formulas (3.4) and (3.8) for nodal points and the fact that limn→∞ tjn = t, it follows that as
n → ∞ the limits of left-hand side in (3.9) exists and (3.10) holds. Thus, the proof is completed. 2

Now, we can construct the potential function q (t) via following theorem:

Theorem 3.3 Let Λ0 =
{
tjnk

}
and assume that Λ0 ⊂ Λ be a subset of nodal points which satisfy

{
tjnk

}
is

dense in (0, π) . For each t ∈ [0, π] choose a sequence
{
tjn
}
⊂ Λ0 such that limn→∞ tjn = t. If ∆(τ) = 0, then

the function q (t) can be written as

q(t) =
2

π

(
U+ (0) + f(π)− f(0)

)
− 2f ′(t). (3.11)
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Here, f(t) is defined by (3.10).
Now, we give a few numerical examples to verify and illustrate the results:
In each example we take n = 40 .
Example 1. Consider the following boundary value problem:

y′′(t) + ty(
t

2
) + µ2y(t) = 0, t ∈ Ω = [0, 1) ∪ (1, π] ; (3.12)

y(0) + 8y′(0) + µy′(0) = 0, (3.13)

y (π) +
1

10
y′ (π) + µy′ (π) = 0, (3.14)

y (1−) = y(1+), (3.15)

y′ (1−) = y′(1+). (3.16)

Here ∆(t) = t
2 , α+

1 = 0, α−
1 = 1, α−

2 = −8, α+
2 = −1, β+

1 = 0, β+
2 = −1, β−

1 = 1, β−
2 = −0.1 and δ1 = 1 .

Denote this problem by L1 . We obtain U+ (0) = V + (0) = 4.93480220054 , U+ (39) = 0.00065746219 and
V + (39) = 0.02670511654 . Thus, for the regularized trace (tr=trace) of L1 , we have trL1 = 58.3910062461 .
Now, let us take ∆ = 0 in (3.12). Namely, we consider the differential equation

y′′(t) + q(t)y(t) + µ2y(t) = 0, t ∈ Ω

together with the boundary conditions (3.13)–(3.14) and transmission conditions (3.15)–(3.16). Thus, from
Theorems 3.1 and 3.2, for the solution of inverse problem we find q (t) = t in Ω .

Example 2. Consider the following Sturm–Liouville problem:

y′′(t) + q(t)y(t) + µ2y(t) = 0, t ∈ Ω = [0, 1.5) ∪ (1.5, 2) ∪ (2, π]

(3µ+ 2) y(0)− (7µ+ 4) y′ (0) = 0,

(µ− 5) y (π)− (µ+ 0.3) y′ (π) = 0,

y (1.5−)− 2y(1.5+) = 0,

y′ (1.5−)− 2y′(1.5+) = 0,

y (2−)− 8y(2+) = 0,

y′ (2−)− 8y′(2+) = 0.

Here , ∆(t) = 0 , α+
1 = 3, α−

1 = 2, α−
2 = 4, α+

2 = 7, β+
1 = 1, β−

1 = −5, β+
2 = 1, β−

2 = 0.3 , δ1 = 2 and
δ2 = 8 . Denote this problem by L2 . Since U+ (39) = 11.0703463164 and V + (39) = 0.00181958345 , it follows
that trL2 = −569.751286593 . Consequently, from Theorems 3.1 and 3.2, for the solution of inverse problem we
have q (t) = et in Ω .
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4. Conclusion
In this paper, we investigate the spectrum [see (2.12)], calculate the regularized sums of eigenvalues [see (2.14)],
obtain asymptotic formulas of nodal points [see (3.4) and (3.8)] for a Sturm–Liouville problem with delayed
argument and with a finite number of transmission conditions. Furthermore, after the parameters α±

i , β±
i

(i = 1, 2) in the boundary conditions are determined we construct the potential function q(x) via formula (3.11).
Namely we solve an inverse problem for this kind of boundary value problems. The considered problem differs
from the classical Sturm–Liouville problems with delayed argument in that it contains a spectral parameter
in boundary conditions. Main results of this study are given by Theorem 2.1, Theorem 2.2, Theorem 3.1 and
Theorem 3.3. If we take ∆ ≡ 0 and the coefficients α+

i = β+
i = 0 (i = 1, 2) in boundary conditions the

formulas obtained in this study coincide with those obtained in [2, 3, 13, 18, 23]. In addition to this, if we take
the transmission coefficients δi = 1 (i = 1,m− 1) then we get the classical case and formulas obtained in this
study coincide with those obtained in [7–10, 16, 26]. We also note that regularized trace formulas, asymptotics
of nodal points and solution of an inverse problem of the same differential equation but with nonlocal boundary
conditions can also be investigated.
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