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1 Introduction

Many physical processes, such as the vibration of strings, the interaction of
atomic particles, electrodynamics of complex medium, combustion in the cham-
ber of a liquid propellant rocket engine, aerodynamics, polymer rheology or
the earths free oscillations yields the second-order eigenvalue problems (see
[7, 8, 10, 25]). Using the method of separation of variables to solve some kinds
of second order partial differential equations require us to solve equation

−u′′(t) + q(t)u(t) = λu(t), (1.1)

where the real-valued function q ∈ C[0, 1]; λ = s2 is a complex spectral param-
eter and s = x+ ıy; x, y ∈ R.
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In this study we shall investigate nonlocal eigenvalue problems which consist
of Sturm–Liouville equation (1.1) on [0, 1], with one classical (local) boundary
condition

u(0) = 0, (1.2)

another Bitsadze–Samarskii type nonlocal boundary condition

u(1) = γu(ξ), ξ ∈ (0, 1), (1.3)

where γ ∈ R.

In some of problems of mathematical physics, biology and biotechnology
subsidiary conditions are imposed locally. Asymptotic formulas for eigenvalues
and eigenfunctions for these kinds of Boundary-Value Problems (BVPs) (the
case γ = 0) are obtained in [1,2,9,13,14,16,19,26,27]. Asymptotic formulas for
eigenvalues and eigenfunctions for BVPs which contains a spectral parameter
in the local (classic) boundary conditions except from the differential equation
obtained in [9, 19].

There has been an increasing interest for spectral analysis of nonlocal bound-
ary value problems (NBVPs) in the last decades. NBVPs are widely used for
mathematical modelling of various processes of physics, ecology, chemistry and
industry, when it is impossible to determine the boundary or initial values of
the unknown function. For example, problems with feedback controls such as
the steady-states of a thermostat, where a controller at one of its ends adds
or removes heat, depending upon the temperature registered in another point,
can be interpreted with a second-order ordinary differential equation subject to
a nonlocal boundary conditions. The bibliography on the subject of NBVPs is
very extensive and we refer to the list of the works in [6,22,23,24]. We should
also note that an eigenvalue problem with the nonlocal boundary conditions is
closely linked to boundary problems for differential equations with the nonlo-
cal boundary conditions [3, 4, 5, 11, 12, 18]. However, until this time, there was
no work investigating asymptotic properties of eigenvalues and eigenfunctions
of the second order nonlocal boundary value problems with potential function
q(x) in differential equation.

The paper is organized as follows. In Section 2, notation and definitions
used in the paper are stated. Also, we write the general solution of the (1.1)
corresponding to the initial conditions and prove the simplicity of eigenval-
ues. In Section 3, we investigate the distribution of eigenvalues and obtain
asymptotic formulas for eigenvalues and eigenfunctions of the boundary-value
problem (1.1)–(1.3). Later on, in the same section, we obtain more exact for-
mulas for eigenvalues and eigenfunctions under the condition q ∈ C1[0, 1]. Also,
we calculate normalized eigenfunctions for the problem (1.1)–(1.3).

2 Fundamental solutions and simplicity of eigenvalues

In this section, first, we write the initial-value problem (1.1), (2.1) in terms
of equivalent integral equation and then construct structure of the solutions
of the initial-value problem (1.1), (2.1) and the space of these solutions. We
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see that any two solutions of the initial-value problem (1.1), (2.1) which are
linearly independent on [0, 1] form a fundamental system of solutions.

Let ωs(t) be a solution of Equation (1.1) satisfying the conditions

ωs(0) = 0, ω′s(0) = −1. (2.1)

According to [14, Theorem 1.1 in Chapter I], the initial conditions (2.1) deter-
mine a unique solution of Equation (1.1) on [0, 1]. The function ω(t, s) = ωs(t)
is an analytic function of s.

Remark 1. In this article s ∈ Cs := Rs ∪C+
s ∪C−s , where Rs := R−s ∪R+

s ∪R0
s,

R−s := {s = x+ ıy ∈ C : x = 0, y > 0}, R+
s := {s = x+ ıy ∈ C : x > 0, y = 0},

R0
s := {s = 0}, C+

s := {s = x + ıy ∈ C : x > 0, y > 0} and C−s := {s =
x + ıy ∈ C : x > 0, y < 0}. Then a map λ = s2 is the bijection between Cs
and Cλ := C [24].

Lemma 1. Let ωs(t) be a solution of Equation (1.1) with the initial conditions
(2.1). Then the following integral equation holds:

ωs(t) =− 1

s
sin(st) +

1

s

∫ t

0

sin
(
s(t− τ)

)
q(τ)ωs(τ)dτ. (2.2)

Proof. Following [14], it is enough to substitute s2ωs(τ) + (ωs)
′′(τ) instead of

q(τ)ωs(τ) in the integral in (2.2) and integrate by parts twice. ut

Lemma 2. Let s ∈ Cs. Then there exists q0 > 0 such that for |s| ≥ 2q0 one
has the estimate

ωs(t) =O(s−1e|y|t) (2.3)

and more precisely

ωs(t) =− s−1 sin(st) +O(s−2e|y|t). (2.4)

These estimates hold uniformly for 0 ≤ t ≤ 1.

Proof. Put ωs(t) = e|y|tF (t). Then from (2.2) we obtain

F (t) =− 1

s
sin(st)e−|y|t +

1

s

∫ t

0

sin
(
s(t− τ)

)
e−|y|(t−τ)q(τ)F (τ)dτ. (2.5)

Let µ = max0≤τ≤1 |F (τ)| and q0 :=
∫ 1

0
|q(τ)|dτ . Then it follows from (2.5) that

µ ≤ |s|−1 + µ|s|−1q0.

So, we get
µ ≤ |s|−1/(1− |s|−1q0) (2.6)

under the condition that the denominator is positive. Namely, if |s| ≥ 2q0 then
we get (2.3). Now, substituting (2.3) into the integral of (2.2) we obtain the
estimate (2.4). ut
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Lemma 3. Let s ∈ Cs. Then there exists q0 > 0 such that for |s| ≥ 2q0 one
has the estimate

ω′s(t) =O(e|y|t) (2.7)

and more precisely

ω′s(t) =− cos(st) +O(s−1e|y|t). (2.8)

These estimates hold uniformly for 0 ≤ t ≤ 1.

Proof. Taking derivative with respect to t in (2.2) we get

ω′s(t) =− cos(st) +

∫ t

0

cos
(
s(t− τ)

)
q(τ)ωs(τ)dτ. (2.9)

Let us take q0 =
∫ 1

0
|q(τ)|dτ as in the previous lemma. If |s| ≥ 2q0 then

1− |s|−1q0 ≥ |s|−1q0, and we have (see (2.6))

e−|y|τ |ωs(τ)| ≤ q−10 .

Then from (2.9) we obtain

e−|y|tω′s(t) =− e−|y|t cos(st)

+

∫ t

0

cos
(
s(t− τ)

)
e−|y|(t−τ)q(τ)e−|y|τωs(τ)dτ = O(1).

Namely, if |s| ≥ 2q0 then we get (2.7). Now, substituting (2.3) into the integral
of (2.9) we obtain the estimate (2.8). ut

Theorem 1. [see, Theorem II.2.2 in [17]] In order that the functions ω1
s(t) and

ω2
s(t), solutions of the initial-value problem (1.1), (2.1) be linearly dependent

on [0, 1] it is necessary and sufficient that

W [ω1
s , ω

2
s ](0) =

∣∣∣∣∣ ω1
s(0) ω2

s(0)

(ω1
s)′(0) (ω2

s)′(0)

∣∣∣∣∣ = 0.

The algebraic multiplicity of the eigenvalue is its multiplicity as a root of
the characteristic polynomial.

We will say that geometric multiplicity of an eigenvalue of a boundary
value problem is the maximum number of linearly independent eigenfunctions
associated with the related eigenvalue. By the definition of eigenvalues and
eigenfunctions, geometric multiplicity of an eigenvalue is equal or greater than
one because each eigenvalue has at least one eigenfunction.

Theorem 2. The geometric multiplicity of eigenvalues of the problem (1.1)–
(1.3) is one.
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Proof. Let λ = s2 be an eigenvalue of the problem (1.1)–(1.3) and vs(t) be
corresponding eigenfunction. From (2.1) we have

W [vs, ωs](0) =

∣∣∣∣∣vs(0) ωs(0)

v′s(0) ω′s(0)

∣∣∣∣∣ =

∣∣∣∣∣ 0 0

v′s(0) −1

∣∣∣∣∣ = 0.

Thus, according to Theorem 1, the functions vs(t) and ωs(t) are linearly de-
pendent on [0, 1]. Hence ωs(t) is an eigenfunction for (1.1)–(1.3), too. ut

3 Spectral asymptotics for eigenvalues and eigenfunctions

In the case q(t) ≡ 0, the spectrum of the Sturm–Liouville problem (1.1)–(1.3)
has countably many eigenvalues and all eigenvalues are positive for |γ| ≤ 1.
If |γ| < 1 then all eigenvalues are algebraically simple. A unique negative
eigenvalue exists for γ > 1

ξ and λ = 0 is eigenvalue if and only if γ = 1
ξ .

Complex eigenvalues may exist for |γ| > 1 [21].
Substituting ωs(t) into (1.3), we get the characteristic equation

ωs(1)− γωs(ξ) = 0. (3.1)

We introduce a function

H(s) := −s
(
ωs(1)− γωs(ξ)

)
. (3.2)

The set of eigenvalues of boundary-value problem (1.1)–(1.3) coincides with the
set {λ : λ = s2,−H(s)/s = ωs(1)− γωs(ξ) = 0}. The function H(s) is actually
an analytic function of s. Substituting (2.2) into (3.2) we get

H(s) = sin s−
∫ 1

0

sin
(
(1− τ)s

)
q(τ)ωs(τ)dτ

− γ
(

sin(ξs)−
∫ ξ

0

sin
(
(ξ − τ)s

)
q(τ)ωs(τ)dτ

)
. (3.3)

So, we have
H(s) = sin s− γ sin(ξs) +O(s−1e|y|). (3.4)

Remark 2. The formula

H ′(s) = cos s− γξ cos(ξs) +O(s−1e|y|)

is valid.

Theorem 3. The real eigenvalues of the problem (1.1)–(1.3) are bounded below.

Proof. Set H̃(λ) := ı3H(s). Let s = ıy, y > 0. Then

H̃(−y2) = ey
(
1− e−2y − γe(ξ−1)y + γe−(ξ+1)y

)
/2 +O(y−1ey).

It is clear that limy→∞ H̃(−y2) = ∞. Then there exists a y0 > 0 such that

H̃(−y2) 6= 0 for y > y0. Therefore we get H̃(λ) 6= 0 for λ < −y20 . Accordingly,
λ > −y20 . ut
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Corollary 1. The number of negative eigenvalues of the problem (1.1)–(1.3) is
finite (maybe zero).

Theorem 4. The problem (1.1)–(1.3) has infinitely many (countable) positive
eigenvalues for |γ| < 1.

Proof. We consider s = x, 0 < x ∈ R. We have |γ sin(ξx) + O(x−1)| < 1 for
large x. The function sinx takes its local maximum points at Mk = (2k−3/2)π,
k ∈ N, and its local minimum points at mk = (2k − 1/2)π, k ∈ N. Thus, from
Intermediate value theorem at least one root of the function H(x) lies in each
interval

(
(k − 1/2)π, (k + 1/2)π

)
, K < k ∈ N for large K. So, we have infinite

(countable) number roots of equation H(x) = 0. ut

Corollary 2. The function H has at least one positive root in the interval
(
(k−

1/2)π, (k + 1/2)π
)
.

Remark 3. The function h has the same property, but the root in the interval(
(k − 1/2)π, (k + 1/2)π

)
is unique for |γ| < 1 [24]. We can write the roots of

(3.6) as xk = xk(γ) = πk+ fk(γ) where the analytic function fk(γ) is bounded
(|fk(γ)| ≤ π/2) and fk(0) = 0.

Let us consider the equation

−u′′(t) = λu(t) (3.5)

with the boundary conditions (1.2)–(1.3). The characteristic equation of Equa-
tion (3.5) is

h(s) := sin s− γ sin(ξs) = 0, (3.6)

where λ = s2, s ∈ Cs. This equation was investigated in [15, 21]. For |γ| < 1,
Equation (3.6) has infinite (countable) number positive simple roots xk, k ∈ N.
These roots we can find by solving equation

h(x) = sinx− γ sin(ξx) = 0, x ∈ R. (3.7)

Between two roots of this equation there exists point x̃k ∈ (xk, xk+1) such that
h′(x̃k) = 0, i.e. the root of equation cosx− γξ cos(ξx).

Lemma 4. Let |γ| < 1, 0 < ξ < 1, β ≥ 0. If sinx− γξβ sin(ξx) = 0 then there
exists κ > 0 such that | cosx| − |γ|| cos(ξx)| ≥ κ > 0.

Proof. Let take µ such that 0 < µ < 1 (for example, we can take µ = 1/2). If

α :=
√

1− µ2, then 0 < α < 1.
We will consider three possible cases:

1) sinx = 0;
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2) | sinx| ≥ µ or equivalently | cosx| ≤ α;

3) 0 < | sinx| < µ or equivalently | cosx| > α.

Case 1. If sinx = 0 then we have | cosx| = 1. Thus we obtain that
| cosx| − |γ|| cos(ξx)| ≥ 1− |γ| =: κ1 > 0.

Now let us assume that sinx 6= 0. Then we have sin(ξx) 6= 0 and γ 6= 0. So,
we have 0 < |sinx/sin(ξx)| = |γ|ξβ = 1 − ε, where ε := 1 − |γ|ξβ , 0 < ε < 1.
Therefore, we obtain sin2 x = sin2(ξx)(1− ε)2 or

cos2 x = cos2(ξx) + ε(2− ε) sin2(ξx) ≥ cos2(ξx) + ε sin2(ξx). (3.8)

By (3.8), it follows that | cosx| > | cos(ξx)| and the following inequalities

0 < | cosx| − | cos(ξx)| ≤ | cosx| − |γ|| cos(ξx)| (3.9)

are valid for Case 2 and Case 3.
Case 2. Let us take κ2 := εµ2/3 > 0. Since 0 < κ2 < 1 and | sin(ξx)| >

| sinx|, then we get

ε sin2(ξx) > ε sin2 x ≥ εµ2 = 3κ2 ≥ 2κ2 + κ22 ≥ 2κ2| cos(ξx)|+ κ22. (3.10)

Thus, by (3.8) and (3.10), it follows that

cos2 x ≥ cos2(ξx) + 2κ2| cos(ξx)|+ κ22 = (| cos(ξx)|+ κ2)2

or | cosx| ≥ | cos(ξx)|+ κ2. So, we have | cosx| − | cos(ξx)| ≥ κ2 > 0. Thus, by
(3.9), we prove | cosx| − |γ|| cos(ξx)| ≥ κ2 > 0.

Case 3. Let us denote κ3 := (1− |γ|)α. By (3.9), it follows that

| cosx| − |γ|| cos(ξx)| ≥ (1− |γ|)| cosx| ≥ κ3 > 0.

Consequently, if we choose κ = min{κ1, κ2, κ3} > 0 then we have | cosx| −
|γ|| cos(ξx)| ≥ κ > 0. ut

Since | cosxk − γξ cos(ξxk)| ≥ | cosxk| − |γ|| cos(ξxk)| we get the following
corollary.

Corollary 3. Let xk be a root of Equation (3.7). Then there exists κ > 0 such
that | cosxk − γξ cos(ξxk)| ≥ κ > 0 for all k ∈ N.

Lemma 5. Let |γ| < 1, 0 < ξ < 1, β ≥ 0. If cosx−γξβ cos(ξx) = 0 then there
exists κ̃ > 0 such that | sinx| − |γ|| sin(ξx)| ≥ κ̃ > 0.

The proof of this lemma is similar to the proof of Lemma 4. From inequality
| sinx− γ sin(ξx)| ≥ | sinx| − |γ|| sin(ξx)| we get the following corollary.

Corollary 4. Let x̃k be a root of equation cosx − γξ cos(ξx) = 0. Then there
exists κ̃ > 0 such that | sin x̃k − γ sin(ξx̃k)| ≥ κ̃ > 0 for all k.

Remark 4. Lemma 4 and Lemma 5 are valid for β =∞ (in this case ξβ = 0).

Math. Model. Anal., 26(2):253–266, 2021.
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Corollary 5. Let x = ak := (k + 1/2)π, k ∈ N (in this case cos ak = 0). Then
there exists κ̃ > 0 such that | sin ak| − |γ|| sin(ξak)| ≥ κ̃ > 0 for all k.

Let us denote Dk = {s : |x| ≤ ak = (k + 1/2)π, |y| ≤ ak}, Ds
k = Dk ∩ Cs,

k ∈ N, and a contour Γ sk = ∂Dk ∩ Cs. Then we have |s| ≥ 3π/2 on Γ sk , k ∈ N.
The corresponding contour Γλk in the the plane Cλ will be the boundary of the
domain Dλ

k .

Lemma 6. Let |γ| < 1. Then there exists q1 > 0 such that all eigenvalues of
the problem (1.1)–(1.3) in the domain {s ∈ Cs : |s| > q1} are positive.

Proof. On the vertical part of contour s = ak + ıy, y ∈ [−ak, ak], Reh(s) =
sin ak cosh y − γ sin(ξak) cosh(ξy). We estimate

|h(s)| ≥|Reh(s)| ≥ | sin ak| cosh y − |γ| | sin(ξak)| cosh(ξy)

≥(| sin ak| − |γ| | sin(ξak)|) cosh y.

Using Corollary 5 we get |h(s)| ≥ κ̃ cosh y ≥ A1e|y|, where A1 > 0. On the
remaining part of contour y = ±ak, 0 ≤ x ≤ ak. From formulas

| sin s| =
√

sinh2 y + sin2 x =

√
cosh2 y − cos2 x

we have
| sin s| ≥ sinh |y|, | sinh(ξs)| ≤ cosh(ξy).

So,
|h(s)| ≥ sinh |y| − |γ| cosh(ξy) ≥ sinh |y| − cosh(ξy).

Consider a function f(y) := (sinh |y| − cosh(ξy))e−y, for y ∈ [0,+∞). It
easy to see, that exist y∗(ξ) > 0 such that f(y) ≥ 1/4. So, |h(s)| ≥ e|y|/4 for
|y| > y∗. Finally, taking A = min{A1, 1/4}, we have |h(s)| ≥ Ae|y| on Γk for
sufficiently large k.

From formula (3.4) H(s) = h(s) + h0(s) where h0(s) = O(s−1e|y|). Hence,
we have |h0(s)| ≤ c1|s|−1e|y| < Ae|y| ≤ |h(s)| on the contours Γk for sufficiently
large k. Therefore, by Rouché theorem it follows that the number of zeros of
H = h+ h0 and h are the same inside Γk for sufficiently large k.

In the domain between contours Γk−1 and Γk there is exactly one positive
root of the function h (see Remark 3). The function H has one root in this
domain for sufficiently large k. But interval

(
(k−1/2)π, (k+1/2)π

)
belongs to

this domain. So, the single root of H in this domain is positive (see Corollary 2).
ut

We can enumerate the zeros of H as sk, k ∈ N. The first zeros can be
complex numbers or not simple. From Lemma 6 we have that sk are positive
for sufficiently large k. Now we will investigate the distribution of these pos-
itive eigenvalues of the problem (1.1)–(1.3) and we leave out the note about
sufficiently large k.

Now we consider only real positive s = x > 0. In this case formula (3.4)
may be rewritten in the form

H(s) = h(s) +O(s−1), h(s) = sin s− γ sin(ξs) (3.11)
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and

H ′(s) = cos s− γξ cos(ξs) +O(s−1). (3.12)

Since xk, sk ∈
(
(k − 1/2)π, (k + 1/2)π

)
, we have

sk ∼ xk ∼ πk (as k →∞).

Let us denote δk = sk − xk. The functions H and h are analytic. So, from
(3.12) and H(s) = 0 we have

sk = xk + o(1) or δk = o(1) (as k →∞).

From (2.4) we get the equality

ωs(t) = − sin(st)

s
+O(s−2). (3.13)

Theorem 5. Let q ∈ C[0, 1] and |γ| < 1. For eigenvalues λk = s2k and eigen-
functions uk of the problem (1.1)–(1.3) the asymptotic formulas

sk = xk +O(k−1), uk(t) = − sin(xkt)

xk
+O(k−2)

are valid for sufficiently large k.

Proof. Substituting sk = xk + δk into (3.12) we obtain

sinxk − γ sin(ξxk) +
(

cosxk − γξ cos(ξxk)
)
δk +O(δ2k) = O(k−1).

Since sinxk − γ sin(ξxk) = 0 we rewrite this equality as(
cosxk − γξ cos(ξxk) +O(δk)

)
δk = O(k−1).

Thus, by Corollary 3 we get δk = O(k−1).
Substituting sk = xk + δk into equality (3.13), we find the asymptotic

formula

uk(t) = ωλk
(t) = −

sin
(
(xk + δk)t

)
xk + δk

+O(k−2)

=− sin(xkt)

xk
− xkt cos(xkt)− sin(xkt)

x2k
δk +O(δ2k) +O(k−2)

=− sin(xkt)

xk
+O(k−2).

ut

Remark 5. Normalized eigenfunctions are

vk(t) =
√

2 sin(xkt) +O(k−1).

Math. Model. Anal., 26(2):253–266, 2021.
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Under the condition that q ∈ C1[0, 1] the more exact asymptotic formulas
may be obtained. In this case the following formulas∫ t

0

q(τ) cos(2sτ)dτ = O(s−1),

∫ t

0

q(τ) sin(2sτ)dτ = O(s−1) (3.14)

are valid for t ∈ [0, 1] [14]. Let Q(t) = 1
2

∫ t
0
q(τ)dτ . It is obvious that the

function Q(t) is bounded for 0 ≤ t ≤ 1.
Substituting the expression (3.13) into the integrals in (2.2) we have

ωs(t) =− 1

s
sin(st) +

Q(t) cos(st)

s2

− cos(st)

s2

∫ t

0

cos(2sτ)q(t)dτ − sin(st)

s2

∫ t

0

sin(2sτ)q(t)dτ +O(s−3).

Using the formula (3.14) formulas we derive

ωs(t) = −1

s
sin(st) +

Q(t) cos(st)

s2
+O(s−3). (3.15)

Then we have asymptotic formula

H(s) = sin s− γ sin(sξ)− Q(1) cos s− γQ(ξ) cos(ξs)

s
+O(s−2). (3.16)

Let us denote

Q1(s) = Q1(s; γ, ξ) :=
Q(1) cos s− γQ(ξ) cos(ξs)

cos s− γξ cos(ξs)
.

Theorem 6. Let q ∈ C1[0, 1] and |γ| < 1. For eigenvalues λk = s2k and
eigenfunctions uk of the problem (1.1)–(1.3) the asymptotic formulas

sk = xk +Q1(xk)x−1k +O(k−2),

uk(t) =− sin(xkt)

xk
+
(
Q(t)− tQ1(xk)

)cos(xkt)

x2k
+O(k−3) (3.17)

are valid for sufficiently large k.

Proof. Substituting sk = xk + δk into (3.16), we have

sinxk − γ sin(ξxk)− Q(1) cosxk − γQ(ξ) cos(ξxk)

xk

+
(

cosxk − γξ cos(ξxk) +
(
Q(1) sinxk − γξQ(ξ) sin(ξxk)

)
x−1k

)
δk

+O(δ2k) = O(k−2).

Since sinxk − γ sin(ξxk) = 0 we rewrite this equality as

(
cosxk − γξ cos(ξxk) +O(k−1)

)
δk =

Q(1) cosxk − γQ(ξ) cos(ξxk)

xk
+O(k−2)
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or

δk =
Q(1) cosxk − γQ(ξ) cos(ξxk)

xk
(

cosxk − γξ cos(ξxk)
) +O(k−2) =

Q1(xk)

xk
+O(k−2).

Now, we are ready to obtain a sharper asymptotic formula for the eigenfunc-
tions. Substituting sk = xk + δk into (3.15), we have

uk(t) = − sin(xkt)

xk
+
Q(t) cos(xkt)

x2k
− t cos(xkt)

xk
δk +O(k−3).

Since δk = Q1(xk)x−1k +O(k−2) we derive (3.17). ut

Remark 6. To obtain this asymptotic expansion for the normalized eigenfunc-
tions vk(t) = −α−1k uk(t) let us consider the integral

α2
k =

∫ 1

0

u2k(t)dt =
1

x2k

∫ 1

0

sin2(xkt)dt

+
1

x4k

∫ 1

0

cos2(xkt)(Q1(xk))2t2dt+
1

x3k

∫ 1

0

Q1(xk)t sin(2xkt)dt+O(k−4)

=
1

2x2k

(
1− 1

2xk
sin(2xk) +O(k−2)

)
.

Thus, the normalizing coefficients

α−1k =
√

2xk
(
1 +

1

4xk
sin(2xk) +O(k−2)

)
.

Then we have

vk(t) =
√

2
(

sin(xkt)−
(
Q(t)− tQ1(xk)

)cos(xkt)

xk
+O(k−2)

)
×
(
1 +

sin(2xk)

4xk
+O(k−2)

)
.

So, normalized eigenfunctions are

vk(t) =
√

2 sin(xkt)

+
√

2
0.25 sin(2xk) sin(xkt)−

(
Q(t)− tQ1(xk)

)
cos(xkt)

xk
+O(k−2).

Remark 7. Assuming that q ∈ C2[0, 1], one can prove a more precise asymptotic
formula

sk = xk +Q1(xk)x−1k +Q2(xk)x−2k +O(k−3).

Here Q2 is a bounded function.

Remark 8. In the case of γ = 0 we get the classical case and for sufficiently
large k, again, under the condition that q ∈ C[0, 1] we have the formulas

sk = kπ +O(k−1), uk(t) = − sin(kπt)

kπ
+O(k−2),
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and under the condition that q ∈ C1[0, 1] we have the formulas

sk = kπ +
Q(1)

kπ
+O(k−2),

uk(t) = − sin(kπt)

kπ
+
(
Q(t)− tQ(1)

)cos(kπt)

k2π2
+O(k−3)

for eigenvalues and eigenfunctions, respectively [14].

4 Conclusions

In this paper, the spectrum and asymptotic formulas of eigenfunctions for
Sturm–Liouville problem with one Bitsadze–Samarskii type nonlocal boundary
condition was investigated. The results obtained in this work can be extended
to differential equations with retarded argument [20]. Furthermore, asymp-
totics of eigenvalues and eigenfunctions of the same differential equation but
with different boundary conditions such as integral boundary conditions can
be also investigated.
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