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a b s t r a c t

There is a growing interest in fractional calculus and Fractional Order (FO) system modeling in many
fields of science and engineering. Utilization of FO models in real-world applications requires practical
realization of FO elements. This study performs an analog circuit realization of approximate FO derivative
models based on Modified Stability Boundary Locus (M-SBL) fitting method. This study demonstrates a
low-cost and accurate analog circuit implementation of M-SBL fitting based approximate model of FO
derivative elements for industrial electronics. For this purpose, a 4th order approximate derivative trans-
fer function model of the M-SBL method is decomposed into the sum of first order low-pass filters form
by using Partial Fraction Expansion (PFE) method, and the analog circuit design of the approximate FO
derivative model is performed. Firstly, by using the final value theorem, authors theoretically show that
the time response of the sum of first order low-pass filter form can converge to the time response of frac-
tional order derivative operators. Then, the approximation performance of proposed FO derivative circuit
design is validated for various input waveforms such as sinusoidal, square and sawtooth waveforms via
Multisim simulations. Results indicate an accurate realization of the FO derivative in time response (an
RMSE of 0.0241). The derivative circuit realization of the M-SBL fitting model in the form of the sum
of first order low pass filters can yield a better time response approximation performance compared to
the Continued Fraction Expansion (CFE) based ladder network realization of the approximate derivative
circuit.
� 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fractional calculus allows more realistic representation of real-
world phenomena. Therefore, FO operator has been widely utilized
in the applied science and engineering problems for modeling pur-
poses, for instance in control systems [1–3], mechanics [4–6],
energy [7], material modeling [8,9], battery and capacitance [10–
12], chaos [13–15]. Although operators of fractional calculus pro-
vide more accurate modeling of real-world dynamics in compar-
ison with integer order counterparts, the implementation of the
FO derivative and integral operators is not as straightforward as
the implementation of integer order derivative and integral opera-
tors. A major complication in realization of the FO elements origi-
nates from the fact that FO operators perform non-local operation
and introduce a long-term, backward memory effect that considers
all past values of a function while processing the current value of
the derivative of the function. As processing long-term data, this
property causes continuously growing computational complexity
when implementing a near-ideal FO element in the digital systems
[16]. Even for the non-ideal experimental realization of fractional
elements, real-time computation efforts may need a faster digital
hardware such as the field programmable gate array (FPGA)
[15,17,18].

A practical and low-cost solution that copes with these digital
implementation problems came from realization options in the
form of analog circuits or engineered materials [16]. This point
became a central motivation for the analog realization of the FO
elements. Thus, a mixed-mode analog and digital design may deal
with digital realization complications of near-ideal FO models and
allows practical implementation of these models in daily life appli-
cations [16,19]. Numerous works have addressed the analog real-
ization of FO elements and systems: These studies have been
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mainly focused on the realization of the integer order approximate
transfer function models of the FO derivative or integral operators.
This methodology can be categorically referred to as indirect real-
ization methods because it has two stages: The first stage requires
obtaining an approximate model of the ideal FO elements by using
an integer order approximation method. In the second stage, the
approximate integer order model of the FO element is realized
by using an analog or digital design methodology. Direct realiza-
tion methods were applied by using engineered structures and
materials that directly yield desired FO responses [8,9,16,20–22].
Carbon black nanostructured dielectrics were shown to have a
wideband FO frequency response, and this effect has been utilized
for the realization of carbon black based FO capacitor elements
[21].

Analog realization studies of FO elements also known as frac-
tance devices [23] can be surveyed shortly in two folds: (i) The
works aiming discrete analog realization by using basic passive
(e.g., resistors, capacitors) and active (e.g., op-amp, OTA) elements
[23–38]. (ii) The works aiming Integrated Circuit (IC) realization of
FO elements [16,39–43]. The IC technology can provide higher
quality FO element realizations at the lower cost in case of mass
production. The discrete analog realization efforts were widely
implemented as ladder forms and Foster forms (based on PFE) in
the circuit design [19,34,37]. In analog design, CFE and PFE tech-
niques are commonly used to decompose the approximate models
into elementary function forms and implement them in the ladder
and Foster forms. The analog realization approaches, which benefit
from PFE method [19,25,29,34,36–38,44], have been studied for
the implementation of FO elements, and this analog design scheme
can indeed facilitate the analog realization of integer order transfer
function of several approximation methods. The main reason is
that a continuous-time analog signal can be expressed as the
sum of filter functions with a finite number of poles and zeros
[36]. The decomposition of a transfer function to partial fraction
terms is quite suitable for analog realization of the approximate
transfer functions of derivative elements. A comprehensive survey
of the analog realization methods, which are based on voltage and
current filter forms, and their applications have been elaborated
[19]. Recently, realization simplicity and performance improve-
ments by using PFE method have been reported [29,38,45]. These
results became a major motivation of the current study, and
authors initially aim to establish a theoretical background that val-
idates applicability of the suggested PFE form for FO derivative
realization. This theoretical work is a necessity to present a general
analog design framework for the dependable realization of all
derivative elements. To this end, authors theoretically demonstrate
suitability of the suggested partial fraction decomposition form to
converge FO derivative operators. After this theoretical validation,
approximate transfer function models of FO derivative elements
are decomposed into a sum of first order system models in parallel
by employing the suggested PFE form. Thus, each partial fraction
can be easily implemented by using the low-pass filter circuits
and combined by using a summing amplifier circuit to obtain an
analog derivate circuit.

The M-SBL fitting method is one of the contemporary integer
order approximation methods, which has been particularly pro-
posed for its implications in control system applications. The M-
SBL fitting method is proposed for further enhancement of the sta-
bility preservation property of the approximate integer order mod-
els. Therefore, M-SBL fitting method essentially considers the
matching of stability boundary locus curvatures of ideal FO trans-
fer functions and their approximate transfer function models in a
predefined frequency range [46]. To the best of our knowledge,
analog realization of M-SBL fitting method has not been studied
adequately. The current study illustrates an analog realization of
the approximate FO derivative functions that are produced by
2

using M-SBL fitting method. Accordingly, the approximate model
of the 4th order M-SBL fitting method is decomposed into the
sum of partial fraction terms, and each partial fraction is imple-
mented by a first order low-pass active filter that is realized by
using an LF347N opamp, two resistors and a capacitor. The imple-
mentation results are compared with the results obtained by ana-
log circuit realization of the fractance device based on 5th order
rational CFE approximation of s0.5 presented in [31]. The current
study is devoted to design and validation stages of the approximate
FO derivative circuits that are based on the M-SBL fitting method.

The main contributions of the study can be briefly explained as
follows:

* This study is the first demonstration for an analog circuit real-
ization of the M-SBL fitting based approximate FO derivative oper-
ators. The circuit configuration, which was designed suitable for FO
integral operators in the form of the sum of low-pass filters [38],
was modified to perform the approximate realization of FO deriva-
tive elements, and the proposed analog circuit design is used to
implement M-SBL fitting based approximate FO derivative
operators.

* Multisim simulation results validate the circuit design for func-
tional tests that were conducted for unit step, sinusoidal, square
and sawtooth input waveforms. Bode diagrams are presented to
validate operational performance of the circuit design. Results indi-
cate high consistency between results of the theoretical M-SBL
model and its analog circuit realizationwith the low-cost electronic
components. This advantage is an important step towards the
industrialization of FO elements [16]. Monte Carlo analysis was car-
ried out in the Multisim simulation environment, and the effects of
standard component tolerances on the circuit performance are
discussed.

* RMSE rates of unit step responses of 4th order models for CFE,
Matsuda and M-SBL approximation methods were compared for
the derivative s0.5 in the frequency range of x 2 ½0:01;100�. It is
firstly reported that the M-SBL fitting method can provide better
RMSE rates compared to CFE and Matsuda methods for implemen-
tation of the s0.5. Selection of the approximation method with the
lowest RMSE rate is important for the circuit realization.

* A comparative study to evaluate the analog realization perfor-
mance is conducted with 5th order derivative model of CFE
method, which was mentioned to perform better than the Ous-
taloup method in a former study [31]. It was observed that the
4th order derivative model of the M-SBL method for the derivative
s0.5 can provide a better realization performance even though its
model order is relatively lower.

* An effective analog circuit design form, which is the sum of 1st
order low pass filters, is investigated for PFE based realization of FO
derivative elements. Simulation results indicate that this realiza-
tion form is relatively more accurate and presents more design
flexibility compared to the ladder network based fractance realiza-
tion of the CFE method [31]. These properties can be advantageous
for the industrial use of FO elements.
2. Theoretical background

2.1. A brief survey of modified SBL method

The approximation methods allow low-complexity and practi-
cal realization of FO elements that can operate in a limited operat-
ing range of applications, and these methods have played a
substantial role in the development of FO control practice by
enabling the simulation and implementation of the FO models in
control systems. Some fundamental approximation methods,
which have been utilized in FO control applications, are Ous-
taloup’s method [47,48], CFE method [47,49], Matsuda’s method



Table 1
Stability states of the perturbed fractional order transfer function models and their
approximate models with M-SBL fitting method for x 2 ½0:01;10�.

Perturbed FO
Transfer Function

Original Transfer
Functions

Approximate Transfer Function
with M-SBL Method

Tf1 sð Þ ¼ 1
s0:8�1:2s0:6þ1

Stable Stable

Tf1ðsÞ ¼ 1
s0:8�1:4s0:6þ1

Stable Stable

Tf1ðsÞ ¼ 1
s0:8�1:6s0:6þ1

Unstable Unstable

Tf1ðsÞ ¼ 1
s0:8�1:8s0:6þ1

Unstable Unstable
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[47,50]. From the control applications point of view, the preserva-
tion of stability states between the approximate model and the
actual models is an important property. Therefore, an approxima-
tion method based on the matching stability boundary locus of
the approximate and actual models has been proposed, and this
approximation method is called the SBL fitting method due to
the enabling a better fitting between SBL curves of the approxi-
mate and actual models in a desired frequency range [51,52]. The
SBL fitting method can be used for the approximate modelling of
the FO transfer functions as well as FO integral and derivative ele-
ments. Later, a modified version of the SBL fitting method has been
suggested as an improvement of SBL fitting to better represent the
FO derivative operators [46].

Fig. 1 shows fitting of SBL curves of the fractional order deriva-
tive s0:5 and the resulting 4th order approximate transfer function
of the M-SBL method.

In this figure, overlapping of these SBL curves for all values of PI
controller coefficients kp and ki allows matching of time, frequency
and the stability responses of both models in a given frequency
range. Such matching of SBL curves of the FO operator and the
approximate models can allow matching of stability states of both
models. Thus, it can enhance the stability preservation in the real-
ization of FO elements. This property can be particularly useful for
FO controller realization for industrial control applications. Table 1
shows stability states for a series of original FO transfer function
models and their M-SBL fitting based approximate models. In the
case of slight parametric perturbations of the original function,
the matching of stability states indicates the existence of stability
preservation property for these systems.

Fig. 2 shows the frequency response matching performances of
M-SBL method, Matsuda method and CFE method. The magnitude
and phase matching performances of the M-SBL method are com-
parable with the other approximation methods (See Appendix B for
a Matlab code of SBL fitting method). It is also useful to consider
the frequency response approximation performances of these
methods when the order a values are very close to integer orders
{1,0,�1}. These methods can also be used for the approximate
implementation of almost-PID controllers that have fractional
order very close to 1 and �1. (See Appendix C to compare approx-
imation performances of the methods for FOs close to 1 and �1.)

A disadvantage of the M-SBL method is that the lower boundary
of the frequency range should be set close to zero rad/sec fre-
quency. For this reason, the M-SBL method is not effective when
the lower boundary of frequency range is shifted toward higher
frequencies.
Fig. 1. SBL curves of the FO derivative s0:5 and the 4th order approximate model of
the M-SBL fitting method in the frequency range of x 2 ½0:01;100�.

Fig. 2. Bode plots of the 4th order approximate models produced by using M-SBL
fitting method, Matsuda method and CFE method for the derivative element s0:5 in
the frequency range of x 2 ½0:01;100�.
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2.2. A general framework for fractional order approximate model
realization according to partial fraction decomposition technique

In the system theory, an s-domain model of the FO derivative
operation yðtÞ ¼ Daf ðtÞ is commonly written by the equation
YðsÞ ¼ saFðsÞ by using the Laplace transform, and the FO elements
are generally represented by means of dynamic system model of
the derivative operators, and they are expressed in the form of a
transfer function as [53]

Tf sð Þ ¼ Y sð Þ
F sð Þ ¼ sa; ð1Þ
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where the real number a 2 R represents the FO of the derivative
operator. (All initial conditions were assumed to be zero in Laplace
transform) One can obtain a order derivative of a given f ðtÞ function
by observing the dynamic system response of Tf ðsÞ function for the
input signal f ðtÞ. Thus, it is possible to implement FO derivative
operators by synthesizing suitable dynamic system models and
realizing them in the hardware forms. Fig. 3 shows a dynamic
system-based depiction of FO operators. For a > 0, the system
Tf ðsÞ performs a FO derivative operation, and for a < 0, the system
performs a FO integral operation. In the case of a ¼ 0, it results in
Tf ðsÞ ¼ 1, and this case does not perform any operation on the input
signal f ðtÞ.

A low-complexity approximate implementation of the transfer
function sa has been implemented by using n-th order integer-
order approximation functions in the rational form as [16],

sa ffi ansn þ an�1sn�1 þ an�2sn�2 þ ::::þ a2s2 þ a1sþ a0
bnsn þ bn�1sn�1 þ bn�2sn�2 þ ::::þ b2s2 þ b1sþ b0

ð2Þ

where the design coefficients are the numerator polynomial coeffi-
cients A ¼ ½an an�1 an�2:::a2 a1 a0� and the denominator polynomial
coefficients B ¼ ½bn bn�1 bn�2:::b2 b1 b0�. Optimal approximate inte-
ger order transfer function models of sa are widely based on the lim-
ited bandwidth frequency domain approximation techniques,
which commonly aim a possible solution of the following general-
ized optimization problem by using several techniques (e.g., series
expansion methods, pole and zero placement methods, curve fitting
methods).

min sa � ansn þ an�1sn�1 þ an�2sn�2 þ ::::þ a2s2 þ a1sþ a0

bnsn þ bn�1sn�1 þ bn�2sn�2 þ ::::þ b2s2 þ b1sþ b0

����
����
s¼jx

( )

ð3Þ
Some fundamental approximation methods such as Oustaloup’s

method, the CFE method, Matsuda’s method and the M-SBL fitting
method have been surveyed and compared in [46]. After obtaining
a satisfactory integer order transfer function approximation of FO
derivatives in the form of

Tm sð Þ ¼ ansn þ an�1sn�1 þ an�2sn�2 þ ::::þ a2s2 þ a1sþ a0
bnsn þ bn�1sn�1 þ bn�2sn�2 þ ::::þ b2s2 þ b1sþ b0

; ð4Þ

the next step involves implementation of this transfer function in
the software or hardware forms. Analog realizations of Oustaloup’s
method and CFE method have been elaborated in [30]. In the cur-
rent study, authors utilize the partial fraction decomposition
approach for the analog realization of those FO derivative approxi-
mation methods. Therefore, the PFE of TmðsÞ function is expressed in
the following general form:

Tm sð Þ ¼ r1
s� p1

þ r2
s� p2

þ r3
s� p3

þ ::þ rn�1

s� pn�1
þ rn
s� pn

þ k; ð5Þ

where the residues are written by the vector R ¼ ½rn rn�1 rn�2:::r2 r1�,
the poles are written by the vector P ¼ ½pn pn�1 pn�2:::p2 p1� and the
parameter k 2 R represents a direct gain [38,44]. In recent works,
there is a renewed interest in the partial fraction decomposition
form for analog circuit realization of FO elements. This form of par-
tial fraction decomposition has been utilized for passive circuit real-
ization, which was obtained to implement a FO integral operator
according to the CFE method [29]. The first and second order filter
Fig. 3. Transfer function modeling of the fractional order operators.
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realizations of different transfer functions by using PFE method
have been discussed by considering current and voltage mode cir-
cuits [44]. A notable property of Tm sð Þ function is that the PFE in
the form of Eq. (5) reduces the steady state approximation error
while converging to the time responses of the ideal FO derivative
elements. This important property theoretically demonstrates the
capability of the decomposition form to achieve the convergence
of time responses of the approximate model to the time response
of the ideal fractional derivative operators even for very long-
term computations. One can easily prove this convergence of the
Tm sð Þ function form by using the final value theorem (See Appendix
A for the proof of this property).

Practically, each partial fraction term ri= s� pið Þ can be imple-
mented by using a low-pass filter [38], and the direct gain term k
can be implemented by the wide-band operational amplifiers. To
realize the transfer function, the sum of the partial fraction terms
ri= s� pið Þ and the gain term k can be realized by using the sum-
ming amplifier circuits [38]. The function TmðsÞ for the nth order
approximate realization of the derivative elements can be
expressed in more compact form as [44]

Tm sð Þ ¼ kþ
Xn

i¼1

ri
s� pi

: ð6Þ

A general block diagram of this partial fraction decomposition
based analog realization approach is shown for the derivative ele-
ments in Fig. 4. A similar version of this circuit architecture for the
approximate FO integral realization by using opamp components
has been designed by Yuce et al. [38]. A passive circuit realization
of this form according to serial connection of RC passive filters has
been also considered for the integral operator realization by
Krishna [29].

3. Analog design and realization

3.1. Analog design of partial fraction terms

Analog design can be realized in a simplified way, which is sim-
ilar to the method mentioned in former studies [38,44]. Each first-
order partial fraction term ri= s� pið Þ can be implemented by using
a low-pass filter that is shown in Fig. 5a.

The transfer function of the circuit in Fig. 5a is written as [38]
Fig. 4. Transfer function modeling of the fractional order operators.



Fig. 5. a) The low-pass filter circuit used to implement first-order partial fraction terms; b) The inverting opamp circuit used to implement a direct gain term; c) The non-
inverting analog voltage summing circuit.
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Gf ;i sð Þ ¼ Vof ;i

V f
¼ �1= R1;iC1;i

� �
sþ 1

R2;iC1;i

: ð7Þ

To design the low-pass filter circuit and implement the term
ri= s� pið Þ, a design rule is widely drawn by equating the transfer
functions as

�
1

R1;iC1;i

sþ 1
R2;iC1;i

¼ ri
s� pi

ð8Þ

Then, the design rules can be obtained as riR1;iC1;i ¼ �1 and
piR2;iC1;i ¼ �1 by applying the coefficient matching technique. In
the case of an analog realization with discrete components, since
a precise configuration of the capacitor components is rather diffi-
cult, designers can select a standard capacitor value C1;i ¼ CS for
all filters, then the design rules for discrete analog realization can
be written for the determination of resistor values by

R1;i ¼ �1
CSri

and R2;i ¼ �1
CSpi

: ð9Þ

where partial decomposition yields ri < 0 and pi < 0. To implement
the direct gain k, an inverting operational amplifier circuit can be
5

used as shown in Fig. 5b. The figure shows a schematic of the invert-
ing operational amplifier. The transfer function of the inverting
operational amplifier circuit in Fig. 5b is written by [38]

GkðsÞ ¼ Vok

Vf
¼ �Rk2

Rk1
ð10Þ

To design the gain circuit, which implements the term k in the par-
tial fraction expansion, the transfer function of the amplifier circuit
is equated to the term k as follows:

�Rk2

Rk1
¼ k ð11Þ

For a convenient resistor value of Rk1, the value of Rk2 can be
obtained as

Rk2 ¼ kRk1j j ð12Þ
A classical summing amplifier circuit with the voltage inversion

can be used to add up all partial fraction terms. To implement the
sum block in Fig. 4, an inverting voltage summing amplifier circuit
is connected to an inverting amplifier circuit. Fig. 5c shows a sche-



M. Koseoglu, Furkan Nur Deniz, Baris Baykant Alagoz et al. Engineering Science and Technology, an International Journal 33 (2022)
matic diagram of the non-inverting summing amplifier circuit that
is used for the analog summing operation of voltages from the cir-
cuits that realize partial fraction terms.

By taking RS2 ¼ RS1, the output of the non-inverting summing
amplifier circuit in Fig. 5c is written by [38]
Vout ¼ Vof ;1 þ Vof ;2 þ :::þ Vof ;ðn�1Þ þ Vof ;ðnÞ þ Vok ð13Þ
When the entire sub-systems are connected according to the block
diagram in Fig. 4, the transfer function of the complete analog cir-
cuit (TmrðsÞ), which is the partial fraction decomposition form in
Eq. (6), can be expressed as
TmrðsÞ ¼ Vout

Vf
¼

Xn

i¼1

1
R1;iC1;i

sþ 1
R2;iC1;i

þ Rk2

Rk1
ð14Þ

Fig. 6 shows the analog circuit realization of the approximate FO
derivative function by using a wideband JFET input operational
amplifier LF347N in the Multisim simulation environment [54].
The LF347N is a low-cost operational amplifier that provides a
wider bandwidth and fast slew rates with the low input bias cur-
rents. These properties are very useful for real-world applications.
In the realization process, 741 opampwas also tested, however, the
LF347N was preferred as the active component due to its better
step and frequency response.

For a comparative analysis, analog ladder network realization of
5th order rational CFE approximation of s0.5 [31] is also imple-
mented in Multisim via two LF347N opamps. Results of circuits
are compared in the following section.
Fig. 6. A schematic of Multisim [54] analog circuit realization of the 4th order approxim
technique.
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3.2. Analog realization examples of approximate fractional order
derivative

Example Design: Let us design an analog circuit for 4th order
approximate transfer function of the derivative Tf ðsÞ ¼ s0:5 accord-
ing to the M-SBL fitting method to implement the FO derivative
operator D0:5f ðtÞ.

In realization studies, a demonstration for the order 0.5 has
been commonly preferred. Therefore, authors implement s0:5 to
perform a comparative study and demonstrate consistency of the
realization method for FO derivative elements. The M-SBL fitting
method yields an approximate transfer function model of the
derivative s0:5 for a frequency range x 2 ½0:01;100� rad/sec as

TmðsÞ ¼ 18:99s4 þ 655:5s3 þ 1301s2 þ 179:7sþ 1
s4 þ 179:7s3 þ 1301s2 þ 655:5sþ 18:99

ð15Þ

This function is decomposed as

TmðsÞ ¼ �2741:4948
sþ 172:2172

þ �15:6015
sþ 6:9900

þ �0:3048
sþ 0:5113

þ �0:0058
sþ 0:0308

þ 18:987 ð16Þ

where the residues are written by
R ¼ ½�2741:4948 � 15:6015 � 0:3048 � 0:0058�, the poles are
written by P ¼ ½�172:2172 � 6:9900 � 0:5113 � 0:0308� and the
direct gain parameter is k ¼ 18:987. Table 2 shows a list of the
design parameters for the predefined component values, which
are CS ¼ 10�6 F and Rk1 ¼ RS2 ¼ RS1 ¼ 103 O.

Fig. 7 shows step responses for the exact analytical solution of
the s0:5, 4th order approximate models of s0:5 according to the M-
SBL fitting method, Matsuda method, CFE method, and analog real-
ate FO derivative transfer function according to the partial fraction decomposition



Table 2
The passive component values for 4th order approximate realization of Tf ðsÞ ¼ s0:5

according to M-SBL fitting method.

Term
Index

Component Values Partial Fraction
Expansion Terms

1 C1;1 ¼ 10�6F, R1;1 ¼ 364:76 O,

R2;1 ¼ 5:81 � 103O

�2741:4948
sþ172:2172

2 C1;2 ¼ 10�6F, R1;2 ¼ 6:41 � 104O,

R2;2 ¼ 1:43 � 105 O

�15:6015
sþ6:9900

3 C1;3 ¼ 10�6F,R1;3 ¼ 3:28 � 106

O,R2;3 ¼ 1:96 � 106 O

�0:3048
sþ0:5113

4 C1;4 ¼ 10�6F,

R1;4 ¼ 1:73 � 108O,R2;4 ¼ 3:24 � 107O

�0:0058
sþ0:0308

5 Rk1 ¼ 103O, Rk2 ¼ 1:90 � 104 O 18:9868

Fig. 7. Step responses for the exact analytical solution of s0:5, the 4th order
approximate models of M-SBL fitting method, Matsuda method and CFE method
and the Simulink analog realization of M-SBL method.

Fig. 8. Square and sawtooth wave responses of the M-SBL based sum of the filter
from realization in Multisim (Multisim M-Sbl), the M-SBL based sum of the filter
form realization in Simulink (Simulink M-Sbl), the 4th order M-SBL fitting model
TmðsÞ (M-Sbl) and the 5th order CFE based ladder network [31] (Multisim CFE).
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ization of M-SBL method. The simulation results indicate that the
lowest RMSE value in step response is observed for the M-SBL fit-
ting method. The RMSE value for M-SBL method is 0.02410, while
that is 0.05260 for CFE and 0.03003 for Matsuda’s method. These
RMSE values were calculated for 100 sec unit step response with
a time increment of 0.001 sec. Fig. 7 reveals that step responses
of the M-SBL model TmðsÞ (Eq. (15)) and M-SBL based analog circuit
realization model TmrðsÞ in Simulink are perfectly overlapping (the
RMSE is about 1:48 � 10�5). A reason for this matching performance
is that the Simulink analog circuit simulation models use ideal
models of circuit components from the Simscape library [55].
Besides, the figure demonstrates that the Simulink analog circuit
realization model TmrðsÞ can well approximate to the exact analyt-
ical solution that is expressed by using inverse Laplace transform
of sa as
yðtÞ ¼ L�1f1
s
sag ¼ 1

Cð1� aÞ t
a ð17Þ

Authors also performed the Multisim [54] simulations by using
more realistic models of the existing standard electronics compo-
nents. Multisim simulations of the fractional derivative were car-
ried out according to the values of design parameters in Table 2.
Fig. 8 illustrates the simulation results for square and sawtooth
input signal waveforms. For these input waveforms, transient
responses for Multisim M-SBL based sum of the filter form (Mul-
7

tisim M-Sbl), Simulink M-SBL based sum of the filter form (Simu-
link M-Sbl), 4th order M-SBL fitting model TmðsÞ (M-Sbl) and
Multisim CFE based ladder network [31] (Multisim CFE) are pre-
sented in figures comparatively. Derivative operators yield sharp
peaks at the edges of the input signals. This property is observed
in the simulation results in Fig. 8, and it confirms correct function-
ing of the circuit for the derivative operation. Slight differences in
Multisim and Simulink simulation results of M-SBL fitting based
circuits are caused by non-ideal characteristic of LF347N opamps,
which were supplied with ± 18 V in the simulations. The consis-
tency in responses of theoretical M-SBL fitting model TmðsÞ and
its Multisim circuit realization indicates effectiveness of the sum
of filters form for the analog realization of transfer function. The
figure also reveals that the proposed M-SBL based analog circuit
realization in the sum of filters form yields more proper derivative
responses compared to those of CFE based ladder network [31].

It is also useful to observe responses of the system for sinu-
soidal input signals in order to evaluate phase and magnitude
modifications of the FO derivative operator on the input signal.
Thus, one can investigate the relevance of time responses of the
circuits for the FO derivative behavior at each frequency compo-
nent. Sinusoidal waveforms can be expressed in the form of
M0sinðxt þ hoÞ, where the angular frequency is x ¼ 2pf , the initial
amplitude isMo and the initial phase is ho. An ideal fractional order
derivative operator yields M0xasinðxt þ ho þ a � p=2Þ at the output
for this input signal. Hence, a FO derivative operator modifies the
amplitude of input sinusoidal component as exactly M0xa and
the phase as exactly ðho þ a � p=2Þ.

Fig. 9 shows simulation results for sinusoidal input signals at
f ¼ 1 Hz, f ¼ 10 Hz and f ¼ 100 Hz. The figure validates accurate
functioning of the proposed M-SBL based analog circuit realization
for the sampled frequencies within an approximation range of
x 2 ½0:01;100� rad/sec. The Multisim and Simulink simulation
results of the M-SBL based analog circuit well agree with the the-
oretical results obtained by using M-SBL fitting method for 4th
order approximate transfer function (TmðsÞ) of s0:5. This observation
indicates that the analog circuit design is not severely affected by
the limitations of realistic component models in the Multisim.
When Multisim simulation results of 4th order M-SBL based sum
of the filter circuit and 5th order CFE based ladder network are
compared for sinusoidal input waveforms in Fig. 9, it is seen that



Fig. 9. Comparative sine wave responses of the 4th order M-SBL and 5th order CFE
approximate transfer functions for s0:5 at different frequencies.
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the results agree with each other at 1 Hz, while they differ consid-
erably at 10 Hz and 100 Hz. The amplitude and phase values of the
output signal from the CFE based ladder circuit diverge from the
expected values at these frequencies. These findings indicate that
the CFE based realization circuit cannot well operate at higher fre-
quencies (The approximation frequency range is not configurable
in the CFE method).

Table 3 lists the phase and amplitude modification results for
the analytical calculation, the proposed M-SBL based sum of the fil-
ters form realization and the CFE based ladder network realization
in Multisim, and the consistency of amplitude and phase modifica-
tions with the analytical calculation up to 100 rad/sec validates
that the proposed M-SBL based analog circuit provides a satisfac-
tory approximation performance to perform FO derivative s0:5 in
the frequency range of x 2 ½0:01;100� rad/sec. Especially, for the
frequency values of 50 rad/sec and greater, phase responses of
the CFE based derivative circuit diverge from exact values com-
pared to the response of the M-SBL based circuit. Since x ¼ 200
rad/sec and x ¼ 500 rad/sec are out of the frequency range
x 2 ½0:01;100� rad/sec, the approximation performance of M-SBL
Table 3
The amplitude and phase modifications for the derivative operator s0:5 that are obtained by
4th order approximate M-SBL based circuit and 5th order approximate CFE based circuit.

Angular Frequency Analytical (Exact) M-S
x ¼ 2pf (rad/sec) Amp. (dB) Phase (deg) Amp

1 (0.159 Hz) 0 45 �0.0
5 (0.796 Hz) 6.9897 45 7.03
10 (1.592 Hz) 10 45 9.86
50 (7.96 Hz) 16.9897 45 15.9
100 (15.92 Hz) 20 45 19.9
200 (31.84 Hz) 23.0103 45 23.2
500 (79.58 Hz) 26.9897 45 25.0
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method begins to decrease at x ¼ 200 rad/sec and x ¼ 500 rad/
sec frequencies in Table 3. To improve magnitude and phase
approximation performances at these frequencies, the frequency
range configuration of the SBL fitting method can be increased to
include these frequencies.

To compare realization performances of analog circuit designs
in the Multisim simulation environment, authors analysed the
time and frequency response matching performances of two ana-
log circuit designs. Fig. 10 shows Bode diagrams for the exact
model (s0:5), theoretical 4th order M-SBL transfer function (TmðsÞ),
the 4th order M-SBL fitting based analog circuit realization in the
sum of filters form and the 5th order CFE based circuit realization
in the ladder network form [31]. One can validate effective operat-
ing ranges of the designed analog realization circuits in Bode dia-
grams. Fig. 10 confirms that the M-SBL fitting based analog
circuit can perform as an approximate FO derivative operator
within the specified frequency range ofx 2 ½0:01;100�. These Bode
diagrams indicate that the frequency response of the M-SBL fitting
based analog circuit realization in Multisim diverges from the cal-
culated frequency response of the transfer function (TmðsÞ) of the
M-SBL fitting method at very low frequency values. This effect is
mainly caused by the limitations and non-ideal characteristics of
the LF347N components in the Multisim, where operational ampli-
fier models introduce the realistic bandwidth limitations and the
finite input resistance. These limitations of realistic models in Mul-
tisim result in early divergence of the frequency responses of the
M-SBL fitting based derivative circuit from those of the M-SBL
transfer function model at very low frequencies. However, this
divergence seen in the frequency responses emerges at the out of
the operating frequency range x 2 ½0:01;100� rad/sec. Inside the
operating frequency range, the frequency responses of the transfer
function model and its Multisim circuit realization are very consis-
tent with each other. The RMSE performances of two analog circuit
realizations are also reported in Table 4. One observes that the pro-
posed 4th order M-SBL based analog derivative circuit realization
can demonstrate much better time response and phase response
matching performances than those of the 5th order CFE based
approximate derivative circuit. However, the magnitude response
matching performance of 4th order M-SBL based approximate
derivative circuit is at a comparable level with the 5th order CFE
based approximate derivative circuit.
3.3. Monte Carlo analysis

Monte Carlo simulation of the proposed M-SBL fitting based
derivative circuit was conducted for 5% tolerance of each compo-
nent value according to the Gaussian distribution. (The standard
carbon film resistors have 5% tolerance) Monte Carlo simulations
were performed for 2000 trials in the Multisim simulation environ-
ment. The input of the derivative circuit was a sinusoidal wave-
form with 10 mV amplitude and 10 Hz frequency. Fig. 11 shows
the circuit outputs from the Monte Carlo simulation. Results indi-
analytical calculations {M0xa , ðho þ a � p=2Þ} and the analog realizations (TmrðsÞ) of the

BL Multisim Simulation CFE Multisim Simulation
. (dB) Phase (deg) Amp. (dB) Phase (deg)

0106 40.7445 0.03314 45.3775
33 44.6477 6.9755 44.8582
64 39.9554 9.9472 45.9590
208 47.0153 18.1653 34.6614
971 44.9907 19.9823 20.9292
658 33.0583 20.6141 10.8864
968 15.8844 20.8103 3.7080



Fig. 10. Bode diagrams for the exact analytical solution of s0:5, the 4th order
approximate model by M-SBL fitting method, and the 5th order approximate model
by CFE method.

Table 4
Time and frequency domain RMSE performances of the M-SBL fitting based derivative
circuit in sum of low-pass filter form and the CFE based realization in the ladder
network form.

Realization Approaches RMSEs in
step
response
(100 sec)

RMSEs in
magnitude
response

RMSEs in
phase
response

4th order M-SBL based realization in
the form of the sum of low-pass
filters

0.0241 0.6084206 3.405755

5th order CFE based realization in
the ladder network form in Ref
[31]

0.0526 0.5166340 7.171742

Fig. 11. Monte Carlo simulation results for time response of the proposed M-SBL
fitting based derivative circuit in Multisim environment.

Fig. 12. Histogram from Monte Carlo simulations in Multisim environment for the
proposed M-SBL fitting based derivative circuit.

Fig. 13. Multisim Monte Carlo simulation for frequency responses of the proposed
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cate that the phase and amplitude deformations in output wave-
forms due to the component tolerance are limited (The output
voltage mean value is 0.072 V and the standard deviation in output
voltage is obtained 0.0045.) and the circuit can perform the FO
derivative function.

Fig. 12 shows the histogram of output voltages from these
Monte Carlo simulations. Fig. 13 shows the Bode plots of the pro-
posed circuit for 2000 trials of the Monte Carlo simulation. Results
in the figure reveal that sensitivity of frequency response charac-
M-SBL fitting based derivative circuit.

9
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teristics to the component tolerance decreases toward the higher
frequencies.

Parameter sweep analyses of the Multisim simulation indicated
that the sensitivity of the circuit output to resistor tolerances of the
output amplifiers is high. However, when the low-pass active fil-
ters, which are connected to the circuit input, are considered,
authors observed that sensitivity of the output to resistor tolerance
values is the highest at the first low-pass filter (The partial fraction
term index is 1 in Table 2). Filter’s cut-off frequencies are 27.41 Hz
for the first filter, 1.14 Hz for the second filter, 0.080 Hz for the
third filter and 0.049 Hz for the fourth filter. Due to the highest
bandwidth of the first filter compared to others, resistor tolerances
can alter more the bandwidth of the first low pass filter, and thus
more affect the overall gain of the circuit at the output. Therefore,
the circuit output is more sensitive to the resistor tolerance of the
first low-pass filter compared to other low-pass filters.
4. Conclusions

This study firstly demonstrated the analog circuit realization of
M-SBL fitting based approximate FO derivative models according
to the sum of low-pass filter form. Another contribution of the
study is that comprehensive performance analyses of the proposed
analog circuit realization were carried out to verify the factional
order behavior of the circuit in both time and frequency domains:
Firstly, by using the final value theorem, authors theoretically
prove that time responses of the sum of low-pass filter form real-
ization can converge to the time response of any fractional order
derivative function (saÞ. It is useful to demonstrate theoretical lim-
its of the sum of low-pass filter form in convergence to the time
response of the FO derivative function sa. Afterward, time
responses of the proposed analog derivative circuit were validated
for various input waveforms (e.g. sinusoidal, square and sawtooth
waveforms) by using two different circuit simulation environ-
ments that are the Matlab Simulink simulation model with Sim-
scape library and the Multisim circuit simulator. Frequency
response approximation performance was also shown by using
Bode diagrams that are drawn according to simulation results.
Some important remarks can be summarized as follows:

* Time domain responses of M-SBL fitting based analog circuit
realization models are very consistent with time responses of the
M-SBL fitting based transfer function model of FO derivative ele-
ments. These results indicate that the sum of low-pass filter form
realization according to the partial fraction decomposition is an
effective and straightforward solution for analog circuit realization
problems of transfer function models.

* The step responses of 4th order approximate derivative mod-
els of Matsuda, CFE and M-SBL fitting methods are compared
according to 100 sec simulation results, and the smallest RMSE
value with respect to step response of the derivative s0.5 was
obtained by using the M-SBL fitting method.

* Two different analog circuit realization approaches are imple-
mented in the Multisim simulation and their approximation per-
formances are compared. These approaches are the sum of the
low-pass filters form realization of M-SBL derivative model and
10
the CFE based active realization of FO derivative in the ladder net-
work form [31]. According to Multisim simulation results, it was
observed that although the model order of M-SBL based realization
was lower than that of the CFE based active realization, the analog
realization of the M-SBL based approximate derivative model pro-
vided a better approximation performance in comparison to the
CFE based ladder network realization in a frequency range of
[0.01,100] rad/sec. This performance improvement in analog real-
ization mainly originates from using an active low-pass filter for
each partial fraction term of the transfer function model. In the
CFE based ladder network realization form, a passive element net-
work in ladder from is used to implement the fractance device.

* Authors concluded that the PFE method in sum of filters form
[38,44] is very practical for the analog realization of rational trans-
fer functions because each partial fraction term can be realized
independently. The component values of each active filter can be
adjusted independently and the selection of component values in
a low-pass filter does not affect the rest of the analog circuit unless
the filter transfer function changes. This property provides signifi-
cant design flexibility. For this reason, passive component values
can be adjusted more realistic, and they can be easily chosen from
the standard and available electronic components. This design flex-
ibility makes the circuit realization more accurate compared to the
passive ladder network realization based on the CFE method [31].
The design flexibility and applicability of standard components in
realization works of FO elements have not been extensively dis-
cussed in the literature [56]. However, design flexibility and real-
ization accuracy are indispensable for the industrial use of FO
elements [16].

* Authors observed that the selection of active and passive com-
ponents can affect both time and frequency response performances
of the FO derivative circuits. Therefore, design flexibility of the sum
of low-pass filter form realization in component selection is partic-
ularly beneficial for improving analog circuit realization perfor-
mance of the fractional order derivative elements. It is
recommended to consider not only frequency response but also
step responses of the analog circuit when selecting active
components.

* In this study, a low-cost active component, LF347N,was selected
after testing several commercial opamp IC options. Multisim simula-
tion results indicated that the use of LF347N opamp in low-pass fil-
ters and the sum circuit provided a satisfactory design consistency
with the theoretical results. The possible applications of such analog
FO derivative circuits can be industrial process control systems.
Futureworks can address the control of industrial processes by using
the analog FO derivative circuit. The circuit output shows more sen-
sitivity to component tolerances at very low frequencies. Also, future
studies can focus on this issue by improving circuit design for the
sum of filters form.
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Appendix A

Property 1. A long-term time responses of the TmðsÞ function with non-zero poles (pi–0) (Tm sð Þ ¼ Pn
i¼1

ri
s�pi

þ k) can converge to the time

response of Tf ðsÞ ¼ sa.
Proof. The steady state error between TmðsÞ and dynamic model of the derivative operator Tf ðsÞ ¼ sa can be expressed as
esðsÞ ¼ Tf ðsÞ � TmðsÞ. When the steady stead error goes to the zero in time, this ensures the convergence of time responses of both models.
For convergence of the steady state to zero in time, the following condition should be satisfied:

limt!1esðtÞ ¼ 0

This condition ensures the convergence of time responses of the models. By using the final value theorem, one can write
limt!1esðtÞ ¼ lims!0þsesðsÞ and for the approximation of the steady state to zero, the following condition should be satisfied:

lims!0þsesðsÞ ¼ 0

Let us check if this condition is satisfied. When the esðsÞ ¼ Tf ðsÞ � TmðsÞ is used in this condition,

limt!1esðtÞ ¼ lims!0þsesðsÞ ¼ lims!0þ sðTf ðsÞ � TmðsÞÞ

limt!1esðtÞ ¼ lims!0þsðsa �
r1

s� p1
� r2
s� p2

� r3
s� p3

� ::� rn�1

s� pn�1
� rn
s� pn

� kÞ

limt!1esðtÞ ¼ lims!0þ ðsaþ1 � r1s
s� p1

� r2s
s� p2

� r3s
s� p3

� ::� rn�1s
s� pn�1

� rns
s� pn

� ksÞ

limt!1esðtÞ ¼ lims!0þ ðsaþ1Þ � lims!0þ ð
r1s

s� p1
Þ � lims!0þ ð

r2s
s� p2

Þ � lims!0þ ð
r3s

s� p3
Þ � � � �

�lims!0þ ð
rn�1s

s� pn�1
Þ � lims!0þ ðksÞ

For the derivative element saþ1 (a > 0), then lims!0þ ðsaþ1Þ ¼ 0 is always valid. For a TmðsÞ function with non-zero poles (pi–0), the results
lims!0þ ð ris

s�pi
Þ ¼ 0. lims!0þ ðksÞ ¼ 0 are always valid. Therefore, one can proof that limt!1esðtÞ ¼ 0 is valid, a TmðsÞ function with the non-zero

poles can converge to any derivative function sa, a > 0 without a steady state error.
This property is important to demonstrate the suitability of the partial fraction decomposition in the form of Tm sð Þ ¼ Pn

i¼1
ri

s�pi
þ k for the

realization of the derivative operation.
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Appendix B

M-SBL fitting approximation method Matlab codes:
Appendix C

Frequency response approximation performances of several methods for a values that are very close to integer orders {1,0,�1}.
For a ¼ 0:999;
12
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For a ¼ 0:001;

For a ¼ �0:999;
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