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ABSTRACT Synchronous behavior brings advantages for complex systems. Yet, this advantage comes with
a cost: Emergence and sustainability of synchronization requires a continuous exchange among the interact-
ing units. Thus, networks with optimal synchronization dynamics is a subject of active research. In this study,
we define a cost function for synchronization which takes into account both the network structure which is
embedded in space and the dynamic coupling within the system. Beginning from a fully connected network
and using an edge pruning strategy based on simulated annealing, we searched for optimal configurations
for synchronization with minimum cost. We observed that the same levels of synchronization with a fully
connected network can be reached by different networks with sparse connections. We conclude that the
chain structure, clustering behavior and degree-frequency relations are the main determinants of optimally
synchronizable network structures.

INDEX TERMS Complex systems, Kuramoto model, oscillator, network, synchronization.

I. INTRODUCTION
Synchronization is ubiquitous in nature. Synchrony among
individuals is essential for the harmony and sustainability of
the social systems [1], [2]. On the other hand, message and
information passing might be optimized via synchronization
in biological systems [3]. Nonetheless, synchronization is
a costly process, since it requires a continuous exchange
of information, material etc. between the units of complex
systems. Thus, if synchronous behavior is a common theme
among living systems, then it should have brought an evolu-
tionary advantage over selective pressures. And in the sequel,
this should have been accomplished in an optimal way in
terms of energy expenditure and resource allocation.

Topological structure plays a central role in the synchro-
nizability of a complex network [4], [5]. Previous research
has shown that synchronizability of a complex network is
dependent on the effective coupling among oscillators [6],
and synchronization is enhanced in weighted networks where
weighting procedure depends on the global network struc-
ture [7]. Adaptively updating the coupling strengths based on
the local synchronization properties also has a positive effect
on the complete synchronization of the network [8].
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In real world problems, optimizing synchronization under
topological constraints is a major concern [9]. The synchro-
nization cost of coupled systems has been investigated in a
number of studies. Using a dynamic cost function, it was
demonstrated that synchronization cost was minimized in a
network topology with rich club organization [10]. In another
study [11], by employing a rewiring based strategy, the wiring
rules for optimal synchronization of a network of nonidentical
oscillators were shown to be dependent on the native frequen-
cies of the oscillators.

An analysis based on the Laplacian matrix of the graph
of oscillators demonstrated that the synchronizability of the
network depended on the mean degree of the nodes [12].
Using a cost function derived from this synchronizability
concept, and introducing a spatial embedding for the network,
it was shown that spatial clustering and network modularity
were the main determinants of optimal configurations for
synchronization [13].

In the current study, we will base our framework on the
classical Kuramoto Model [14], with the addition of a spatial
dimension. Kuramoto Model is a widely used model for ana-
lyzing the synchronization behavior of a system of interacting
particles [15], [16]. It faithfully reproduces many of the syn-
chronization related phenomena [17]. The model is built on a
set of coupled oscillators whose states are represented by their
phases. The model is simple and mathematically tractable,
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yet it demonstrates enough complexity to generate various
synchronization patterns [18].

The main contributions of this paper are as follows:
(1) To relate synchronization behavior to cost, we intro-

duce a function which depends on the actual interactions
between the oscillators as in [10], but which also takes into
account spatial embedding as in [13]. Hence, we consider
both the static and dynamic aspects of coupling. We calculate
the static cost from the network structure and couple this with
the dynamic cost which we calculate from the simulations
running on this network.

(2) We use both discrete and continuous spatial
coordinates.

(3) Rather than fixing the number of edges beforehand,
we adopt a pruning based strategy, and start with a fully con-
nected network. We employ a modified version of simulated
annealing algorithm [19] and we prune the edges as long as
the network can reach the same level of synchronization with
less cost. Hence, our approach is more general than rewiring
based strategies.

(4) We make a comprehensive analysis regarding the inter-
play between synchronization, coupling cost and network
structure by employing the techniques of graph analysis.

The rest of the paper is organized as follows: We first
present a short summary of the Kuramoto Model. Then we
define a spatial embedding for the oscillators and introduce
the function that we will use to measure synchronization
cost. After explaining the basic graph notions that we will
need to characterise the networks, we will place the oscil-
lators on a fully coupled network and observe its evolution
by pruning the edges with the condition of decreasing the
cost for synchronizability. The results concerning the rela-
tionships between synchronization dynamics and network
structure will be followed by our conclusions from these
results.

II. METHODS
A. KURAMOTO MODEL WITH A SPATIAL EMBEDDING
The Kuramoto model takes each unit of a multi-particle
system as an oscillator whose state is defined solely by its
angular phase (θn). Each particle has an intrinsic angular
frequency (ωn). Accordingly, the oscillators rotate at their
own pace when there is no coupling among them. In this
study, we place N oscillators on the nodes of a graph. The
topology of the graph determines the connectivity between
the nodes. Kuramotomodel places a coupling function among
the oscillators which is a function of the phase difference
between the oscillators:

θ̇n = ωn +
K
〈k〉

∑
m

amn sin(θm − θn) (1)

where, amn is 1 if there is an edge between the nodes m
and n, (i.e. node m is a neighbor of node n), 0 otherwise. K
is the constant determining the coupling strength, 〈k〉 is the
average degree of the graph. In this model, each oscillator
takes an input from its direct neighbors, and its instantaneous

frequency is determined by both its intrinsic frequency and
the continuous input from the neighbors. Because of the
choice of the interaction function, when the oscillators are
completely in-phase or anti-phase, interaction function van-
ishes. However, in the anti-phase situation the phases repel
each other, whereas when the oscillators are close to be
in-phase they are pulled together. Thus, the model in whole
creates a single stable attractor for the phases. The cou-
pling strength K is the basic parameter that determines the
behaviour of the oscillators. When this parameter is below a
critical value, the oscillators mainly behave according to their
intrinsic angular frequencies, whereas when this parameter
approaches a critical value, oscillators are pulled together,
and phase synchronization begins to emerge. In the orig-
inal Kuramoto Model, where a complete graph is investi-
gated, the coupling strength is normalized by the number
of nodes, N. But in this study, we opted to normalize the
coupling strength by average degree, since our pruning strat-
egy will generate a heterogeneous degree distribution. It has
been shown that this form of normalization makes the cou-
pling strengths symmetric and weighs all links equally for
non-globally coupled networks [20], [21].

KuramotoModel gives us a measure for observing the syn-
chronization behavior of the oscillators: The order parameter
r and the average phase ψ represents the global synchroniza-
tion of the oscillators:

reiψ =
1
N

N∑
j=1

eiθj . (2)

Actually, r corresponds to the vector sum of the oscillator
phases distributed across the unit circle. r being close to 1 is
an indicator of global synchronization. With the introduction
of the order parameter, Eq. (1) may be re-written as,

θ̇n = ωn +
K
〈k〉

Nr sin(ψ − θn) (3)

This equation more clearly expresses the relationship
between the mean field described by r and ψ , and individ-
ual oscillators: The oscillators whose intrinsic frequencies
are lower (higher) than the average phase velocity will be
accelerated (decelerated) to keep the oscillators at the same
pace. If (1) is written for all oscillators and summed up, then,∑

n

θ̇n =
∑
n

ωn (4)

is obtained. This equation tells us that the total phase velocity
of the system is constant and completely determined by the
initial intrinsic frequencies of the oscillators. What changes
as the model evolves is the distribution of this total velocity
among the oscillators. With the emergence of synchroniza-
tion, phase velocity of the oscillators converge and this com-
mon phase velocity may be written as,

θ̇ =
1
N

N∑
i=1

ωn, (5)
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Accordingly, all the oscillators in the group would begin to
rotate at this velocity, and this is accomplished by the constant
exchange of coupling between the oscillators, which is repre-
sented by the second term of Eq.(1). If we denote this second
term as Cn, then Eq.(1) can be written as, θ̇n = ωn + Cn.
Please note that, the global phase velocity of the oscillators
given by Eq. (5) is also the minimizer of a cost function, C ,
which might be defined as, C = 1

N

∑N
i=1 C

2
n . This gives us

the intuition that the synchronization process might also be
seen as the minimization process of the exchange cost among
the interacting units. But it should be noted that the cost func-
tion defined above depends on the variance of the intrinsic
frequencies of the oscillators. So, the initial variance of the
oscillators determines the minimum value of this coupling
cost.

In [10], a simple cost metric based on the phase difference
between oscillators was proposed. Similarly, we will define
the dynamic part of the cost function, Jd , directly from the
coupling term in the model:

Jd =
∑
m,n

amn sin2(θm − θn) (6)

This function gives us the actual rate of exchange between
the interacting particles. This interaction takes place in a
network, and the cost of this network depends on two fac-
tors: The total length of wire to create this network (wiring
cost) and the total signal carriage capacity of this network,
which depends on K . About the latter, since K is normalized
with 〈k〉, the total amount of coupling signal stays the same
for all networks with the same number of nodes, regardless
of the edge density. So, as the number of edges in a network
decreases (increases), maximum amount of interaction signal
running through the individual edges will increase (decrease).
This is needed to make the networks with different number
of edges comparable. To take into account the former fac-
tor, we will impose a spatial embedding for the graph of
oscillators. This would allow us to define a distance metric.
Thence, all of the interactions between the oscillators would
take place on this spatial coordinate system, and the distance
between the two oscillators, dmn, is the length of the path that
should be traversed to reach from one to the other. Thereby,
we can now define a static cost function, Js, between the
oscillators:

Js =
K
〈k〉

∑
m,n

dmn. (7)

This function can be interpreted as the infrastructure cost.
When the structure of a network is settled, the static part of the
coupling cost is determined and the dynamic part will depend
on the nodal dynamics, i.e. phases and phase velocities. The
static and dynamic part of the cost can be brought together to
define the total coupling cost:

J = αJd + (1− α)Js, (8)

where α determines the relative weights of these cost func-
tions. α = 0 will give a cost function which just depends on

the network structure, whereas α = 1 ignores the structural
costs.

In this study, we employ two metric spaces for the graph:
First one is discrete in which we place the oscillators ran-
domly on a unit circle equidistantly. Thus, N nodes are
placed 1/N units apart, and all the connections between the
nodes will be throughout this unit circle. The second metric
space we use is continuous in which we place the oscillators
randomly on a unit square plane. Accordingly, the distance
between the oscillators will be given by the Euclidean dis-
tance between them.

B. PRUNING STRATEGY
We will consider undirected graphs without any self loops.
We start with complete graphs in which all the nodes are
connected to each other. By choosing a suitable value for
the coupling constant K , we calculate the order parameter
r and the sychronization cost J for the complete network.
Afterwards, we resort to a modified simulated annealing
procedure as described in [19]:We remove randomly selected
edges from the network. The number of the removed edges is
randomly chosen from an exponential distribution. So, we get
a candidate graph for next iteration. We reject this candi-
date graph if it is disconnected, i.e. if there are some nodes
which are unreachable from the rest of the nodes. If the
network is connected then we let the network evolve, and
calculate the order parameter and the synchronization cost
for this network. For this candidate graph to be acceptable,
first of all, its order parameter should be greater than or
equal to the complete graph. This requirement is for to
ensure that the synchronization capacity of the network is
not adversely affected as we remove the edges from the
graph. If this requirement is met, then we check the synchro-
nization cost. If this cost is less than the previously stored
cost, then we accept this candidate graph. If the cost is the
least cost that have been encountered during the simulations
then we store it as the best cost and, the candidate graph
as the best graph. If the cost is not less than the previous
cost, then we accept the candidate with probability p =
min[1, 1 − (1 − q)δJ/T ]1/(1−q)] [22]. δJ is the cost differ-
ence, q is a parameter which we take as −3 since this value
was shown to give the fastest convergence rate [19], and
T is the temperature parameter that controls the acceptance
probability.

At the start of the simulations we kept the temperature
at T = ∞ for N iterations and, after N iterations we
update T as T = (1 − q)δJmax . Afterwards, we decrease the
temperature after each iteration that ended with an accepted
graph, by multiplying T by 0.98. If no successful prun-
ing attempts could be made for 5N iterations, then we
randomly add N/2 edges to the graph. We observed that
re-adding previously deleted edges to the graph might be
beneficial for the algorithm to better explore the edge com-
binations for cost minimization. We terminated the pruning
process if there is no successful pruning attempts for 10N
iterations.

VOLUME 7, 2019 159315



K. Çiftçi: Synchronization Cost of Coupled Oscillators With a Spatial Embedding

FIGURE 1. Normalized cost for different runs with the same initial
network parameters. The figure shows the evolution of best cost. The
same network parameters generates very similar final cost values.

C. SIMULATIONS
The simulations were all implemented on the Python3 plat-
form, using the custom written codes with the inclusion of
Networkx package [23]. The network size was varied in the
range (32, 64, and 96). Larger network sizes were tested
but because of the computational complexity, full analyses
were not implemented and only some representative values
were collected. Here, we present the results for the networks
with 96 nodes, but the results we have obtained for lower
and higher network sizes were quantitatively very similar and
qualitatively almost the same.

The initial phases of the oscillators were randomly selected
from a uniform distribution between−π and π , and the initial
angular velocities of the oscillators were randomly selected
from unit normal distribution.We randomly selected the posi-
tions of the oscillators from the corresponding continuous and
discrete coordinate systems.

During the simulations, after the initialization for each
candidate pruned network, we evolved the oscillator phases
according to theKuramotoModel, using Euler approximation
with time steps of 1 ms. We let the network evolve and calcu-
late the statistics after the convergence of the order parame-
ter. α value was chosen as α ∈ (1.0, 0.8, 0.6, 0.4, 0.2, 0.0)
to observe the change in the network behavior with the
change of the relative weights of static and dynamic
costs.

FIGURE 2. Normalized cumulative degree histogram for A) Square
topology, B) Circular topology, for different values of α. Node degree
distribution becomes more homogeneous as dynamic costs gain
importance.

For each value of α we initialized the network 100 times
and for each initialization we repeated the procedure for 10
times with the same initial values.

III. RESULTS AND DISCUSSION
A. CONVERGENCE CHARACTERISTICS
First question that we would like to answer was whether this
procedure had given us consistent results or not. Since the
dimension of the search space (number of combinations for
edge pruning) is very high, it might not have been possible
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FIGURE 3. Average length of chains in the networks for different values
of α. As dynamic costs become more prevalent, number of high-degree
nodes decreases and average length of chains in the network increases.

to end up with the same final network. Yet, if we arrive at
networks with similar final costs then we might confidently
deduce that for a given phase and coordinate distribution, our
approach selects the networks which are synchronizable as
efficiently as fully connected networks, but with the added
advantage of less cost. To probe a light on this issue, we com-
pared the variation of synchronization cost of ten networks for
the same initial phase and coordinate values.

Figure 1 shows that although the path differs from trial
to trial, the final networks has very similar costs. When
we checked the edge-by-edge similarity of the networks,
we couldn’t observe high correlations between the networks.
Hence, we can conclude that although the pruned networks
are not exactly the same across trials, our pruning strategy
returns us optimal networks in terms of synchronization.
Thus, now the question is whether these networks exhibit
some generalizable common structural properties or not.

B. DEGREE DISTRIBUTIONS
Degree distribution of the nodes is a major factor determining
the structure of a network. Therefore, we first compared the
degree distributions of the networks obtained for each value
of α, where α = 0 corresponds to a fully static cost function,
and α = 1 corresponds to a fully dynamic cost function.
In Figure 2, it may be observed that as the relative weight
shifts from static to dynamic, the normalized cumulative

FIGURE 4. Average shortest path length with respect to α. When the
wiring costs are more dominant, network tries to minimize the path
lengths during synchronization. As dynamic interactions begin to prevail,
network prefers longer average path lengths. This is inline with the
increase in the average length of chains.

probability distribution function shifts left, meaning that the
number of high degree nodes decreases. This shift in degree
distribution also reflects the change in the network structure:
When static costs are more dominant central nodes with
high degrees emerge which corresponds to a star-like pattern,
whereas when the dynamic interactions between the nodes
gain importance these high-degree nodes disappear with the
network driven into a more chain-like structure. To be able to
quantify this, we measured the average length of the chains
in the networks. Figure 3 clearly demonstrates this trend.
This shift in degree distribution is also an indication that
node degrees become more homogeneous with increasing α.
It was earlier shown that homogeneity of the node degrees
was better for the sychronizability of the networks [12].

C. PATH LENGTH, CLUSTERING, AND BETWEENNESS
Average shortest path length and average clustering coef-
ficient are the two main parameters used to characterize
the structure of a network. Average shortest path length is
the average shortest distance between all pairs of nodes
in a network, and average clustering coefficient measures
the average level of connectedness among the neighbors of
nodes. This latter parameter gives information about the local
structure of the network, whereas the former provides us with
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FIGURE 5. Average clustering with respect to α. Nodes are driven into a
more clustered structure when static costs are more determinant. This
clustering behaviour disappears as dynamic aspects of the
synchronization cost become more prominent.

an insight about the global structure. We naturally expect to
see a decrease in path lengths as the network cost moves
from dynamic to static and Figure 4 shows that this is indeed
the case. The average clustering values for both topologies
can be observed in Figure 5. Please note that because of the
discrete nature of the circular topology, the coordinates of
the oscillators stay fixed for all networks, but the intrinsic
frequencies alter, whereas for square topology, since the coor-
dinate system is continuous, both coordinates and intrinsic
frequencies of the oscillators differ between networks. Thus,
we might expect to have more statistical fluctuations for the
square topology, and this is evident in the figures. Yet, for
both coordinate systems, average clustering decreases for
increasing values of α. But, this decrease is not monotonic,
and there is a local increase at around α = 0.5. This shows
that for low and high values of α, the results are more consis-
tent, but for intermediate values, where the dynamic and static
costs are almost equally balanced the statistical uncertainity
is higher.

The observed decrease in the average clustering coefficient
means that when the wiring costs are ignored, oscillators
exhibit a non-clustered behavior for optimal synchronization,
but when wiring costs are included network tries to form
a more clustered structure. Accordingly, the synchronizable
networks with minimum wiring costs are characterized by

FIGURE 6. Average betweenness centrality increases for increasing
values of α. An increase in betweenness is preferred by the network to be
able to minimize the cost of dynamic interactions between the oscillators.
Betweenness values are given as percentages.

small average path lengths and high clustering coefficients.
These results are in line with previous studies [13] and point
to the fact that network structure evolves to a small-world
topology in this case [24]. But when the actual dynamic
couplings become more dominant then the path lengths
increase and clusters disappear. It was earlier demonstrated
that increased clustering hinders global synchronization [20].

A third measure that will highlight the structure of the
cost optimized networks is the betweenness centrality. This
parameter measures the number of shortest paths passing
through a node. Previous studies have shown that between-
ness centrality is inversely related with the static synchroniza-
tion cost [19]. Here, we see a similar trend and observe that as
the cost shifts from dynamic to static, betweenness centrality
of the network decreases. (Figure 6).

D. DEGREE AND FREQUENCY
Previous studies investigated the frequency relationships
between neighboring oscillators and it was found that adja-
cent oscillators should be anti-correlated for better syn-
chronization [11]. A measure to quantify the correlation of
frequencies between connected oscillators is given by [11]:

cω =

∑
i,j aij(ωi − 〈ω〉)(ωj − 〈ω〉)∑

i,j aij(ωi − 〈ω〉)2
. (9)
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FIGURE 7. cω measures the frequency correlation of neighboring
oscillators. Nodes become anti-correlated as the network is driven into
synchronization.

To see the evolution of this correlation measure during
the pruning of edges, we recorded the cost and cω during
simulations. Figure 7 shows a sample of these simulations and
demonstrates that decrease in cost goes alongwith an increase
in the anti-correlation between adjacent nodes. Thus, con-
necting oscillators with opposite frequency signs decreases
the synchronization cost of the network. We obtained sim-
ilar results for all networks and for all α values, and
we couldn’t observe any significant dependence on the
α values.
Another point that we would like to highlight is the

relationship between node degree and frequency. It has
been observed that synchronizable networks demonstrate a
positive correlation between degree and frequency magni-
tude [11]. To this end, we calculated the Pearson’s correlation
coefficient between the degree of nodes and their frequency
magnitudes. Figure 8 shows the average values of this cor-
relation. First observation is that this correlation is always
positive and it is higher for the square topology especially
for α values less than 0.5. And the highest values for this
correlation is obtained for intermediate values of α.

An important consideration in the investigation of net-
work structures is the degree assortativity. This parameter

FIGURE 8. Average correlation coefficient between degree and node
frequency magnitude is always positive for both topologies. High
frequency nodes have higher degrees than the low frequency nodes.

FIGURE 9. Average degree assortativity is negative for both topologies.
High degree nodes are generally connected to low degree nodes and vice
versa.

measures the preference of a node to attach to other nodes
with similar degrees. Investigation of this parameter might
supply us with additional knowledge on the synchrony cost
optimized network structures. Figure 9 shows that minimal
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cost synchronizable networks have small negative degree
assortativity coefficients, meaning that the high (low) degree
nodes of these networks generally prefer to make connections
with low (high) degree nodes.

IV. CONCLUSION
Synchronization makes a major contribution to collective
behavior. However, it is a costly process in terms of energy
expenditure, and optimizing energy consumption is one of
the major dimensions of evolution [25], [26]. The present
study is an effort to understand the interplay between network
structure, dynamics and synchronization cost.

We identified that amongst the synchronizable networks
at the same level, small world networks are the ones that
minimize the wiring cost. This was the cost that we labeled
as the static cost in this study. However, when we introduced
the dynamic aspects of the cost, i.e. actual couplings between
the interacting elements, the minimal cost network diverged
from small world connectivity and converged to a random
connectivity profile [27].

We found that the balance of the static and dynamic parts of
the cost function has a major effect on the resulting network
structure, which exhibits itself in the homogeneity of the
degree distributions, chain and path lengths, clustering and
betweenness centrality.

Other major results of the current study is that there is
an anti-correlation of frequencies between adjacent nodes
and there is a positive correlation between node degree and
frequency magnitude.

Some of these results have already been observed in pre-
vious studies. However, in those studies generally number
of nodes and edges are fixed and a rewiring based strat-
egy was applied to find optimally synchronizable network
(e.g. [13], [19]). On the other hand, in the present work we
have a very general approach: We started from a fully con-
nected network, and pruned the edges as long as the network
is synchronizable as good as the initial network, with less
cost. Thus, we have the opinion that the results we present
here will have a clarifying value to reveal the relationships
between network structure and dynamics of complex syn-
chronizable systems.

One of the possible directions for future work will be the
exploration of the effect of more complex topological config-
urations, like Sierpinski networks [28], on the synchroniza-
tion cost. Another line of research will be the investigation
of biological networks, particularly brain networks. This is
because brain regions have been shown to display neuronal
synchronization [29], and also brain has been conjectured
to be optimal in terms of wiring cost [30]. There are stud-
ies trying to adopt the Kuramoto Model to understand the
synchronization in the brain [31]. Thus, exploring whether
the brain is optimal or not in terms of synchronization cost
will be informative for understanding the mechanisms of
evident synchronization in the brain and other biological
networks.

In this work, we present a basic graph theoretical analy-
sis for understanding the interplay between network struc-
ture and synchronization. However, further research should
employ more sophisticated tools of graph theory, like the
identification of influential nodes in the network [32], [33].
By this way, it might be possible to build better connections
between the local and global properties of networks and their
synchronization profile.
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