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Abstract
We consider a class of two-parameter weighted integral operators induced by harmonic
Bergman-Besov kernels on the unit ball of Rn and characterize precisely those that are
bounded from Lebesgue spaces Lp

α into harmonic Bergman-Besov spaces bq
β, weighted

Bloch spaces b∞
β or the space of bounded harmonic functions h∞, allowing the exponents

to be different. These operators can be viewed as generalizations of the harmonic Bergman-
Besov projections.
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1. Introduction and main results
Let n ≥ 2 be an integer and B = Bn be the open unit ball in Rn. Let ν be the Lebesgue

volume measure on B normalized so that ν(B) = 1. For α ∈ R, we define the weighted
volume measures να on B by

dνα(x) = 1
Vα

(1 − |x|2)αdν(x).

These measures are finite when α > −1 and in this case we choose Vα so that να(B) = 1.
Naturally V0 = 1. For α ≤ −1, we set Vα = 1. We denote the Lebesgue classes with
respect to να by Lp

α, 0 < p < ∞ and the corresponding norms by ∥ · ∥Lp
α
.

Let h(B) be the space of all complex-valued harmonic functions on B with the topology of
uniform convergence on compact subsets. The space of bounded harmonic functions on B
is denoted by h∞. For 0 < p < ∞ and α > −1, the weighted harmonic Bergman space bp

α is
defined by bp

α = Lp
α∩h(B) endowed with the norm ∥·∥Lp

α
. The subfamily b2

α is a reproducing
kernel Hilbert space with respect to the inner product [f, g]b2

α
=

∫
B fg dνα(x) and with

the reproducing kernel Rα(x, y) such that f(x) = [f, Rα(x, ·)]b2
α

for every f ∈ b2
α and

x ∈ B. It is well-known that Rα is real-valued and Rα(x, y) = Rα(y, x). The homogeneous
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expansion of Rα(x, y) is given in the α > −1 part of the formulas (1.2) and (1.3) below
(see [2], [7]).

For α > −1, the orthogonal projection Qα : L2
α → b2

α is given by the integral operator

Qαf(x) = 1
Vα

∫
B

Rα(x, y)f(y)(1 − |y|2)αdν(y) (f ∈ L2
α). (1.1)

This integral operator plays a major role in the theory of weighted harmonic Bergman
spaces and the question when Bergman projection Qα : Lp

β → bp
β is bounded is studied

in many sources such as ([8, Theorem 3.1], [11, Theorem 2.5], [12, Theorem 3.1]). By
allowing the exponents, the weights and the parameters in the integrand to be different,
our goal is to determine exactly when the integral operator in (1.1) is bounded from Lp

α

to bq
β.

Furthermore, we also remove the restriction α > −1. The weighted harmonic Bergman
spaces bp

α, initially defined for α > −1, can be extended to the whole range α ∈ R. These
are studied in detail in [7] and will be reviewed in Section 2. We call the extended family
bp

α (α ∈ R) as harmonic Bergman-Besov spaces and the corresponding reproducing kernels
as Rα(x, y) (α ∈ R) harmonic Bergman-Besov kernels. The homogeneous expansion of
Rα(x, y) can be expressed in terms of zonal harmonics

Rα(x, y) =
∞∑

k=0
γk(α)Zk(x, y) (α ∈ R, x, y ∈ B), (1.2)

where (see [6, Theorem 3.7], [7, Theorem 1.3])

γk(α) :=


(1 + n/2 + α)k

(n/2)k
, if α > −(1 + n/2);

(k!)2

(1 − (n/2 + α))k(n/2)k
, if α ≤ −(1 + n/2),

(1.3)

and (a)b is the Pochhammer symbol. For definition and details about Zk(x, y), see [1,
Chapter 5].

Finally, we allow the exponents p, q to be ∞. We denote by L∞ = L∞(ν) the Lebesgue
class of all essentially bounded functions on B with respect to ν. In this case we have
L∞(dνα) = L∞ for every α ∈ R and because of this we need to use a different weighted
class. For α ∈ R, we define

L∞
α := {φ is measurable on B : (1 − |x|2)αφ(x) ∈ L∞},

so that L∞
0 = L∞. The norm on L∞

α is
∥φ∥L∞

α
= ∥(1 − |x|2)αφ(x)∥L∞ .

For α > 0, the weighted harmonic Bloch space bα is defined by h(B) ∩L∞
α and also can be

extended to the whole range α ∈ R. The properties of this extended family are studied in
detail in [5] and will be reviewed in Section 2.

We can now state our main result. For b, c ∈ R define the integral operator Tbc by

Tbc f(x) =
∫
B

Rc(x, y) f(y)(1 − |y|2)bdν(y). (1.4)

Our aim is to determine exactly when Tbc is bounded from Lp
α to bq

β. The result is divided
into two cases depending on whether 1 ≤ q < ∞ or q = ∞ that describe its boundedness
in terms of the six parameters (b, c, α, β, p, q) involved.

Theorem 1.1. Let b, c, α, β ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. Then Tbc is bounded from
Lp

α to bq
β (L∞

α to bq
β when p = ∞) if and only if (b, c, α, β, p, q) satisfy one of the following

conditions:
(i) If 1 < p ≤ q < ∞, then α + 1 < p(b + 1) and c ≤ b + n + β

q
− n + α

p
;
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(ii) If 1 = p ≤ q < ∞, then α < b and c ≤ b + n + β

q
− (n + α) or α ≤ b and

c < b + n + β

q
− (n + α);

(iii) If 1 ≤ q < p < ∞, then α + 1 < p(b + 1) and c < b + 1 + β

q
− 1 + α

p
;

(iv) If 1 ≤ q < p = ∞, then α − 1 < b and c < b + β + 1
q

− α.

Theorem 1.2. Let b, c, α, β ∈ R and 1 ≤ p ≤ ∞. Then Tbc is bounded from Lp
α to b∞

β

(L∞
α to b∞

β when p = ∞) if and only if (b, c, α, β, p) satisfy one of the following conditions:

(i) If 1 < p < ∞, then α + 1 < p(b + 1) and c ≤ b + β − n + α

p
;

(ii) If p = 1, then α < b and c ≤ b + β − (n + α) or α ≤ b and c < b + β − (n + α);
(iii) If p = ∞, then α − 1 < b and c ≤ b + β − α.

Moreover, we also determine when Tbc is bounded from Lp
α to h∞.

Theorem 1.3. Let b, c, α ∈ R and 1 ≤ p ≤ ∞. Then Tbc is bounded from Lp
α to h∞ (L∞

α

to h∞ when p = ∞) if and only if (b, c, α, p) satisfy one of the following conditions:

(i) If 1 < p < ∞, then α + 1 < p(b + 1) and c < b − n + α

p
;

(ii) If p = 1, then α < b and c ≤ b − (n + α) or α ≤ b and c < b − (n + α);
(iii) If p = ∞, Then α − 1 < b and c < b − α.

Harmonic Bergman-Besov projections on harmonic spaces have been studied for some
time. See [7, Theorem 1.4] for 1 ≤ p = q < ∞, b = c, α = β ∈ R and [5, Theorem 1.6] for
p = q = ∞, b = c, α = β ∈ R. The other result we know of on Besov spaces is [9, Theorem
4.1] in which 1 ≤ p = q ≤ ∞, b = c > −1 and α = β = −n. Note that in our results
we have b, c, α, β ∈ R unrestrictedly and thus our operators in some sense generalize the
harmonic Bergman-Besov projections. The holomorphic counterparts of our results on the
boundedness of integral operators induced by holomorphic Bergman-Besov kernels appear
in [10, Theorem 1.8 and Theorem 1.9].

For experts in analysis, one of the interesting problem might be the boundedness of
Tbc between different weighted Lebesgue classes. This problem is considered earlier in
[4] as seven theorems that describe boundedness of Tbc in terms of the six parameters
(b, c, α, β, p, q) involved and the proof of our main results most heavily depends on these
results. We combine all the seven theorems out there as two theorems below depending on
the value of q. The following theorem is a combination of [4, Theorems 1.1, 1.2, 1,3 and
1.4] with 1 ≤ q < ∞. Note that they include an extra operator that replace Rc(x, y) in
the integral (1.4) by |Rc(x, y)| because they need operators with positive kernels to apply
Schur tests.

Theorem 1.4. Let b, c, α, β ∈ R with β > −1, 1 ≤ p ≤ ∞ and 1 ≤ q < ∞. Then Tbc is
bounded from Lp

α to Lq
β (L∞

α to Lq
β when p = ∞) if and only if (b, c, α, β, p, q) satisfy one

of the following conditions:

(i) If 1 < p ≤ q < ∞, then α + 1 < p(b + 1) and c ≤ b + n + β

q
− n + α

p
;

(ii) If 1 = p ≤ q < ∞, then α < b and c ≤ b + n + β

q
− (n + α) or α ≤ b and

c < b + n + β

q
− (n + α);

(iii) If 1 ≤ q < p < ∞, then α + 1 < p(b + 1) and c < b + 1 + β

q
− 1 + α

p
;
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(iv) If 1 ≤ q < p = ∞, then α − 1 < b and c < b + β + 1
q

− α.

The following theorem is a combination of [4, Theorems 1.4, 1.5 and 1.7] with q = ∞.

Theorem 1.5. Let b, c, α, β ∈ R with β ≥ 0 and 1 ≤ p ≤ ∞. Then Tbc is bounded from
Lp

α to L∞
β (L∞

α to L∞
β when p = ∞) if and only if (b, c, α, β, p) satisfy one of the following

conditions:
(i) If 1 < p < ∞, then α+1 < p(b+1) and c ≤ b+β − n + α

p
, and the strict inequality

holds when β = 0;
(ii) If p = 1, then α < b and c ≤ b + β − (n + α) or α ≤ b and c < b + β − (n + α);
(iii) If p = ∞, then α − 1 < b and c ≤ b + β − α, and the strict inequality holds when

β = 0.

The conditions β > −1 when q < ∞ in Theorem 1.4 and β ≥ 0 when q = ∞ in Theorem
1.5 cannot be removed as explained in [4, Corollary 1.4]. Since we use repeatedly in this
paper, this result is given again as Corollary 3.5 below. Notice that, our results are a
variation of these theorems that removes the annoying conditions β > −1 when q < ∞
and β ≥ 0 when q = ∞.

In Section 2, we collect some known facts about the harmonic Bergman-Besov and
weighted Bloch spaces. Sections 3 and 4 are devoted to the proofs of Theorem 1.1 and
Theorems 1.2 and 1.3, respectively.

2. Preliminaries
For two positive expressions X and Y , we write X . Y if there exists a positive constant

C, whose exact value is inessential, such that X ≤ CY . We also write X ∼ Y if both
X . Y and Y . X.

The Pochhammer symbol (a)b is defined by

(a)b = Γ(a + b)
Γ(a)

,

when a and a + b are off the pole set −N of the gamma function. Stirling formula gives
(a)c

(b)c
∼ ca−b, c → ∞. (2.1)

Let S be the unit sphere in Rn and σ be the surface measure on S normalized so that
σ(S) = 1. For f ∈ L1

0, the polar coordinates formula is∫
B

f(x) dν(x) = n

∫ 1

0
ϵn−1

∫
S

f(ϵζ) dσ(ζ) dϵ,

in which x = ϵζ with ϵ > 0 and ζ ∈ S.
We let 1 ≤ p, p′ ≤ ∞ be the conjugate exponent. That is, if 1 < p < ∞, then 1

p + 1
p′ = 1;

if p = 1, then p′ = ∞ and if p = ∞, then p′ = 1.
We show an integral inner product on a function space X by [·, ·]X .
In multi-index notation, m = (m1, . . . , mn) is an n-tuple of non-negative integers

m1, . . . , mn and

∂mf = ∂|m|f

∂xm1
1 · · · ∂xmn

n

is the usual partial derivative for smooth f , where |m| = m1 + · · · + mn.
The weighted harmonic Bergman spaces bp

α (α > −1) can be extended to all α ∈ R.
For α ∈ R and 0 < p < ∞, let N be a non-negative integer such that α + pN > −1. The
harmonic Bergman-Besov space bp

α consists of all f ∈ h(B) such that
(1 − |x|2)N ∂mf ∈ Lp

α,
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for every multi-index m with |m| = N . The space bp
α does not depend on the choice of N

as long as α + pN > −1 is satisfied.
Likewise, given α ∈ R, pick a non-negative integer N such that α+N > 0. The weighted

harmonic Bloch space b∞
α consists of all f ∈ h(B) such that

(1 − |x|2)N ∂mf ∈ L∞
α ,

for every multi-index m with |m| = N . When α = 0, one can choose N = 1 and

b∞
0 =

{
f ∈ h(B) : sup

x∈B
(1 − |x|2)|∇f(x)| < ∞

}
.

This is the most studied member of the family. As before, the spaces b∞
α do not depend

on the choice of N as long as α + N > 0 is satisfied
In the definitions of bp

α and b∞
α , instead of partial derivatives one can use more effectively

certain radial differential operators Dt
s : h(B) → h(B), (s, t ∈ R) defined in terms of

reproducing kernels of harmonic Bergman spaces that are introduced in [6] and [7].
Before going to the definition, note that for every α ∈ R we have γ0(α) = 1, and

therefore
Rα(x, 0) = Rα(0, y) = 1, (x, y ∈ B, α ∈ R). (2.2)

Checking the two cases in (1.3), we have by (2.1)
γk(α) ∼ k1+α (k → ∞). (2.3)

Rα(x, y) is harmonic as a function of either of its variables on B.
For any f ∈ h(B) there exist homogeneous harmonic polynomials fk of degree k such

that f =
∑∞

k=0 fk, the series converging absolutely and uniformly on compact subsets of
B which is called the homogeneous expansion of f (see [1]).

Definition 2.1. Let f =
∑∞

k=0 fk ∈ h(B) be given by its homogeneous expansion. For
s, t ∈ R we define Dt

s on h(B) by

Dt
sf :=

∞∑
k=0

γk(s + t)
γk(s)

fk.

By (2.3), γk(s + t)/γk(s) ∼ kt for any s, t and, roughly speaking, Dt
s multiplies the

kth homogeneous part of f by kt. For every s ∈ R, D0
s = I, the identity. An important

property of Dt
s is that it is invertible with two-sided inverse D−t

s+t:
D−t

s+tD
t
s = Dt

sD−t
s+t = I,

which follows from the additive property Dz
s+tD

t
s = Dz+t

s .
For every s, t ∈ R, the map Dt

s : h(B) → h(B) is continuous in the topology of uniform
convergence on compact subsets (see [7, Theorem 3.2]). The parameter s plays a minor
role and is used to have the precise relation Dt

sRs(x, y) = Rs+t(x, y).
Consider the linear transformation It

s defined for f ∈ h(B) by
It

sf(x) := (1 − |x|2)tDt
sf(x).

The spaces bp
α and b∞

α can equivalently be defined by using the operators Dt
s.

Definition 2.2. For 0 < p < ∞ and α ∈ R, we define the harmonic Bergman-Besov space
bp

α to consist of all f ∈ h(B) for which It
sf belongs to Lp

α for some s, t satisfying (see [7]
when 1 ≤ p < ∞, and [3] when 0 < p < 1)

α + pt > −1. (2.4)
The quantity

∥f∥p
bp

α
= ∥It

sf∥p
Lp

α
= cα

∫
B

|Dt
sf(x)|p(1 − |x|2)α+ptdν(x) < ∞

defines a norm (quasinorm when 0 < p < 1) on bp
α for any such s, t.
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Definition 2.3. For α ∈ R, we define the harmonic Bloch space b∞
α to consist of all

f ∈ h(B) for which It
sf belongs to L∞

α for some s, t satisfying (see [5])
α + t > 0. (2.5)

The quantity
∥f∥b∞

α
= ∥It

sf∥p
L∞

α
= sup

x∈B
(1 − |x|2)α+t|Dt

sf(x)| < ∞

defines a norm on b∞
α for any such s, t.

It is well-known that Definitions 2.2 and 2.3 are independent of s, t under (2.4) and
(2.5), respectively and the norms (quasinorms when 0 < p < 1) on a given space are all
equivalent. Thus for a given pair s, t, It

s isometrically imbeds bp
α into Lp

α if and only if
(2.4) holds, and It

s isometrically imbeds b∞
α into L∞

α if and only if (2.5) holds.
The most significant property of the operators Dt

s is that it allows us to pass from one
Bergman-Besov (or weighted Bloch) space to another. Actually, we have the following
isomorphisms.

Lemma 2.4. Let 0 < p < ∞ and α, s, t ∈ R.
(i) The map Dt

s : bp
α → bp

α+pt is an isomorphism.
(ii) The map Dt

s : b∞
α → b∞

α+t is an isomorphism.

For a proof of part (i) of the above lemma see [7, Corollary 9.2] when 1 ≤ p < ∞ and
[3, Proposition 4.7] when 0 < p < 1. For part (ii) see [5, Proposition 4.6].

The lemma below shows that if x stays close to 0, then Rα(x, y) is uniformly away from
0 for every y ∈ B.

Lemma 2.5 ([5, Lemma 3.2]). Let α ∈ R. There exists ϵ > 0 such that for all |x| < ϵ and
for all y ∈ B, we have Rα(x, y) ≥ 1/2.

3. Proof of Theorem 1.1
In this section, we prove Theorem 1.1. Note that we call the second and third inequal-

ity in each of the four parts of Theorem 1.1 the first and second necessary condition,
respectively.

Before the proof, we formulate the behavior of the operators Tbc in many important
situations which will be used in this and next section. These are from Section 3 of [4]
and adapted from similar results in Section 4 of [10]. We begin by inserting some obvious
inequalities that we use many times. If a1 < a2, u > 0, and v ∈ R, then for 0 ≤ t < 1,

(1 − t2)a2 ≤ (1 − t2)a1 and (1 − t2)u(
1 + log(1 − t2)−1)−v . 1. (3.1)

The second inequality above leads to the following estimate.

Lemma 3.1 ([4, Lemma 3.1]). For u, v ∈ R,∫ 1

0
(1 − t2)u(

1 + log 1
1 − t2

)−v
dt < ∞

if u > −1 or u = −1 and v > 1, and the integral diverges otherwise.

We will use the functions

fuv(x) = (1 − |x|2)u(
1 + log 1

1 − |x|2
)−v (u, v ∈ R)

as test functions to obtain some of the necessary conditions of our theorems from the
action of Tbc on them.

Lemma 3.2 ([4, Lemma 3.2]). For 1 ≤ p < ∞, we have fuv ∈ Lp
α if and only if α + pu >

−1, or α + pu = −1 and pv > 1. For p = ∞, we have fuv ∈ L∞
α if and only if α + u > 0,

or u = −α and v ≥ 0.
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Lemma 3.3 ([4, Lemma 3.3]). If b + u > −1 or if b + u = −1 and v > 1, then Tbcfuv is
a finite positive constant. Otherwise, Tbcfuv(x) = ∞ for |x| ≤ ϵ, where ϵ is as in Lemma
2.5.

Proof of Theorem 1.1. Let b, c, α, β ∈ R, 1 ≤ p ≤ ∞ and 1 ≤ q < ∞.
First Necessary Condition. Assume that Tbc is bounded from Lp

α to bq
β. The proof can be

handled in three cases depending on the value of p.
We first show the case 1 < p < ∞. Consider fuv with u = −(1 + α)/p and v = 1 so that

fuv ∈ Lp
α by Lemma 3.2. Then it is clear that Tbcfuv ∈ bq

β and this implies Tbcfuv(0) ∈ C.
We have by (2.2)

Tbcfuv(0) =
∫
B
(1 − |x|2)b−(1+α)/p

(
1 + log 1

(1 − |x|)2

)−1
dν(x).

Writing the integral in polar coordinates and using Lemma 3.1, we obtain (1+α)/p < 1+b.
Thus we derive the second inequality in parts (i) and (iii).

Next, we show the second case p = 1. Consider fuv with u > −(1 + α) and v = 0 so
that fu0 ∈ L1

α by Lemma 3.2. Then Tbcfu0 ∈ bq
β and this implies Tbcfu0(0) ∈ C. We have

by (2.2)
Tbcfu0(0) =

∫
B
(1 − |x|2)b+udν(x)

with u > −(1 + α). Again writing the integral in polar coordinates and using Lemma 3.1,
we obtain α ≤ b. Thus we derive the second inequality in part (ii).

The last case is p = ∞. Choose u = −α and v = 0 so that fu0 ∈ L∞
α by Lemma 3.2.

Then Tbcfu0 ∈ bq
β and this implies Tbcfu0(0) ∈ C. We have by ( 2.2) again,

Tbcfu0(0) =
∫
B
(1 − |x|2)b−αdν(x).

One more time writing the integral in polar coordinates and using Lemma 3.1, we obtain
b − α > −1. Finally, we derive the second inequality in part (iv).

Now we will show the Second Necessary Condition. We do this by composing bounded
maps. Firstly, we present the following lemma which is a crucial component of this tech-
nique and will allow us to push Dt

s into the integral operator Tbc.

Lemma 3.4. Let c, b ∈ R and f ∈ L1
b . Then Dt

cTbcf = Tb,c+tf for every t ∈ R.

Proof. Writing Tbcf explicitly, it is easy to see that the proof can be verified in the same
way as in [5, Lemma 2.3]. Thus we omit the details. �

We also need the following result of [4].

Corollary 3.5 ([4, Corollary 3.6]). If Tbc : Lp
α → Lq

β is bounded and f ∈ Lp
α, then

g = Tbcf is harmonic on B. If also q < ∞, then β > −1. Therefore Tbc : Lp
α → bq

β

when it is bounded with β > −1 and q < ∞. Moreover, if β ≤ −1 and q < ∞, then
Tbc : Lp

α → Lq
β is not bounded. On the other hand, if Tbc : Lp

α → L∞ is bounded and
f ∈ Lp

α, then g = Tbcf ∈ h∞. Finally, if Tbc : Lp
α → L∞

β is bounded, f ∈ Lp
α, and β > 0

then g = Tbcf ∈ b∞
β . Moreover, if β < 0, then Tbc : Lp

α → L∞
β is not bounded.

Second Necessary Condition. We assume that Tbc is bounded and the first necessary
condition holds, and then we apply Theorem 1.4. Let f ∈ Lp

α. We first show also f ∈ L1
b

in order to able to use Lemma 3.4. In the first case 1 < p < ∞, by the Hölder inequality,
we have

∥f∥L1
b

= Vα

Vb

∫
B

|f(x)|(1 − |x|2)b−αdνα(x)

. ∥f∥Lp
α

(∫
B
(1 − |x|2)(b−α)p′

dνα(x)
)1/p′

< ∞,
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where the last inequality holds because (b − α)p′ + α = p(1+b)−(α+p)
p−1 > 1+α−(α+p)

p−1 = −1 by
the already obtained first necessary condition. In the second case p = 1, we have α ≤ b by
the first necessary condition and thus f ∈ L1

b by (3.1). In the third case p = ∞, f ∈ L∞
α

and the first necessary condition gives −1 < b − α; thus

∥f∥L1
b

= 1
Vb

∫
B
(1 − |x|2)α|f(x)|(1 − |x|2)b−αdν(x)

. ∥f∥L∞
α

(∫
B
(1 − |x|2)b−αdν(x)

)
< ∞

and f ∈ L1
b again.

Now consider the composition of bounded maps

Lp
α

Tbc
−−−−→ bq

β

D−β/q
c

−−−−→ bq
0,

where Lemma 2.4 (i) is used. With Lp
α ⊂ L1

b at hand from the above arguments, this
composition equals Tb,c−β/q by Lemma 3.4. We conclude that Tb,c−β/q : Lp

α → Lq is
bounded by Corollary 3.5. Hence we obtain the third inequalities in all parts of the
theorem with c − β/q in place of c and 0 in place of β. But these are precisely the same
third inequalities in all parts of the theorem.

Sufficiency. We assume that the three inequalities in all parts of the theorem hold.
Notice that the third inequality is equivalent to that with c replaced by c − β/q and β
by 0 such as in the above paragraph. Now Theorem 1.4 and Corollary 3.5 imply that
Tb,c−β/q : Lp

α → Lq ∩ h(B) = bq is bounded. Then the composition of maps

Lp
α

Tb,c−β/q
−−−−→ bq

Dβ/q
c−β/q

−−−−→ bq
β

is also bounded by Lemma 2.4 (i). As in the proof of the second necessary condition above,
we have Lp

α ⊂ L1
b . Thus by Lemma 3.4, this composition equals Tbc : Lp

α → bq
β. �

4. Proofs of Theorems 1.2 and 1.3
In this section, we prove Theorems 1.2 and 1.3. Once more we call the second and third

inequality in each of the three parts of Theorems 1.2 and 1.3 the first and second necessary
condition, respectively.

Proof of Theorem 1.2. Let b, c, α, β ∈ R and 1 ≤ p ≤ q = ∞. First Necessary Condi-
tion. Assume that Tbc is bounded from Lp

α to b∞
β . We argue as in the proof of Theorem

1.1. We divide the proof in same three cases depending on the value of p and use the same
test functions fuv for each case obtaining Tbcfuv ∈ b∞

β . Then Tbcfuv(0) ∈ C. Thus the
second inequality in all parts of the theorem can be verified by repeating the first part of
the above proof.

Second Necessary Condition. We assume that Tbc is bounded and the first necessary
condition holds, and then we use Theorem 1.5. Let f ∈ Lp

α. With making small modifica-
tions in the second necessary part of above proof one can easily verify f ∈ L1

b again.
Now consider the composition of bounded maps

Lp
α

Tbc

−−−−→ b∞
β

D−β+1
c

−−−−→ b∞
1 ,

where this time Lemma 2.4 (ii) is used. With Lp
α ⊂ L1

b at hand, the composition equals
Tb,c−β+1 by Lemma 3.4. We conclude that Tb,c−β+1 : Lp

α → L∞
1 is bounded by Corollary

3.5. The third inequalities in Theorem 1.5 with c − β + 1 in place of c and 1 in place of β
give the third inequalities in Theorem 1.2.

Sufficiency. We assume that the three inequalities in all parts of the theorem hold.
Notice that the third inequality is equivalent to that with c replaced by c − β + 1 and
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β by 1 such as in the above paragraph. Now Theorem 1.5 and Corollary 3.5 imply that
Tb,c−β+1 : Lp

α → L∞
1 ∩ h(B) = b∞

1 is bounded. Then the composition of maps

Lp
α

Tb,c−β+1
−−−−→ b∞

1

Dβ−1
c−β+1

−−−−→ b∞
β

is also bounded by Lemma 2.4 (ii). The second inequality in all parts of the theorem such
as in the proof of second necessity condition mentioned already yields Lp

α ⊂ L1
b . Thus by

Lemma 3.4, this composition equals Tbc : Lp
α → b∞

β is bounded. �

Proof of Theorem 1.3. Assume that Tbc : Lp
α → h∞ is bounded. Then since h∞ ⊂ L∞

with the same norms, Tbc : Lp
α → L∞ is also bounded. Therefore Theorem 1.5 implies the

two necessary conditions in all three parts of the theorem hold.
Conversely, if both first and second necessary condition in all three parts of the theorem

hold, then Tbc : Lp
α → L∞ is bounded by Theorem 1.5. But Corollary 3.5 shows that the

range of Tbc lies in h∞ rendering Tbc : Lp
α → h∞ is bounded. �

Finally, a question runs through one’s mind whether or not our results on weighted
spaces can be obtained from those on unweighted spaces with α = β = 0. It turns out
that they can and we now explain how. We assume that Theorems 1.1 and 1.2 are proved
in the case α = β = 0 and we obtain them in the general case with nonzero α, β. We
go into details only for part (i) of Theorem 1.1. We need some results from the previous
sections whose proofs are independent of the proofs of our main results. Let Mv denotes the
operator of multiplication by (1 − |x|2)v. Obviously, M−α/p : Lp → Lp

α is an isomorphism.
Now, we will consider the sequence of the bounded maps

Lp
M−α/p

−−−−→ Lp
α

Tbc
−−−−→ bq

β

D−β/q
c

−−−−→ bq,

where the last map is also an isomorphism by Lemma 2.4 (i). The composition of these
maps is Tb−α/p,c−β/q : Lp → bq by Lemma 3.4, and it is bounded if and only if the second
map Tbc : Lp

α → bq
β is bounded. By assumption, the composition is bounded if and only if

1 < p(b + 1) − α and c − β

q
≤ b − α

p
+ n(1

q
− 1

p
),

which are nothing but the inequalities in part (i) of Theorem 1.1.
However, our proofs are not simplified significantly with α = β = 0. The classifications

in Theorems 1.1–1.5 are according to p, q and there seems to be no simple way of reducing
them to fewer parts, because the inequalities in all seven parts can change between < and
≤ without any apparent reason with p, q.
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