SOME CONDITIONS ON STARLIKE AND CLOSE TO CONVEX FUNCTIONS

by

Ismet YILDIZ ${ }^{\text {a,* }}$, Hasan SAHIN ${ }^{a}$, and Oya MERT ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Mathematics, Faculty of Arts and Sciences, Duzce University, Duzce, Turkey ${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Arts and Sciences, Tekirdag Namik Kemal University, Tekirdag, Turkey
Original scientific paper https://doi.org/10.2298/TSCl22S2639Y

Many mathematical concepts are explained when viewed through complex function theory. We are here basically concerned with the form $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots . f(z) \in A, \quad f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ will be an analytic function in the open unit disc $U=\{z:|z|<1, z \in \mathbb{C}\}$ normalized by $f(0)=0$, $f^{\prime}(0)=1$. In this work, starlike functions and close-to-convex functions with order 1/4 have been studied according to the exact analytic requirements.
Key words: analytic function, univalent function, close to convex function, starlike function

Introduction

Let A be the class of analytic functions $f(z)$ in the unit disc $U=\{z:|z|<1, z \in \mathbb{C}\}$ normalized by:

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \text { for } f(0)=0, f^{\prime}(0)=1
$$

where S denotes the class of $f(z)$ functions in A which $f(z)$ is a univalent function. These $f(z) \in A$ functions lie in U as starlike of order $\alpha(0 \leq \alpha<1)$, such that:

$$
\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\alpha, \quad f(z) \in A \text { for all } z \in U=\{z:|z|<1, z \in \mathbb{C}\}
$$

In other words $f(z) \in S^{*}(\alpha)$. That is $f(z) \in S^{*}(\alpha)$ if and only if $z f^{\prime}(z) \in S^{*}(\alpha)$. If there is a convex function $g(z)$ that provides the following function, then the $f(z)$ is called close-to-convex. Let K^{*} be the class of close-to-convex:

$$
\operatorname{Re}\left[\frac{z f^{\prime}(z)}{g(z)}\right]>\alpha, \quad z \in U=\{z:|z|<1, z \in \mathbb{C}\}
$$

According to the definitions for the class starlike functions $S^{*}(\alpha)$ and complex functions $K(\alpha)$ which these functions are of α degree. We know that $f(z) \in K(\alpha)$ if and only if

[^0]$z f^{\prime}(z) \in S^{*}(\alpha)$ [1-5]. For the starlike function $f(z)$ with a degree $\alpha(0 \leq \alpha<1)$, we can give the following function as an example:
$$
f(z)=\frac{z}{1-z^{2}}=z \sum_{n=2}^{\infty} n z^{(2 n-1)} \in S^{*}
$$
where $f(U)$ is starlike region by origin and for the convex function $f(z)$ with $\alpha(0 \leq \alpha<1)$, we can give the following function as an example:
$$
f(z)=\frac{1}{2}, \quad \ln \left(\frac{1+z}{1-z}\right)=z+\sum_{n \geq 2}^{\infty} \not \frac{1}{2 n-1} z^{2 n-1} \in K \nVdash \nVdash \not
$$
which K is set of convex functions where $f(U)$ is convex region in complex plane.
Definition 1. Let $f \in f_{\alpha}$ with the relevant domain D. We denote by $P_{\alpha}(f)$ and our functions $p(z)=\alpha+p_{1} z+p_{2} z^{2}+\ldots$ that are regular in domain D and satisfy:
$$
\left[p(z), z p^{\prime}(z)\right] \in D \text { and } \operatorname{Re} f\left[p(z), z p^{\prime}(z)\right]>0
$$
when $z \in D$. Here the class $P_{\alpha}(f)$ is not empty since for any $f \in f_{\alpha}$ it is true that $p(z)=\alpha+p_{1} z \in P_{\alpha}(f)$ for $\left|p_{1}\right|$ sufficiently small (depends on f) [6].

Theorem 1. Let $p(z) \in A$ and suppose that there exists a point $z_{0} \in D$ such that:

$$
\begin{gathered}
\operatorname{Re} p(z)>0 \quad \text { for } \quad|z|<z_{0} \\
\operatorname{Rep}\left(z_{0}\right)=0 \quad \text { and } \quad p\left(z_{0}\right) \neq 0
\end{gathered}
$$

Then we have:

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k
$$

where k is real and $|k| \geq 1[7,8]$.
Lemma 1. Let $h(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ be analytic in the unit disc U and suppose that there exists a point $z_{0} \in U$ such that:

$$
\operatorname{Re} h(z)>0 \quad \text { and } \quad \operatorname{Re} h\left(z_{0}\right)=0
$$

Then we have [9]:

$$
z_{0} h^{\prime}\left(z_{0}\right) \leq-\frac{1}{2}\left[1+\left|h\left(z_{0}\right)\right|^{2}\right] \text { for }|z|<\left|z_{0}\right|
$$

Theorem 2 (Main Theorem 1). Let $f(z)$ and suppose that there exists a starlike function $g(z)$ such that:

$$
\operatorname{Re}\left\{\frac{z \cdot f^{\prime}(z)}{g(z)}\left[1+\frac{z \cdot f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right]\right\}>-\frac{1}{8}\left(1+\left|\frac{z f^{\prime}(z)}{f(z)}\right|^{2}\right)
$$

then $f(z)$ is a close-to-convex function of degree $1 / 4$ i.e $f(z) \in K^{*}(1 / 4)$.
Proof. Let put:

$$
h(z)=4\left[\frac{z f^{\prime}(z)}{g(z)}-\frac{3}{4}\right] \text { for } h(0)=1
$$

Then $h(z)$ is analytic in $|z|<1$ which satisfies the condition. Now by using $h(z)=4\left\{\left[z f^{\prime}(z)\right] /[g(z)]\right\}-3 / 4:$

$$
\begin{gathered}
h^{\prime}(z)=4\left\{\frac{\left[f^{\prime}(z)+z f^{\prime \prime}(z)\right] \cdot g(z)-g^{\prime}(z) z f^{\prime}(z)}{[g(z)]^{2}}\right\} \\
z h^{\prime}(z)=4\left[\frac{z f^{\prime}(z)}{g(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z f^{\prime}(z)}{g(z)}-\frac{z f^{\prime}(z)}{g(z)} \frac{z g^{\prime}(z)}{g(z)}\right]=4\left\{\frac{z f^{\prime}(z)}{g(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right]\right\} \\
\frac{1}{4} z h^{\prime}(z)=\left\{\frac{z f^{\prime}(z)}{g(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right]\right\}
\end{gathered}
$$

from $h(z)$ is analytic in U and $h(0)=1$ suppose that there exists a complex number $z_{0} \in U$ which satisfies the conditions of lemma and from here:

$$
\left\{\frac{z f^{\prime}(z)}{g(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right]\right\}=\frac{1}{4} z h^{\prime}(z)
$$

On the other hand, since the function $h(z)$ and the point $z_{0} \in|z|<1$ satisfy all conditions of Lemma 1, then we obtain:

$$
\operatorname{Re}\left(\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left\{\left(\left[1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z_{0} g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right] \leq-\frac{1}{8}\left(1+\mid h\left(\left.z_{0}\right|^{2}\right)\right)\right\}\right)=-\frac{1}{8}\left[1+\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{2}\right]\right.
$$

Therefore proof of theorem (Main Theorem 1) is completed.
Theorem 3. Let $f(z) \in A$, and suppose that there exist a starlike function $g(z)$ such that:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right]\right\}>-\frac{1}{2}\left(1+\left|\frac{z f^{\prime}(z)}{g(z)}\right|^{2}\right) \quad \text { for } \quad z_{0} \in|z|<1,
$$

then $f(z)$ is the close-to-convex, so $f(z) \in K *$.
Proof. If $h(z)=\left[z f^{\prime}(z)\right] /[g(z)]$ and $h(z)$ is analytic in U. By using $h(z)=\left[z f^{\prime}(z)\right] /[g(z)]$, we have

$$
\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left[1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right]=z_{0} h^{\prime}\left(z_{0}\right)
$$

Therefore, we obtain [9]:

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\left[1+\frac{z_{0} \cdot f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}-\frac{z g^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right]\right\}= \\
=z_{0} h^{\prime}\left(z_{0}\right) \leq-\frac{1}{2}\left(1+\left|h\left(z_{0}\right)^{2}\right|\right)=-\frac{1}{2}\left(1+\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{g\left(z_{0}\right)}\right|^{2}\right)
\end{gathered}
$$

Lemma 2. Let $h(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ be analytic in $|z|<1$ and (α which is $0<\alpha \leq 1 / 2$) be a positive real number. Then suppose that there exists a point $z_{0} \in|z|<1$ such that [10]:

$$
\begin{gathered}
\operatorname{Re} h(z)>\alpha \text { and } \operatorname{Reh}\left(z_{0}\right)=\alpha \text { and } h\left(z_{0}\right) \neq \alpha \text { for }|z|<\left|z_{0}\right| \\
\frac{z_{0} h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)} \leq-\frac{\alpha}{2(1-\alpha)}
\end{gathered}
$$

Lemma 3. Let $v(z)$ be a nonconstant analytic function in $|z|<1$ with $v(0)=0$. If $|v(z)|$ attaints its maximum value on the $|z|=r<1$ at z_{0}. Then [1]:

$$
z_{0} w^{\prime}\left(z_{0}\right)=k w(z) \text { where } k \geq 1 \text { is a real number. }
$$

Theorem 4. If $f(z) \in A$ satisfies the following inequality:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left[1+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>-\frac{\alpha^{2}}{4}(1-\alpha), \quad 0 \leq \alpha<2
$$

then $f(z) \in S^{*}(1 / 2)[11,12]$.
Theorem 5. If $f(z) \in A$ satisfies the following inequality [1, 11]:

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>0, \text { then } f(z) \in S^{*}\left(\frac{1}{2}\right)
$$

Theorem 6. Let $\alpha(0<\alpha \leq 1 / 3)$ is a positive real number and $f(z) \in A$. If:

$$
\operatorname{Re}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]>\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]-\frac{1}{6}
$$

then we have $f(z) \in S^{*}(1 / 4)$.
Proof. If $h(z)=\left[z f^{\prime}(z)\right] /[f(z)]$. Then $h(z)$ is analytic in $|z|<1$ and $h(0)=1$. Suppose that there exists a complex number $z_{0} \in|z|<1$ which satisfies the conditions:

$$
\operatorname{Reh}(z)>\frac{1}{4} \quad \text { and } \quad \operatorname{Reh}\left(z_{0}\right)=\frac{1}{4} \quad \text { and } \quad h\left(z_{0}\right) \neq \frac{1}{4} \quad \text { for }|z|<\left|z_{0}\right|
$$

Really, now using $h(z)=\left[z f^{\prime}(z)\right] /[f(z)]$, it follows that:

$$
\begin{gather*}
h^{\prime}(z)=\frac{\left[f^{\prime}(z)+z f^{\prime}(z)\right] f(z)-z\left[f^{\prime}(z)\right]^{2}}{[f(z)]^{2}} \\
z h^{\prime}(z)=\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z f^{\prime}(z)}{f(z)}-\frac{z f^{\prime}(z)}{f(z)} \frac{z f^{\prime}(z)}{f(z)} \tag{1}\\
\frac{z h^{\prime}(z)}{h(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \text { for } h(0)=\frac{z f^{\prime}(0)}{f(0)}=1
\end{gather*}
$$

Since the function $h(z)$ and $z_{0} \in|z|<1$ satisfy all conditions of Lemma 1 , therefore in view of $\left[z h^{\prime}(z)\right] /[h(z)]$ and (1), it gives:

$$
\operatorname{Re}\left[1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right]=\operatorname{Re}\left[\frac{z_{0} h^{\prime}\left(z_{0}\right)}{h\left(z_{0}\right)}+h\left(z_{0}\right]\right.
$$

This is a contradiction and therefore proof of Theorem 6 is completed.
Theorem 7. Let $h(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ be analytic in $U=\{z:|z|<1\}$ and suppose that there exists $z_{0} \in U$ such that $\operatorname{Re}[h(z)]>0$ for $|z|<\left|z_{0}\right|, \operatorname{Re}\left[h\left(z_{0}\right)\right]=0$. Then:

$$
z_{0} h^{\prime}\left(z_{0}\right) \leq-\frac{1}{4}\left[1+\left|h\left(z_{0}\right)\right|^{2}\right]
$$

Proof. Let's define $p(z)=2\{[1-h(z)] /[1+h(z)]\}$ function which satisfies the following conditions in its $|z|<\left|z_{0}\right|$ region $p(0)=0,|p(z)|<1$ and $\left|p\left(z_{0}\right)\right|=1$:

$$
p^{\prime}(z)=2 \frac{-h^{\prime}(z)\left[1+h(z)-h^{\prime}(z)\right][1-h(z)]}{[1+h(z)]^{2}}=\frac{-4 h^{\prime}(z)}{[1+h(z)]^{2}}
$$

from $\operatorname{Re} h(z)>0$ and $\operatorname{Re} h\left(z_{0}\right)=0$ for:

$$
\frac{z p^{\prime}(z)}{p(z)}=\frac{-4 z h^{\prime}(z)}{[1-h(z)][1+h(z)]} \geq 1
$$

or

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{-4 z_{0} h^{\prime}\left(z_{0}\right)}{\left[1-h\left(z_{0}\right)\right]\left[1+h\left(z_{0}\right)\right]} \geq 1
$$

for $|z|<\left|z_{0}\right|$. Therefore, we have $z_{0} h^{\prime}\left(z_{0}\right) \leq-1 / 4\left[1+\left|h\left(z_{0}\right)\right|^{2}\right]$.
Theorem 8. Let's assume that the function $f(z) \in A$ satisfies the conditions $f(z) f^{\prime}(z) \neq 0$ and:

$$
\operatorname{Re}\left\{\frac{z \cdot f^{\prime}(z)}{f(z)}\left[1+\frac{z \cdot f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>-\frac{1}{4}\left|\frac{z \cdot f^{\prime}(z)}{f(z)}\right|^{2} \quad \text { for } \quad 0<|z|<1
$$

then $f(z) \in S^{*}(1 / 4)$.
Proof. Let's define the function $h(z)=\left[2 z f^{\prime}(z)\right] /[f(z)]-1$ which holds $h(0)=1$. Using this value of $h(z)$, we can consider the following equality:

$$
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\left[1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right]\right\}=\operatorname{Re}\left\{\frac{1}{4} z_{0} h^{\prime}\left(z_{0}\right)+\frac{1}{8}\left[1+h\left(z_{0}\right)^{2}\right]\right\}
$$

where $z_{0} \in U$ is a complex number which satisfies $\operatorname{Re} h(z)>0$ for $|z|<\left|z_{0}\right|$ and $\operatorname{Re} h\left(z_{0}\right)=0$. By using relations $\operatorname{Re} h\left(z_{0}\right)=0, \quad z_{0} h^{\prime}\left(z_{o}\right) \leq-(1 / 4)\left[1+\left|h\left(z_{0}\right)\right|^{2}\right]$, the following inequality can be written:

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\left[1+\frac{z_{0} \cdot f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right]\right\} \leq-\frac{1}{8}\left[1+\left|h\left(z_{0}\right)\right|^{2}\right]-\frac{1}{8}\left|h\left(z_{0}\right)\right|^{2}+\frac{1}{8} \leq \\
\leq-\frac{1}{4}\left|h\left(z_{0}\right)\right|^{2} \leq-\frac{1}{4}\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|
\end{gathered}
$$

therefore, we have $\operatorname{Reh}(z)>0$ or $\operatorname{Re}\left[z f^{\prime}(z)\right] /[f(z)]>(1 / 4)$, so $f(z) \in S^{*}(1 / 4)$ [11].

Theorem 9 (Main Theorem 2). If $f(z) \in A$ is a function which satisfies the following conditions $z f^{\prime}(z) \neq 0$ and:

$$
\operatorname{Re}\left\{\frac{z \cdot f^{\prime}(z)}{f(z)}\left[1+\alpha \frac{z \cdot f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right\}>-\frac{\alpha}{8}(3-\alpha)(2-\alpha)(1-\alpha) \text { in } 0<|z|<1 \text { for } 0<\alpha<3
$$

then $f(z)$ is $1 / 4$ order starlike function. That is $f(z) \in S *(1 / 4)$.
Proof: Let's define $\left[z f^{\prime}(z)\right] /[f(z)]=[1-h(z)](\alpha / 4)+h(z)$ for $h(0)=1$, then the following equality can be written such that $\operatorname{Re} h(z)>0$ and $\operatorname{Re} h\left(z_{0}\right)=0$ for $|z|<\left|z_{0}\right|$. Then from here:

$$
\begin{gathered}
\frac{d}{d z} \frac{z f^{\prime}(z)}{f(z)}=\frac{f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{f^{\prime}(z)}{f(z)}-z\left(\frac{f^{\prime}(z)}{f(z)}\right)^{2}=\left(1-\frac{\alpha}{4}\right) h^{\prime}(z) \\
\frac{z f^{\prime}(z)}{f(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{z f^{\prime}(z)}{f(z)}-\left[\frac{z f^{\prime}(z)}{f(z)}\right]^{2}=\left(1-\frac{\alpha}{4}\right) z h^{\prime}(z) \\
\frac{z f^{\prime}(z)}{f(z)}\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right]=\left(1-\frac{\alpha}{4}\right) z h^{\prime}(z)
\end{gathered}
$$

Suppose that there exists a complex point $z_{0} \in|z|<1$ such that it satisfies the conditions $\operatorname{Re} h(z)>0$ and $\operatorname{Re} h\left(z_{0}\right)=0$ and Lemma 1, Lemma 2, and Lemma 3. Then we have:

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z_{0} \cdot f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\left[1+\alpha \frac{z_{0} \cdot f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right]\right\}= \\
=\operatorname{Re}\left\{\alpha\left(1-\frac{\alpha}{4}\right) z_{0} h^{\prime}\left(z_{0}\right)+\alpha\left(1-\frac{\alpha}{4}\right)^{2}[h(z)]^{2}+\left(1-\frac{\alpha}{4}\right)\left(\alpha^{2}+1-\alpha\right) h\left(z_{0}\right)+\frac{\alpha^{3}}{8}+(1-\alpha) \frac{\alpha}{4}\right\}
\end{gathered}
$$

If the relations $\operatorname{Re} h^{\prime}\left(z_{0}\right)=0$ and $z_{0} \operatorname{Re} h^{\prime}\left(z_{0}\right) \leq-(1 / 4)\left[1+\left|h\left(z_{0}\right)\right|^{2}\right]$ are used in the previous equation, then:

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{z_{0} \cdot f^{\prime}(z)}{f\left(z_{0}\right)}\left[1+\alpha \frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right]\right\}=\operatorname{Re}\left[\frac{z_{0} f^{\prime}(z)}{f\left(z_{0}\right)}\right] \operatorname{Re}\left[1+\alpha \frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right] \leq \\
\leq-\frac{\alpha}{4}\left(1-\frac{\alpha}{4}\right)\left(1+\left|h\left(z_{0}\right)\right|^{2}\right)-\alpha\left(1-\frac{\alpha}{4}\right)^{2}\left|h\left(z_{0}\right)\right|^{2}+\frac{\alpha^{3}}{8}+\frac{\alpha}{4}(1-\alpha) \leq \\
\quad \leq-\frac{\alpha}{4}\left(1-\frac{\alpha}{4}\right)+\frac{\alpha^{3}}{8}+\frac{\alpha}{4}(1-\alpha) \leq-\frac{\alpha^{3}}{8}(3-\alpha)(2-\alpha)(1-\alpha)
\end{gathered}
$$

$\operatorname{Re}\left[z \cdot f^{\prime}(z)\right] /[f(z)]>(\alpha / 4)$ is also obtained, which is $f(z) \in S^{*}(1 / 4)$.

Conclusion

Theorem 2 is improved from Theorem 9 because obtained results are:

$$
\begin{aligned}
& 0>-\frac{\alpha^{2}}{8}(1-\alpha)>-\frac{\alpha}{8}(3-\alpha)(2-\alpha)-(1-\alpha) \quad \text { when } \quad 0<\alpha<1 \\
& 0>-\frac{\alpha^{2}}{8}(1-\alpha)>-\frac{\alpha}{8}(3-\alpha)(2-\alpha)-(1-\alpha) \quad \text { when } \quad 1 \leq \alpha<2 \\
& 0>-\frac{\alpha^{2}}{8}(1-\alpha)>-\frac{\alpha}{8}(3-\alpha)(2-\alpha)-(1-\alpha) \quad \text { when } \quad 2 \leq \alpha<3
\end{aligned}
$$

References

[1] Nunokawa, M., et al., Sufficient Conditions for Starlikeness, Journal of Classical Analysis, 1 (2012), 4, pp 85-90
[2] Nunokawa, M., et al., Some Properties Concerning Close-to-Convexity of Certain Analytic Functions, Journal of Inequalities and Applications, 245 (2012), Oct., pp. 1-10
[3] Nunokaw, M., et al., Sufficient Conditions for Starlikeness, Chinese Journal of Mathematics, 24 (1996), 3, pp. 265-270
[4] Yildiz, I., et al., An Analytical Investigation on Starlikeness and Convexity Properties for Hypergeometric Functions, Turkish Journal of Mathematics, 44 (2020), 4, pp. 1453-1465
[5] Xu, Q-H., et al., Coefficient Estimates for Certain Subclasses of Analytic Functions of Complex Order, Taiwanese Journal of Mathematics, 15 (2011), 5, pp. 2377-2386
[6] Lewandowski, Z., et al., Generating Functions for Some Classes of Univalent Functions, Proceedings of the American Mathematical Society, 56 (1976), 1, pp. 111-117
[7] Nunokawa, M., On Properties of Non-Caratheodory Functions, Proceedings of the Japan Academy, 68 (1992), 6, pp. 152-153
[8] Sudharsan, T. V., et al., Third Hankel Determinant for a Subclass of Analytic Univalent Functions, Malaya J. Mat., 2 (2014), 4, pp. 438-444
[9] Liu, H., Sufficient Conditions for Certain Analytic Functions, Scholars Journal of Engineering and Technology (SJET), 2 (2014), 2B, pp. 243-246
[10] Guo, L., et al., On the Starlikeness for Certain Analytic Functions, International Journal of Mathematical Research, 1 (2012), 2, pp. 21-25
[11] Li, J., et al., Sufficient Conditions for Starlikeness, Indian Journal of Pure and Applied Mathematics, 33 (2002), 9, pp. 1385-1390
[12] Sokol, J., et al., On Some Sufficient Conditions for Univalence and Starlikeness, Journal of Inequalities and Applications, 282 (2012), 1, pp. 282-291

Copyright of Thermal Science is the property of Society of Thermal Engineers of Serbia and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.

[^0]: * Corresponding author, e-mail: ismetyildiz@duzce.edu.tr

