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1 Introduction

Higher dimensional spacetimes are commonly studied to unify string theory and general
relativity and to analyze the quantum field theories with CFT/AdS correspondence and to
fully understand the efficiency of the theory of general relativity. Nearly during past decade,
Emparan and et al. . . examine the solutions of higher dimensional spacetimes in the limit
of dimension D →∞ [1–10]. The obtained results make it easier to gain a new perspective
on theory of general relativity and especially analytical solutions, but it is also tested in
order to be used in some other areas, i.e. quantum entanglement and holographics [11].

Robinson-Trautman (RT) [12, 13] and Kundt [14, 15] spacetimes are special spacetimes
which include many different solutions in 4-dimensions such as, pp-waves, plane wave space-
times, the Schwarzschild and Reissner-Nordstrom black holes, the C-metric, the Vaidya
solution, photon rockets and their non-rotating generalisations. RT spacetime is described
by the existence of an expanding, shearfree and twistfree congruence of null geodesics,
while, Kundt geometry is defined as a non-expanding case. Although, higher-dimensional
solutions are not as rich as 4-dimensional solutions because several important solutions
can not be generalized to higher dimensions. However, extension of RT spacetime to
higher dimensions were studied for any cosmological constant or aligned pure radiation [16],
aligned electromagnetic fields [17], and general p-form fields [18]. Additionally, the Kundt
spacetime generalization to higher dimensions is obtained in [19].

Classification of spacetimes, which enables to divide the gravitational fields into distinct
types in an invariant way, was first studied by Petrov [20]. There are several ways to obtain
the classification of spacetimes such as, null vectors, and 2-spinors or scalar invariants.
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Since the Weyl scalar and cosmological constant include all data about curvature of a
spacetime, the classification becomes completely understandable by studying Weyl scalars.
Classification provided a better understanding of several aspects of General Relativity in
4-dimensions and it was extended to any D > 4 dimensions [21] and to RT [22] and
Kundt [23] geometries as well. However, the algebraic classification of the RT and Kundt
spacetimes with the limit of D →∞ have not been studied before.

Therefore, the main purpose of the paper is to obtain algebraic classifications of RT
and Kundt spacetimes in the limit of D → ∞ and compare the results with previous
calculations of any dimension D > 4.

The paper is organized as; section 2 includes a brief summary of shearless and twist-
less, expanding or non-expanding spacetimes. Primary and secondary Weyl-aligned null
direction (WAND) are reviewed and the classification for components of boost weight are
demonstrated. Components of Weyl scalars are obtained with the limit of D →∞ and the
different types of spacetimes are discussed. In section 3 and 4 algebraic classification of
the non-expanding Kundt spacetime and expanding RT spacetime are stated and several
special cases are investigated for the limit of D → ∞, respectively. Christoffel symbols,
Riemann and Ricci tensor and Ricci scalar are calculated for the general expanding, shear-
less, twistfree spacetime for any dimension D > 4, while the components of Weyl scalar
are computed for the limit D →∞ in appendix A.

2 Non-twisting, shear-free geometry

In general, D-dimensional, shear-free and twist-free metric can be written in the follow-
ing form;

ds2 = gpq (u, r, x) dxpdxq + 2gup (u, r, x) dudxp − 2dudr + guu (u, r, x) du2 (2.1)

where latin indices p, q, . . . count to 2 to (D− 2) and x is shorthand of these D− 2 spatial
coordinates on the traverse space. We can write some of the relations between contravariant
and covariant metric components as;

gur = −1, grp = gpqguq, grr = −guu + gpqgupguq, gup = grqgpq.

Non-twisting spacetimes require a null hypersurface as u =constant which is similar to
existence of a null vector field k that is tangent to u=constant surface in everywhere (it is
more common to choose k at r direction and it becomes k = ∂r.). This null vector covariant
derivative for the metric (2.1) is obtained ki;j = Γu

ij = 1
2gij,r which satisfies kr;j = ki;r = 0.

Another orthonormal basis in the D− 2 dimensional spatial coordinates can be defined as
mp

i which is useful to identify optical matrix; ρij = kp;qm
p
im

q
j . For shearless and twist-free

spacetimes reduce to; ρij = Θδij . The expansion scalar is obtained 2Θgpq = gpq,r by the
definition of δij = gpqm

p
im

q
j [22]. The vanishing expansion, Θ = 0 is known as Kundt

class [14, 15, 24, 25] which indicates the condition that the spatial metric is independent
of the affine parameter r (in metric (2.1) gpq(u, r, x) → gpq(u, x)). Otherwise, expanding
case, Θ 6= 0 is named as Robinson-Trautman class [12, 13, 24, 25].
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Boost Weight
Components

Types +2 +1 0 -1 -2 primary WAND
G No
I 0 a WAND
II 0 0 multiple WAND
III 0 0 0 multiple WAND
N 0 0 0 0 multiple WAND
O 0 0 0 0 0 multiple WAND

Table 1. Higher dimensional classification of a spacetime with obligatory vanishing components of
boost weights.

We begin with identify natural null frames to obtain classification of the spacetime
which is given metric (2.1) as;

k = ∂r, ` = 1
2guu∂r + ∂u, mi = mp

i (gup∂r + ∂p) , (2.2)

which satify the normalization conditions; k.` = −1, mi.mj = δij . Boosts are defined by
rescaling of these null basis as; k → λk, ` → λ−1` and mi → mi and boost weight which
is used to determine the classification of the spacetimes in higher dimensions, are obtained
+1,−1, 0, respectively. Additionally, if the boost weight +2 components of the Weyl tensor
are zero, the null direction of k becomes a primary Weyl-aligned null direction (WAND)
which is analogue of a PND in 4-dimensions. There might be multiple WAND if the +1
boost weight components of the Weyl scalar vanish and if the spacetime obeys multiple
WAND conditions, it becomes algebraically special. One prepared the classification of the
spacetime with obligatory vanishing components of boost weight [26] which is summarized
in table 1. Further, for fixed k, ` can be introduced a secondary WAND which can be
obtained by vanishing as many as null frame scalars. According to secondary WAND the
spacetime will be Type Ii, IIi, IIIi and Type D.

Subsequently, as the dimension of the spacetime goes to infinity, the Weyl scalars of
the metric (2.1) become (Christoffel symbols, Riemann and Ricci tensors, Ricci scalar and
Weyl tensor are calculated at the appendix A),

Ψ0ij =Cabcdk
amb

ik
cmd

j =mp
im

q
jCrprq = 0, (2.3)

Ψ1T i =Cabcdk
a`bkcmd

i =mp
iCrurp =mp

i

[(
−1

2gup,r +Θgup

)
,r

+Θ,p

]
, (2.4)

Ψ1ijk =Cabcdk
amb

im
c
jm

d
k =mp

, m
q
jm

m
k Cprmq = 0, (2.5)

Ψ2S =Cabcdk
a`b`ckd =Cruur =

(1
2guu,r−Θguu

)
,r
− 1

4g
pqgup,rguq,r−2Θ,u

+Θgrpgup,r−Θ2grpgup, (2.6)
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Ψ2T ij =Cabcdk
amb

i`
cmd

j =mp
im

q
j

(
Crpuq +gupCrqur + 1

2guuCrprq

)
=mp

im
q
j

(1
2gupguq,rr + 1

4gup,rguq,r + 1
2gpng

msgus,r
sΓn

mq + 1
2gpn (gnmgum,r),q

+gupguq

(
Θ2−Θ,r

)
−2gupΘ,q−Θ(2Eqp−guqgup,r)

)
, (2.7)

Ψ2ijkl =Cabcdm
a
im

b
jm

c
km

d
l =mp

im
q
jm

n
km

m
l

(
Cpqmn+gupCrqmn+guqCprmn+gumCpqrn

+gunCpqmr
)

=mp
im

q
jm

n
km

m
l Cpqnm, (2.8)

Ψ2ij =Cabcdk
a`bmc

im
d
j =mp

im
q
j (Crupq +guqCrurp+gupCruqr) =mp

im
q
j

(
gu[p,q]r

−4gu[pΘ,q]+gu[pgq]u,rr +Θ
(
2gu[qgp]u,r +Eqm−Epn

))
, (2.9)

Ψ3T i =Cabcd`
akb`cmd

i =mp
i

(1
2guuCurrp+gupCurur +Curup

)
=mp

i

(1
4guugup,rr−gu[u,p]r +gupΘ,u+ 1

2guuΘ,p−
1
2guugupΘ,r + 1

2g
mngum,rEnp

−gup

(1
2guu,r−Θguu

)
,r
−Θ

2 (grrgup,r +guu,p+2grsEsp)
)
, (2.10)

Ψ3ijk =Cabcd`
amb

im
c
jm

d
k =mp

im
q
jm

m
k

(1
2guu (Crpqm+guqCrprm+gumCrpqr)

+gup (Curqm+guqCurrm+gumCurqr)+guqCuprm+gumCupqr +Cupqm

)
=mp

im
q
jm

m
k

(
−2gupgu[q,m]r−Θgup (Emn−Eqs)+gupgu[qgm]u,rr +gupgu[qgm]u,r

+g`sgus,r
sΓn

`pgu[qgm]n+ 1
2gup,rgu[qgm]u,r +gu[qgm]n

(
gn`gu`,r

)
,p
−4ΘEp[mgq]u

−gpn

(
grngu[m,r

)
,q]
−Ep[mgq]u,r−2gpn

(
gnsEs[q

)
,m]
−gpng

rs sΓn
s[qgm]u,r

−2gpng
skEk[q

sΓn
m]s−2Θ2grrgp[qgm]u

)
, (2.11)

Ψ4ij =Cabcd`
amb

i`
cmd

j =mp
im

q
j

(
guu

2

(
Crpuq +Cuprq + guu

2 Crprq +guqCrpur +gupCurrq

)
+gup (Curuq +guqCurur)+guqCupur +Cupuq

)
=mp

im
q
j

(
−guqgu[u,p]r

+ guu

2
(
gmsgus,r

sΓn
m(pgq)n+(gnmgum,r),(p gq)n−4ΘE(pq)

)
+gmngum,rEn(pgq)u−

grm

2 gum,rgu(pgq)u,r +gupguq

(1
2g

pqgup,rguq,r +Θguu,r

)
−gpn

(
−

sΓn
sq

2 (grsguu,r +2gsmEum)+
(
grngu[u,r

)
,q]
−2
(
gnmEm[q

)
,u]

)
+Θ

(
guu

(
gu(pgq)u,r +grrgpq,r

)
−Eu(pgq)u−grrgu(pgq)u,r−2guu,(pgq)u

)
−Θ2guu (gupguq +grrgpq)

)
, (2.12)
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where Cpqnm, Epq, Eup equations are given in appendix A. Some of these scalars can be
obtained by contractions of the other scalars such as;

Ψ1T i = Ψ1kki , (2.13)

Ψ2S = Ψ2T kk , (2.14)

Ψ3T i = Ψ3kki , (2.15)

and symmetric and antisymmetric part of the scalar Ψ2T ij is obtained;

Ψ2T [ij] = 1
2Ψ2ij , (2.16)

Ψ2T (ij) = 1
2Ψ2ikjk . (2.17)

Analyzing of the classification for any dimension D > 4 is studied in [22]. According to
study of [22], the irreducible components of these scalars are given;

Ψ̃1ijk ≡ Ψ1ijk −
1

D − 3 (δijΨ1T k − δikΨ1T j ) , (2.18)

Ψ̃2T (ij) ≡ Ψ2T (ij) −
1

D − 2δijΨ2S , (2.19)

Ψ̃2ijk` ≡ Ψ2ijk` −
2

D − 4
(
δikΨ̃2T (j`) + δj`Ψ̃2T (ik) − δi`Ψ̃2T (jk) − δjkΨ̃2T (i`)

)
− 2

(D − 2)(D − 3) (δikδj` − δi`δjk) Ψ2S , (2.20)

Ψ̃3ijk ≡ Ψ3ijk −
1

D − 3 (δijΨ3T k − δikΨ3T j ) , (2.21)

which are dependent of the dimension of the spacetime. As we study the dimension
becomes large, the second and third terms of the right side of the above equations are
meaningless. Thus, we can conclude that, according to our study, the irreducible compo-
nents of the Weyl salars can be written as,

Ψ̃1ijk ≡ Ψ1ijk , Ψ̃2T (ij) ≡ Ψ2T (ij) , Ψ̃2ijk` ≡ Ψ2ijk` , Ψ̃3ijk ≡ Ψ3ijk . (2.22)

where the symmetric part of the Ψ2T ij is equal to;

Ψ2T (ij) =mp
im

q
j

(1
2gpng

msgus,r
sΓn

mq + 1
4gup,rguq,r + 1

2gpn (gnmgum,r),q +gupguq

(
Θ2−Θ,r

)
−4gu(pΘ,q)+Θgu(qgp)u,r +gu(pgq)u,rr

)
. (2.23)

As the Weyl scalar Ψ0ij = 0, k is a primary WAND of the metric (2.1) and the spacetime
is Type I. If Ψ1T i vanishes, k becomes multiple WAND since boost weight component
of +2,+1 become zero. Meanwhile, vanishing the Weyl scalars determine the types of
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the spacetime: type I(a)-I(b), Type II(a)-II(b)-II(c)-II(d) Type N and Type O and their
combinations such as TypeII(ac) or Type II(bcd), for primary WAND k. For instance, the
spacetime is called Type II(c) when the Weyl scalars Ψ0ij = Ψ1T i = Ψ1ijk = Ψ2ijkl = 0
or Type III(a) when the scalars Ψ0ij = Ψ1T i = Ψ1ijk = Ψ2S = Ψ2T (ij) = Ψ2ijkl = Ψ2ij =
Ψ3T i = 0. Because of the components of the Weyl scalar Ψ0ij = Ψ1ijk = 0, the spacetime
of shear-free, twist-free, expanding (or not expanding) can be classified as Type I(b) or
more special. Additionally, metric (2.1) spacetime is not algebraically special, because of
all +1 components of boost weight are not zero (Ψ1T i 6= 0).

Furthermore, the secondary WAND is the natural null vector ` which classifies the
spacetime as the Type Ii - IIi - IIIi and Type D, such as, the spacetime will be Type IIi,
when Ψ4ij = 0 addition to Ψ0ij = Ψ1T i = Ψ1ijk = 0 or the spacetime becomes Type D(a)
when the Weyl tensors Ψ0ij = Ψ1T i = Ψ1ijk = Ψ2S = Ψ3T i = Ψ3ijk = Ψ4ij = 0. One
prepared table 2 for the relationship between vanishing Weyl scalars and the spacetimes’
classification, for both WANDs k and ` [22].

While the number of dimension goes to infinity, the classification of metric (2.1) did not
change, the equations became only simpler than the functions, which were obtained for any
dimensions D > 4. It is the power of the large D expansion method which allows to obtain
analytical solutions for classification of this spacetime. Hereafter, we will determine (sub)-
types of the higher dimensional, shear-free, twist-free and expanding or non-expanding
spacetime for special conditions which will correspond specific spacetimes.

3 Kundt spacetime

Kundt spacetimes are shear-free, twist-free, non-expanding geometries which will be ob-
tained by taking Θ = 0 and the metric functions of spatial coordinates independently of
parameter r at the metric (2.1). While the algebraic classification of the Kundt geome-
try for higher dimensions has been studied in [19, 22, 23], we will classify this geometry
which the number of dimensions goes to infinity. Kundt spacetimes will be Type I(b)
(Ψ0ij = Ψ1ijk = 0) or more special which is determined by the vanishing Weyl scalars.
If we set the spacetime Type I(a) (it becomes Type II too), the Weyl scalar Ψ1T i have
to vanish. As a result of it, the spacetime becomes algebraically special because all +1
component of the boost weight vanish and the metric function gup,rr = 0 and it reads;

gup = rdp(u, x) + cp(u, x).

If we keep going to determine the metric functions by vanishing Weyl scalars for classifi-
cation, we get that from Ψ2S = 0,

guu = r2

4 g
pq(u, x)dp(u, x)dq(u, x) + rl(u, x) + s(u, x),

where the solution is Type II(a) and the metric of Kundt spacetime becomes;

ds2 = gpq (u, x) dxpdxq + 2 (rdp(u, x) + cp(u, x)) dudxp − 2dudr

+
(
r2

4 g
pq(u, x)dp(u, x)dq(u, x) + rl(u, x) + s(u, x)

)
du2. (3.1)

– 6 –
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Components of
Weyl Scalar

Types
WAND k WAND `

I I(a) I(b) II II(a) II(b) II(c) II(d) III III(a) III(b) N O Ii IIi IIIi D
Ψ0ij 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ψ1T i 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ψ1ijk 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ψ2S 0 0 0 0 0 0 0

Ψ2T (ij) 0 0 0 0 0 0 0
Ψ2ijkl 0 0 0 0 0 0 0
Ψ2ij 0 0 0 0 0 0 0
Ψ3T i 0 0 0 0
Ψ3ijk 0 0 0 0
Ψ4ij 0 0 0 0 0

Table 2. General algebraic classifications of shearfree, twistless spacetimes with necessary vanishing
Weyl scalars for both WANDs k and `.

Also, it easily becomes Type II(ad) by Ψ2ij = 0, which gives the result dp(u, x) = dp(u).
However, the other subtypes are not simply obtained by only vanishing components of
Weyl scalar. Therefore, we will analyze several cases which is obtained by simplification of
metric components.

3.1 All metric functions are independent of parameter r.
(Corresponding pp-waves.)

pp-waves are one of the important subclasses of the Kundt spacetimes. They are defined
in Brinkmann [19, 23, 28] form by the metric (3.1), as the all metric functions independent
of the parameter r;

ds2 = gpq (u, x) dxpdxq + 2cp(u, x)dudxp − 2dudr + s(u, x)du2. (3.2)

With respect to independence of r, higher dimensional pp-waves can be classified as
Type II(abd) (Ψ0ij = Ψ1T i = Ψ1ijk = Ψ2S = Ψ2T (ij) = Ψ2ij = 0) or more special
when the dimension number of the spacetime goes to infinity. Furthermore, if we set
sRpqnm = −gps

(
grsgq[n

)
,m]

(Ψ2ijkl = 0) the pp-waves become Type III(a) and more special
for multiple WAND k. To make the pp-waves Type III(b) (simultaneously it becomes Type
N), the condition of Weyl scalar Ψ3ijk = 0, gives that;(

gnsEs[q
)

,m]
= −gskEk[q

sΓn
m]s.

There is one more condition which makes pp-waves Type O for WAND k is Ψ4ij = 0;

2
(
gnmEm[q

)
,u]

= −gsmEum
sΓn

sq.

Moreover, only with this condition we can classify pp-waves Type Ii and IIi for secondary
WAND `. Higher dimensional pp-waves classification and obligatory conditions are sum-
marized in table 3.

– 7 –
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Types for Obligatory Conditions Types for

WAND k WAND `

I always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum Ii

I(a) always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum I(a)i

I(b) always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum I(b)i

II always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum IIi

II(a) always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum II(a)i

II(b) always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum II(b)i

II(c) sRpqnm = −gps

(
grsgq[n

)
,m]

sRpqnm = −gps

(
grsgq[n

)
,m]

II(c)i

2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum

II(d) always 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum II(d)i

III sRpqnm = −gps

(
grsgq[n

)
,m]

sRpqnm = −gps

(
grsgq[n

)
,m]

IIIi

2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum

III(a) sRpqnm = −gps

(
grsgq[n

)
,m]

sRpqnm = −gps

(
grsgq[n

)
,m]

III(a)i

2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum

III(b) sRpqnm = cs(u, x) sΓs
p[ngm]q,

sRpqnm = −gps

(
grsgq[n

)
,m]

III(b)i(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s

(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s

2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum

N sRpqnm = −gps

(
grsgq[n

)
,m]

(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s D=(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s 2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum (D(abd))

sRpqnm = −gps

(
grsgq[n

)
,m]

sRpqnm = −gps

(
grsgq[n

)
,m]

O
(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s

(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s, D(c)

2
(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum 2

(
gnmEm[q

)
,u]

= −gsm sΓn
sqEum

Table 3. Higher dimensional pp-waves classification with obligatory conditions for both WANDs
k and ` as the dimension of the spacetime D →∞.

3.2 gup = 0, guu = rl(u, x)

According to this special case, the solution becomes Type II(abd) or more special because
of Ψ2T (ij) = Ψ2ij = 0. Meanwhile, the spacetime will be Type II(c) as the Weyl scalar
Ψ2ijkl = 0 which is provided by taking flat spatial spacetime sRpqnm = 0. Interestingly,
when the metric function is guu,pr = 0 which is obtained by Ψ3T i = 0 the spacetime becomes
Type III(a). This can be summarized as;

l(u, x)→ l(u).
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Moreover, this spacetime becomes Type III(b) (and also Type N), and Type O with respect
to multiple WAND k if the Weyl scalars become zero as,

Ψ3ijk = 0→
(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s,

Ψ4ij = 0→ 2
(
gnmEm[q

)
,u]

= −gsmEum
sΓn

sq.

which are the same conditions of the all metric functions are independent of the parameter
r case.

Additionally, when the metric functions are choosen gup=0 and guu = rl(u, x), algebraic
classification for secondary WAND ` can be written as Type Ii and Type IIi if the condition
Ψ4ij = 0 is satisfied which gives;

Ψ4ij = 0→ 2
(
gnmEm[q

)
,u]

= −gsmEum
sΓn

sq.

With this condition, if sRpqnm = 0 which means spatial spacetime is flat the classification
becomes Type IIIi for WAND `. On the other hand, if we want to get Type D solutions,
we have to set

Ψ3T i = 0→ l(u, x)→ l(u),

Ψ3ijk = 0→
(
gnsEs[q

)
,m]

= −gskEk[q
sΓn

m]s,

Ψ4ij = 0→ 2
(
gnmEm[q

)
,u]

= −gsmEum
sΓn

sq.

Also the spacetime becomes Type D(abd) with these conditions in this case.

4 Robinson-Trautman spacetime

Higher dimensional Robinson-Trautman geometry defines non-twist, shearfree spacetimes,
which expand along the direction r in metric (2.1). General algebraic classification of RT
in higher dimensions as dimension numbers go to infinity is given in table 2. In here we
will discuss some special cases. First, Riemannian Type I and Ricci Type I will be studied
which corresponds to expansion scalar Θ = 1

r and Rrprq = Rrr = 0. The spatial metric of
the spacetime becomes;

gpq = r2hpq(u, x).

According to this expansion scalar the spacetime is Type I and Type I(b) too, as D →∞.
This spacetime becomes Type I(a) and also Type II and more special if the Ψ1T i = 0 which
is obtained by;

gup = r2dp(u, x) + rcp(u, x).

By using these metric functions, we can rewrite the non-vanishing Weyl scalars;

Ψ2S = 1
2guu,rr−

guu,r

r
+ guu

r2 −
gpq

4 (2rdp+cp)(2rdq +cq)+grpdp, (4.1)

Ψ2T (ij) =mp
im

q
j

[
r2hpn

2
[
gms sΓn

mq (2rds+cs)+2(gnm (2rdm+cm)),q

]

+7r2dpdq +5rdpcq +5rdqcp+ 13
4 cpcq

]
, (4.2)
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Ψ2ijk` =mp
im

q
jm

n
km

m
l C̃pqnm, (4.3)

Ψ2ij = 1
2m

p
im

q
j

[
(2rdp+cp),q−(2rdq +cq),p+ 2

r
(Eqm−Epn)

]
, (4.4)

Ψ3T i =mp
i

[
1
2dpguu−

1
2guu,pr−(rdp+cp)

(
r

2guu,rr−guu,r

)
+ 1

2 (2rdp+cp),u

− guu

2r2

(
r2dp+rcp

)
− 1

2r (guu,p+grr (2rdp+cp)+2grsEsp)

+ 1
2g

mnEnp (2rdm+cm)
]
, (4.5)

Ψ3ijk =mp
im

q
jm

n
k

[
− 1

2
(
r2dp+rcp

)[
(2rdq +cq),m−(2rdm+cm),q

]
−(rdp+cp)(Emn−Eqs)+r2 (dmcq−dqcm)

(
rdp

4 +(rdp+cp)
(5

4 + r

2

))
+3r (Epqdm−Epmdq)+ 5

2 (Epqcm−Epmcq)−grr
[
hpq

(
r2dm+rcm

)
−hpm

(
r2dq +rcq

)]
+ r3

2

[
rg`s sΓn

`p (rds+cs)+
(
gn` (2rd`+c`)

)
,p

]
×[hmn (rdq +cq)−hqn (rdm+cm)]− r

2hpn

2

[
(grn (2rdm+cm)),q

−(grn (2rdq +cq)),m+grs( sΓn
sq (2rdm+cm)

− sΓn
sm (2rdq +cq)

)
+4
(
gnsEs[q

)
,m]

+4gskEk[q
sΓn

m]s

]]
, (4.6)

Ψ4ij =mp
im

q
j

[
r

2 (rdq +cq)
(
guu,pr−(2rdp+cp),u

)
+ rgmn

2 (Enp (rdq +cq)+Enq (rdp+cp))

+ guu

4

[
r2gms (2rds+cs)

[
hqn

sΓn
mp+hpn

sΓn
mq

]
+r2[hqn (gnm (2rdm+cm)),p

+hpn (gnm (2rdm+cm)),q

]
+2
(
2r2dpdq +rdpcq +rdqcp

)
+4grrhpq−

8
r
E(pq)

]
− rg

rm

4 (2rdm+cm)
(
4r2dpdq +3rdpcq +3rdqcp+2cpcq

)
−guu,p (rdq +cq)

+guu,q (rdp+cp)+
(
r2dp+rcp

)(
r2dq +rcq

)[gpq

2 (2rdp+cp)(2rdq +cq)+ guu,r

r

]
− g

rr

2 [(rdp+cp)(2rdq +cq)+(rdq +cq)(2rdp+cp)]

−r2hpn

(
−

sΓn
sq

2 (grsguu,r +2gsmEum)+
(
grngu[u,r

)
,q]
−2
(
gnmEm[q

)
,u]

)]
, (4.7)

where C̃pqnm is the Weyl tensor for the obtained metric functions. We can conclude that,
RT spacetime algebraic classification is not revealed analytically for this expansion scalar
and these metric functions, as D →∞.
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On the other hand, we can determine the classification of RT spacetime with the same
expansion scalar Θ = 1

r for off-diagonal terms (gup) vanish. According to this simplification,
dp = cp = 0 and the metric coefficients become grp = 0 and grr = −guu, thus, the
metric (2.1) becomes,

ds2 = r2hpq(u, x)dxpdxq − 2dudr + guu(u, r, x)du2. (4.8)

This spacetime is Type II(b) or more special as the Weyl scalars Ψ0ij = Ψ1T i = Ψ1ijk =
Ψ2T (ij) = 0 and it is algebraically special. Additionally, it will be Type II(ab) or more
special for the limit of D →∞ when the Weyl scalar Ψ2S = 0 which gives,

guu = c1(u, x)r2 − 2c2(u, x)r. (4.9)

RT spacetime will be Type II(bc) or more special as the Weyl scalar Ψ2ijk` vanishes
which reads;

sRpqmn = r3hq[mhn]p,u + 2r2grrhp[nhm]q. (4.10)

When we set Ψ2ij = 0, the spacetime will be Type II(d) or more special and we get
hqm,u = hpn,u. Without loss of generality we can choose the metric coefficient hpq(u, x)→
hpq(x) for the Type II(abcd) (or Type III) with these results. RT will be Type III(a) with
the condition of Ψ3T i = 0 → (rguu,p),r = 0 → c1(u, x) → c1(u), c2(u, x) → c2(u). On
the other hand, the spacetime becomes Type III(b) if the metric coefficients satisfy the
condition that;

gns
[,mhq]s,u = gsk sΓn

s[qhm]k,u. (4.11)

It will be Type O when above conditions are satisfied with Ψ4ij = 0 which gives g2
uuhpq = 0.

This is an unphysical result for our purpose because the metric functions guu or hpq vanishes
which is changed the spacetime geometry.

Also, we can introduce classification for the secondary WAND `. RT spacetime will be
Type Ii and IIi only the component of Weyl scalar Ψ4ij vanishes and it yields;

rhpq,u + g2
uuhpq + r2hpn

2
[
gsm sΓn

sqguu,m + (gnmguu,m),q − (gnmhmq,u)u

]
= 0. (4.12)

If the metric functions satisfy equations (4.9), (4.10), (4.11) and hpq(u, x) → hpq(u) with
equation (4.12) RT spacetime is Type IIIi for secondary WAND `.

5 Conclusion

Algebraic classification of the higher dimensional RT and Kundt spacetimes were investi-
gated with the method of taking the limit of dimension of spacetime D →∞. The results
supported the method that the limit of dimension goes to infinity which simplify the theory
of general relativity. In general, nor at this limit or any dimension D > 4, without any
restrictions, classification of RT spacetime which is Type I(b) remains unchanged. Also
the spacetime is not algebraically special and the primary WAND k is a WAND because
all +1 components of boost weight do not vanish.
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As Kundt spacetime corresponds Θ = 0 condition of RT spacetime, in general, at least
it is Type I(b). We obtained other types and subtypes by setting the components of Weyl
tensor are zero. When the all metric functions are chosen independently of parameter r,
which correspond to pp-waves, the spacetime became Type II(abd). Restrictions and the
matching types and subtypes are summarized at the table 3 for this case.

Although, general classification of RT spacetime with necessary vanishing Weyl scalars
for both WANDs was given at table 2, several different cases were discussed at the last
section. When we set the Θ = 1

r and off-diagonal terms gup = 0, the spacetime became
algebraically special and it is Type II(b) or more special.

This paper was prepared to fill the gap in the literature by analyzing the algebraic
classification of RT spacetime with the limit of dimension D → 0. In the future, the special
types and subtypes can be studied by solving field equations which helps to understand
the limitation method.

A Curvature tensors of general RT spacetime

The non-zero Christoffel symbols of the metric (2.1) are obtained;

Γu
uu = 1

2guu,r, (A.1)

Γu
up = 1

2gup,r, (A.2)

Γu
pq = Θgpq, (A.3)

Γr
ur = 1

2 (grpgup,r − guu,r) , (A.4)

Γr
up = 1

2 (−grrgup,r − guu,p + 2grnEnp) , (A.5)

Γr
uu = 1

2 (−grrguu,r − guu,u + 2grnEun) , (A.6)

Γr
pq = −Θgrrgpq + 1

2gpq,u − gu(p,q) + gun
sΓn

pq, (A.7)

Γr
rp = 1

2 (2Θgup − gup,r) , (A.8)

Γp
uu = 1

2 (−grpguu,r + 2gpnEun) , (A.9)

Γp
ur = 1

2g
pqguq,r, (A.10)

Γp
uq = 1

2 (−grpguq,r + 2gpnEnq) , (A.11)

Γp
rq = Θδp

q, (A.12)

Γm
pq = −Θgpqg

rm + sΓm
pq , (A.13)
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where sΓn
pq is the Chrisstoffel symbol of the spatial metric gpq and,

Epq = gu[p,q] + 1
2gpq,u, (A.14)

Eup = gu[p,u] + 1
2gup,u. (A.15)

The Rieman tensors of the metric (2.1) are;

Rprrq = gpq

(
Θ,r +Θ2

)
, (A.16)

Rruur = 1
2guu,rr−

1
4g

pqgup,rguq,r , (A.17)

Rruup = gu[u,p]r + 1
2Θ(2Eup−gupguu,r)− 1

2g
mngum,rEnp

+ 1
4g

rmgum,rgup,r , (A.18)

Rrurp =−1
2gup,rr + 1

2Θgup,r , (A.19)

Rrupq = gu[p,q]r +Θ
(
gu[pgq]u,r +Eqm−Epn

)
, (A.20)

Rprmq = 2Θ2gp[mgq]u+Θgp[qgm]u,r +2gp[qΘ,m] , (A.21)

Rpruq =−1
2gpng

msgus,r
sΓn

mq−
1
4gup,rguq,r−

1
2gpn (gnmgum,r),q +gpqΘ,u

+ Θ
2 (−gpqg

rmgum,r +gpqguu,r +guqgup,r +2Eqp) , (A.22)

Rpumq = gupgu[q,m]r +Ep[mgq]u,r +gpng
rs sΓn

s[qgm]u,r +2gpng
skEk[q

sΓn
m]s

+gpn

(
grngu[m,r

)
,q]

+2gpn

(
gnsEs[q

)
,m]

+Θ
[
guu,[mgq]p+grrgp[qgm]u,r +2grsEs[qgm]p

]
, (A.23)

Rpuqu = gupgu[u,q]r−Ep[ugq]u,r + 1
2g

rsguq,rEps−gs`EpsE`q−gpn

(
grngu[u,r

)
,q]

− 1
2gpn

sΓn
sq (grsguu,r +2gsmEum)+ 1

4gup,r (guu,q +grrguq,r−2grsEsq)

−2gpn

(
gnmEm[q

)
,u]

+ 1
2Θgpq (−guu,u−grrguu,r +2grsEus) , (A.24)

Rpqmn = sRpqmn+ 1
2gupgq[n,rgm]u,r +gupgq[n,m]r +gps

(
grsgq[m

)
,n]

+gpsg
r` sΓs

`[ngm]q,r +Θ
[
2gp[mẼn]q +grrgp[ngm]q,r +2Ep[mgn]q

−grk
[
gkq,[mgn]p+gp[ngm]k,q−gp[ngm]q,k

]
+2gupgq[mgn]u,r

]
, (A.25)

where Ẽpq = gu(p,q) − 1
2gpq,u.
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Ricci tensors become;

Rrr =−(D−2)
(
Θ2+Θ,r

)
, (A.26)

Rrp =−1
2gup,rr +Θ,rgup+(D−2)Θ2gup−(D−3)Θ,p−

D−4
2 Θgup,r , (A.27)

Rru =−1
2guu,rr + 1

2g
rpgup,rr + 1

2g
msgus,r

sΓq
mq + 1

2 (gmqgum,r),q−g
pqΘEqp

+D−4
2 Θgrpgup,r−

D−2
2 Θguu,r−(D−2)Θ,u , (A.28)

Ruu =−1
2g

rrguu,rr−
1
4g

rmgrpgum,rgup,r−
(
grpgu[u,r

)
,q]

+ 1
4g

pqgup,rguu,q−2
(
gmqEm[q

)
,u]

+ 1
2g

rpgmngum,rEnp−gpqEp[ugq]u,r−gpqgs`EpsE`q−
1
2

sΓq
sq (grs+2gsmEum)

+ 1
2Θgrpgupguu,r + 1

2Θ(−(D−2)(guu,u+grrguu,r)+2(D−3)grpEup) , (A.29)

Rup =−1
2g

rrgup,rr−gu[u,p]r +
(
grmgu[m,r

)
,p]
− 1

2g
rmgum,rgup,r + 1

2g
mqEqmgup,r

+grs sΓm
s[pgm]u,r−

1
2g

rqgpng
msgus,r

sΓn
mq +2gskEk[p

sΓm
m]s+2(gmsEs[p),m]

− 1
2g

rqgpn (gnmgum,r),q +gupΘ,u−Θ(Eup−gupguu,r +grpEqn)

+ Θ
2 (−(D−3)guu,p−(D−3)grrgup,r +2DgrsEsp) , (A.30)

Rpq = sRpq−
1
2gup,rguq,r−(gnmgum,r)(,q gp)n+gr` sΓn

`[qgn]p,r−gmsgus,r
sΓn

m(pgq)n

+grngp[q,n]r +
(
grngp[n

)
,q]
−2Θ2gupguq +2gu(pΘ,q)+Θgrngp[ngq]u,r

+gpq

(
2Θ,u+Θguu,r−grrΘ,r +Θ2guu+gmngumgun−2grmΘ,m+ΘgmnEmn

)
+Θ(D−3)

(
Ẽqp−Θgrrgpq +grkgk(p,q)−

grkgpq,k

2

)
, (A.31)

Ricci scalar becomes;

R = sR+ guu,rr − 2grpgup,rr − gmsgus,r
sΓq

mq − (gmqgum,r),q + 2grpgupΘ,r

+ gpq
[
−1

2gup,rguq,r + gr` sΓn
`[qgn]p,r + grngp[q,n]r +

(
grngp[n

)
,q]
− 2Θ2gupguq

]
+ 5D − 19

2 Θgrpgup,r + 2(D − 2)
(
Θguu,r + 2Θ,u − grrΘ,r + guuΘ2

)
+ (D − 2)Θ2grpgup − 4(D − 3)grpΘ,p +DΘgpqEqp + (D − 2)gpqgupgun

+ Θ (D − 3) gpq

(
Ẽqp + grkgk(p,q) −

grkgpq,k

2

)
−Θ2(D − 2)(D − 3)grr (A.32)
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As dimension D →∞ the Weyl tensor of the metric (2.1) becomes;

Crprq = 0, (A.33)

Crpru =−1
2gup,rr +Θgup,r +Θ,p+gupΘ,r , (A.34)

Cprmq = 0, (A.35)

Cruru =−
(1

2guu,r−Θguu

)
,r

+ 1
4g

pqgup,rguq,r +2Θ,u−Θgrpgup,r +Θ2grpgup, (A.36)

Crpuq = 1
2gpng

msgus,r
sΓn

mq + 1
4gup,rguq,r + 1

2gpn (gnmgum,r),q +Θ2 (gupguq +grrgpq)

−gupΘ,q−Θ
(
2Eqp−gu(pgq)u,r

)
, (A.37)

Crupq = gu[p,q]r−2gu[pΘ,q]+Θ(Eqm−Epn) , (A.38)

Cpqmn = sRpqmn+ 1
2gupgq[n,rgm]u,r +gupgq[n,m]r +gps

(
grsgq[m

)
,n]

+2ΘEp[mgn]q

+gpsg
r` sΓs

`[ngm]q,r +2Θgupgq[mgn]u,r−2Θ2grrgp[mgn]q, (A.39)

Cruup = gu[u,p]r−
1
2g

mngum,rEnp+ 1
4g

rmgum,rgup,r +2gu[pΘ,u]+Θ2gupg
rngun

+ Θ
2 (2Eup−guugup,r−2gupg

rqguq,r +grrgup,r +guu,p+2grsEsp) , (A.40)

Cupmq =−gupgu[q,m]r−gpn

(
grngu[m,r

)
,q]
−Ep[mgq]u,r−2gpn

(
gnsEs[q

)
,m]

−gpng
rs sΓn

s[qgm]u,r−2gpng
skEk[q

sΓn
m]s−2Θ2grrgu[mgq]p, (A.41)

Cupuq = gupgu[u,q]r−gpn

((
grngu[u,r]

)
,q]
−2
(
gnmEm[q

)
,u]
−

sΓn
sq

2 (grsguu,r +2gsmEum)
)

+ 1
4g

rrgup,rguq,r +Θ
(
grrguugpq,r−grrgu(pgq)u,r−guu,(pgg)u+2grsEs(pgq)u

)
−2Θ2grrgu[ugp]q. (A.42)
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