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Positive Toeplitz Operators from
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Abstract. We define positive Toeplitz operators between harmonic
Bergman-Besov spaces b5 on the unit ball of R™ for the full ranges
of parameters 0 < p < 0o, @ € R. We give characterizations of bounded
and compact Toeplitz operators taking one harmonic Bergman-Besov
space into another in terms of Carleson and vanishing Carleson mea-
sures. We also give characterizations for a positive Toeplitz operator on
b2 to be a Schatten class operator S, in terms of averaging functions
and Berezin transforms for 1 < p < 0o, a € R. Our results extend those
known for harmonic weighted Bergman spaces.
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1. Introduction

Let n > 2 be an integer and B = B,, be the open unit ball in R”. Let v be
the Lebesgue volume measure on B normalized so that v(B) = 1. For a € R,
we define the weighted volume measures v, on B by

1 2\«
o (1= [af)dv(a).
These measures are finite when o > —1 and in this case we choose V,, so that
Vo(B) = 1. Naturally Vo = 1. For a < —1, we set V, = 1. We denote the
Lebesgue classes with respect to v, by L2, 0 < p < 0o, and the corresponding
norms by || - ||z

Let h(B) be the space of all complex-valued harmonic functions on B
with the topology of uniform convergence on compact subsets. The space
of bounded harmonic functions on B is denoted by h*>°. For 0 < p < oo

dvy(x) =
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and o > —1, the harmonic weighted Bergman space b%, is defined by b2, =
L? N h(B) endowed with the norm || - || ». The subfamily b2 is a reproducing
kernel Hilbert space with respect to the inner product [f, gy2 = fB fgdvg(x)
and with the reproducing kernel R, (x,y) such that f(x ) [fs Ra(, )2
for every f € b2 and x € B. It is well-known that R, is real-valued and
R (z,y) = Ra(y,x). The homogeneous expansion of R, (x,y) is given in the
a > —1 part of the formulas (I2) and (3] below (see [11], [14]).

The theory of Toeplitz operators on harmonic Bergman spaces on the
unit ball is a well established subject. Harmonic weighted Bergman space b2
with o > —1 is naturally imbedded in L2 by the inclusion i. For a > —1, the
orthogonal projection Q, : L2 — b2 is given by the integral operator

/R (@) f@)(1 - W) dvy) (FeL?). (L)

This integral operator plays a major role in the theory of weighted harmonic
Bergman spaces and the question when the Bergman projection @, : Lg —
bg is bounded is studied in many sources such as ([I5, Theorem 3.1], [27]
Theorem 2.5], [28, Theorem 3.1]). Then one defines the Toeplitz operator
oLy 1 b2 — b2 with symbol ¢ by Ty = QaMyi, where My is the operator
of multiplication by ¢. Let u be a finite complex Borel measure on B. The
Toeplitz operator T}, with symbol p is defined by

v) = / R (2 9) (4)duly)

for f € h®. The operator ,T), is more general and reduces to 7T when
du = ¢dv,,. Especially, positive symbols of bounded and compact Toeplitz
operators are completely characterized in term of Carleson measures as in
[22],123] on the ball and in [5] on smoothly bounded domains; these results are
all concerned with Toeplitz operators from a harmonic Bergman space into
itself. Toeplitz operators from a harmonic Bergman space into another are
considered and positive symbols of bounded and compact Toeplitz operators
are characterized in [6] on smoothly bounded domains and in [4] on the half
space.

The weighted harmonic Bergman spaces b®, initially defined for o > —1
can be extended to the whole range o € R. These are studied in detail in [I4].
We call the extended family b2, (« € R) harmonic Bergman-Besov spaces and
the corresponding reproducing kernels R, (z,y) (o € R) harmonic Bergman-
Besov kernels. The homogeneous expansion of R, (z,y) can be expressed in
terms of zonal harmonics

nyk VZk(z,y) (x€R, x,y€B), (1.2)

where (see [13| Theorem 3.7], [14, Theorem 1.3])
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A+n/2+ if o> —(1+n/2);
(n/2)x
’}/k(Oé) . (k')Q (13)
=2t G s~/
and (a)p is the Pochhammer symbol. For definition and details about Zx(x, y),
see [2 Chapter 5.
The spaces b2 can be defined by using the radial differential operators
D! (s,t € R) introduced in [I3] and [14]. These operators are defined in
terms of reproducing kernels of harmonic Besov spaces and are specific to
these spaces, but still mapping h(B) onto itself. The properties of D! will
be reviewed in Section 2 Consider the linear transformation I! defined for
f € h(B) by

L f(x) = (1 = [2]*)' D f ().

Definition 1.1. For 0 < p < co and o € R, we define the harmonic Bergman-
Besov space b2 to consist of all f € h(B) for which I!f belongs to LZ for
some s, t satisfying (see [14] when 1 < p < oo, and [§] when 0 < p < 1)

o+ pt>—1. (1.4)
The quantity

1 «
A1, = NN, = o / D f(@)P(1— [e2)* P du(z) < oo

defines a norm (quasinorm when 0 < p < 1) on b®, for any such s, .

It is well-known that the above definition is independent of s,¢ under
(T4), and the norms (quasinorms when 0 < p < 1) on a given space are all
equivalent. Thus for a given pair s,t¢, I! isometrically imbeds b?, into LE if
and only if (L4 holds.

Strictly speaking, the norm (quasinorm when 0 < p < 1) depends on s
and ¢ but this is not mentioned as it is known that every choice of the pair
(s,t) leads to an equivalent norm. Harmonic Bergman-Besov projections @
that map Lebesgue classes boundedly onto Bergman-Besov spaces b2, can be
precisely identified as in the case of harmonic weighted Bergman spaces by

a+1<p(s+1). (1.5)

Then I! is a right inverse to Q. This is all done in [14].

Now let a € R, s and t satisfing (LH) and (L4), and a measurable
function ¢ on B be given. Harmonic Bergman-Besov projections Qs forces
us to define Toeplitz operators on all b2 as follows. We define the Toeplitz
operator ;T : bF, — b2, with symbol ¢ by 5.1 = Qs MyIt. Explicitly,

Tof(2) = / Ru(e.9)d() ' f)dvaly) (F € B2).
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We see that ;7T makes sense if ¢ € Ll 1+ and f is a harmonic polynomial.
Hence ;T is a densely defined on 0%, for such ¢, because harmonic polyno-
mials are dense in each b2. When o > —1 and p > 1, one can choose ¢t = 0 and
a value of s satisfying (LH) is s = a. Then I{ is inclusion, and ;7 reduces
to the classical Toeplitz operator Ty = QaMei on the harmonic weighted
Bergman spaces b2. We use the term classical to mean a Toeplitz operator
with 7 = Ig. The value s = a does not work when o < —1. It is possible to
take s # « also when o > —1. So we have more general Toeplitz operators
defined via I! strictly on harmonic Bergman spaces too. It turns out that the
properties of Toeplitz operators studied in this paper are independent of s, ¢
under (I3 and (T4).

Having obtained the integral form for , 7%, we can now define Toeplitz
operators on b2, with symbol p. Let «, and s and ¢ satisfing (L3 and (4]
be given. We define

AT f () = % / Ro(, )T () (1 — [yl dpu(y)  (f € BR).

The operator ;;7), is more general and reduces to 7Ty when dy = ¢dv,. It
makes sense when

di(y) = (1= |y|*)*~*du(y)

is finite and f is a harmonic polynomial. Like 4T, s,:7}, is densely defined
on b? for finite k. Note that u need not be finite in conformity with that «
is unrestricted.

In this paper, we consider the Toeplitz operator , ;7), with positive sym-
bol and characterize those that are bounded and compact from a harmonic
Bergman-Besov space bf! into another 052 for 0 < p1,p2 < oo and ag,an € R.
Our main tools are Carleson measures and Berezin transforms. Let p be a
positive Borel measure 4 on B. For A > 0 and o > —1, we say that u is
a (A, a)-Bergman-Carleson measure if for any two positive numbers p and ¢
with ¢/p = A, the inclusion ¢ : b2 — L7(u) is bounded, that is, if

</E|f(x)|qdu(x)) " SWfllees  (f €0R).

We can now state our main result.

Theorem 1.2. Let 0 < p1,p2 < 00 and a1, as € R. Suppose that o + prt >
—1, ag +pat > —1 and

1 1 i .
n+s+1>nmax<1,—>—|— —1—04’ 1=1,2. (1.6)
Di Di
Let
1 1 1 « «
SV R V)
P1 P2 ¢ P1 D2

Let ju be a positive Borel measure on B and dr(y) = (1 — |z|?)sT = du(y).
Then the following statements are equivalent:

(i) 5,1}, is bounded from bEL to bB2.
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(ii) w is a (C,v)-Bergman-Carleson measure.
Remark 1.3. In Theorem [[.2 the condition
1+ o

1
n+s+1>nmax(1,—>+ (1.7)
n p1
is used to prove that (i) implies (ii), whereas the condition
1 1
n—|—8—|—1>nmax(1,—>—|— o (1.8)
p2 b2

is needed to prove that (ii) implies (i). Moreover, when p; > 1, condition
(L) reduces to a1 +1 < p1(s+ 1), which is equivalent to the fact that @ is
bounded from L% onto b} . In a similar way when py > 1, condition (L) is
equivalent to the fact that QS is bounded from L2 onto bp?z

In order to characterize compact positive Toeplitz operators 7}, from
harmonic Bergman-Besov spaces b8! into another b52 for all 0 < p1,p2 <
oo and aj,ae € R, we introduce the notion of vanishing (A, a)-Bergman-
Carleson measures. We say that 1 > 0 is a vanishing (), a)-Bergman-Carleson
measure if for any two 0 < p, ¢ < oo satistying ¢/p = X and any sequence { fi }
in b8, with f — 0 uniformly on each compact subset of B and || fi |z < 1,

i [ [fu0)]" dulz) =0,

k—o00 B

Theorem 1.4. Let 0 < p1,pe < 00 and oy, s € R. Let s,t,(, and v be
as in Theorem [[L2. Let p be a positive Borel measure on B and dr(y) =
(1 — |z|?)*Tt=*du(y). Then the following statements are equivalent:

(i) T, is compact from bR to bP2 .

(ii) k is a vanishing ((,7)-Bergman-Carleson measure.

The holomorphic analogues of Theorems and [[4] are proved in [25]
for —1 < a1, ap < oo and for the classical Toeplitz operator 71, with a > —1.

In this paper, we will also provide a criteria for the positive Toeplitz
operators 5;7), on b2 with @ € R to be in the Schatten classes S, of b2
(see Section [f]) for 1 < p < oo. The membership in the Schatten classes
Sp, have been studied in various settings; see [5] and [23] for 1 < p < oo,
a=0,23 for 1 <p < oo, >—-1and [3] for 0 < p < o0, a = 0.
We extend their characterizations for classical positive Toeplitz operators on
harmonic Bergman spaces to s:7), on b2 and to all a € R. To state our
result we briefly introduce some notation. Given p > 0, fi,s denotes the
weighted averaging function over pseudohyperbolic balls with radius 4, and
H,q,2 denotes the (@, o, 2)-Berezin transform of y for & > —1 and a € R.
See Section Bl for relevant definitions. Note that a sequence {aj} will always
refer to the sequence chosen in Lemma 2.4 below. The next theorem is the
main result.

Theorem 1.5. Let 1 < p < 00 and o € R, and s satisfying 2s — o > —1
be given. Let p be a positive Borel measure on B, and put u = s — a and
® = 2s — a. Then the following statements are equivalent:
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(i) s,uT} : b2 — b2 belongs to S,.

(i) The (®, v, 2)-Berezin transform [ie o2 belongs to L .
(iii) The weighted averaging function fia,s belongs to LP .
(iv) The sequence {fiq,s(ar)} belongs to 7.

The holomorphic analogues of our characterizations for holomorphic
Dirichlet spaces have been obtained in [I]; these results are all concerned
with Toeplitz operators from a Dirichlet space into itself.

The paper is organized as follows. The notation and some preliminary
results are summarized in Section 2l We will recall various characteriza-
tions of (vanishing) (A, @)-Bergman-Carleson measures for weighted harmonic
Bergman spaces in Section[3 Sections@d] and Blare devoted to the proof of our
main results, Theorem and [[L4] respectively. Finaly in Section [6] we will
prove Theorem [[L5l Our results attest to the fact that the Toeplitz operators
between harmonic Bergman- Besov spaces are natural extensions of classical
Bergman-space Toeplitz operators on harmonic Bergman spaces.

In the following for two positive expressions X and Y we write X <Y
if there exists a positive constant C, whose exact value is inessential, such
that X < CY.If both X <Y and Y < X, we write X ~ Y.

2. Preliminaries

In this section we collect some known facts that will be used in later sections.
The Pochhammer symbol (a), is defined by

~ I'(a+0)
="

when a and a + b are off the pole set —N of the gamma function. By Stirling
formula,

(a)c ~ C(L—b c 00
o). (¢ = o0). (2.1)

Define the Rademacher functions 7 on R by

N ito<r—|7] <1/2,
rl(T)_{—l, if1/2<7—|r] <1
re(r) = (2 r) (k=2,3,...).

Let {cy} € £2 be a sequence of complex numbers and f(7) = > oo, cxri (7).
Khinchine’s inequality states that for any 0 < ¢ < oo, the L?[0, 1] norm of f
is comparable to the % norm of {cy}.

Lemma 2.1 (Khinchine’s Inequality). Let 0 < ¢ < oo and {c} € ¢%. The
series Y p, ¢,k (T) converges almost everywhere and if f(t) = Y po | cxri(7),
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(/ e i) . (fj |ck|2) "

k=1

then

A proof of Khinchine’s inequality can be found in [30 §V.8].

A harmonic function f on B has a homogeneous expansion, that is,
there exist homogeneous harmonic polynomials f; of degree k such that
f(z) = >3, fr(z). The series uniformly and absolutely converges on com-
pact subsets of B.

2.1. Pseudohyperbolic metric

The canonical Mobius transformation on B that exchanges a and 0 is

(1—l|a*)(@a—2) +]a—afa

Ya(T) = [z, d]

Here the bracket [z, a] is defined by
[xva‘] = \/1 —2x-a+ |x|2|a|2,

where x-a denotes the inner product of x and a in R™. The pseudohyperbolic
distance between z,y € B is

o) = _lz—y
p(z,y) = |pz(y)] Tyl

For a proof of the following lemma see [3, Lemma 2.2].

Lemma 2.2. Let a,xz,y € B. Then

1-plxy) _[za 14 p(y)
L+p(z,y) = [y,a] = 1-p(z,y)
The following two lemmas show that if x,y € B are close in the pseu-

dohyperbolic metric, then certain quantities are comparable. Both of them
easily follow from Lemma 22 (note that [z, z] = 1 — |z|?).

Lemma 2.3. Let0< § < 1. Then

[2,y] ~ 1 —Jaf* ~ 1 —[y/?,
for all z,y € B with p(x,y) <.
Lemma 2.4. Let 0 < < 1. Then

[z,a] ~ [y, a],
for all a,z,y € B with p(x,y) <.
For 0 < 0 < 1 and x € B we denote the pseudohyperbolic ball with
center x and radius § by Es(x). The pseudohyperbolic ball Es(z) is also a
Euclidean ball with center ¢ and radius r, where

_(1=0%a _ (A —|=f)s
c= =022 and r=q- 222
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It follows that for fixed 0 < 6§ < 1, we have v(Es(z)) ~ (1 — |z|*)™. More
generally, for a € R, by Lemma 2.3

(L=lyl)* dv(y) ~ (1=[a) v(Es(x)) ~ (1= |z[*)*".

(2.2)

Let {ax} be a sequence of points in B and 0 < § < 1. We say that {ax}

is 0-separated if p(a;, ax) > 0 for all j # k. For a proof of the following lemma
see, for example, [21].

va(Es(z)) = Vo ). o
o s(x

Lemma 2.5. Let 0 < § < 1. There exists a sequence of points {ar} in B
satisfying the following properties:

(i) {o%k} is 0-separated.
(i) J Es(ar) =B.
k=1

(iii) There exists a positive integer N such that every x € B belongs to at
most N of the balls Es(ay).

In what follows whenever we use expressions like fiq s(ar), the sequence
{ag} = {ax(6)} will always refer to the sequence chosen in Lemma 2.5
If u is harmonic on a domain 2 C R™, then |u|P is subharmonic on {2
when 1 < p < oco. This is no longer true when 0 < p < 1, nevertheless it is
shown in [I2] Lemma 2] and [I6] that |u|? has subharmonic behaviour in the
following sense: There exists a constant K (> 1) depending only on n and p
such that
w@P <5 [ ju)Pay) (23)
r B(z,r)
whenever B(z,r) = {y : |y — z| < r} C Q. In particular, if p > 1 then the
constant K = 1. Using this result and Es(z) is an Euclidean ball one can
get the following useful inequality easily: given 0 < p < oo, @ > —1 and
0 <6 <1, we have
P 1 P(1 _ |yl?)™
W) S Gy [, POPO b))

for all w € b2, and x € B. The estimate (23)) also leads to the following
pointwise estimate. See [8, Lemma 3.1] for a proof.

Lemma 2.6. Let 0 < p < oo and o > —1. Then
K1
< B W
|U($)| ~ (1 — |£K|2)("+a)/p
for all uw € b%, and z € B.
Lastly we obtain a generalized subharmonicity property with respect to
the measure v, on B. The proofs for a = 0 given in [23] Lemma 10] for the

ball and [B, Lemma 3.2] for bounded smooth domains work equally well for
other a too. A final use of Jensen inequality extends the result to p > 1.
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Lemma 2.7. Suppose 1 < p < oo, «a € R, 0< § <1 and p is a positive
measure on B, Then there exists a constant C (depending only on §) such
that

C

mEs (@) < oy

[ utEsw)ranw
E;s(x)

for all x in B.

2.2. Reproducing Kernels and the Operators D!

For every oo € R we have yo(a) = 1, and therefore

Ry(2,0) = Ry(0,y) =1, (z,y €B,aeR). (2.5)
Checking the two cases in (L3]), we have by 21
(@) ~ B (B — o). (2.6)

R, (z,y) is harmonic as a function of either of its variables on B. Using the
coefficients in the extended kernels we define the radial differential operators
Dt.

Definition 2.8. Let f = Y 7 fx € h(B) be given by its homogeneous
expansion. For s,t € R we define D! on h(B) by

tpe . = V(s +1)
Dsf _kZ:O ’yk(s) fk-

By 28), v&(s + t)/vk(s) ~ kt for any s,t and, roughly speaking, D!
multiplies the kth homogeneous part of f by kt. For every s € R, DY = I, the
identity. An important property of D! is that it is invertible with two-sided
inverse D;ft:

D},D!=D!D}, =1, (2.7)

which follows from the additive property DZ,,D! = Dzt
For every s,t € R, the map D! : h(B) — h(B) is continuous in the
topology of uniform convergence on compact subsets (see [I4, Theorem 3.2]).
The parameter s plays a minor role and is used to have the precise relation

D;RS(xay) = Rs—i—t(x;y) (28)

The most important property of the operator D% that we will use later
is that it allows us to pass from one Bergman-Besov space to another. More
precisely, we have the following isomorphism.

Lemma 2.9. Let 0 < p < oo and a,s,t € R. The map DY : b8, — b}, is
an isomorphism.

For a proof of the above lemma see [I4], Corollary 9.2] when 1 < p < oo
and [8] when 0 < p < 1. We also need the following duality result.
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Theorem 2.10. Suppose a > —1, § > —1 and 1 < p < co. Then the dual
of b2 can be identified with bg under the pairing

oy = [ 150 @) (ML gel)  (29)
where 1/p+1/p' =1, v=a/p+ B/p.

Proof. 1f g € b,

F(f) = = _/ — )P f(z) (1 = [2?)? /¥ g(x) dv(x) (f €bR).
It follows from Hélder’s inequality that F' is a bounded linear functional on
bo with [|F[ S gl -

Conversely, if F' is a bounded linear functional on 02, then according to
the Hahn-Banach extension theorem, F' can be extended (without increasing
its norm) to a bounded linear functional on LF. By the usual duality of L
spaces, there exists some h € Lg' such that

:/f(x)m dva(z),  (f €IR).

Let H(x) = (1 — |z[>)(@=B)/P" h(z), x € B. Then H € Lg and

N= [ 1@ dnie) (R,

It is easy to check that condition o > —1 is equivalent to p'(y+ 1) > 8+ 1,
and the condition 8 > —1 is equivalent to p(y + 1) > a + 1. So, by [14]
Theorem 1.4], @ is a bounded projection from L¥, onto b%, and @ is also a

bounded projection from Lg, onto bg. Let g = Q(H). Then g € bg and

F(f) =[f, Hpz = [f,Qy(H)]pz = [f, gl2

for all f € b2. The proof is now complete. O

For a special case of the preceding theorem when o = 3, see [19, Corol-
lary 5.1], [I5] Theorem 3.2] and also [14] Theorem 13.4] for v € R without
restriction. In this case, we clearly have v = o as well.

2.3. Estimates of Reproducing Kernels

In case a > —1, the reproducing kernels R, (z,y) are well-studied by various
authors. We recall some of their properties below. For extension of these
properties to o € R we refer to [14].

For a proof of the following pointwise estimate see [7, [26] when o > —1
and [14] when a € R.
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Lemma 2.11. Let o € R. For oll x,y € B,
1

_— if a>—n;
[z, ylo+n

|Ra(x,y)|§ 1+1ogm, ifa:—n;
]-7 'Lf o< —n.

The next lemma shows that the first part of the above estimate continues
to hold when x and y are close enough in the pseudohyperbolic metric. It can
be proved along the same lines as [22 Proposition 5].

Lemma 2.12. Let o > —n. There exists 0 < 6 < 1 such that for every x € B
and y € Es(z),
1

Ro(z,y) ~ 1- |x|2)a+n'

The next lemma gives an estimate of weighted LP norms of reproducing
kernels. When « > —1 and ¢ > 0, it is proved in [22, Proposition 8]. For a
full proof see [14, Theorem 1.5].

Lemma 2.13. Leta € R,0<p < oo and > —1. Set c = p(a+n)—(B+n).

Then
S S,
(T [2]?)’ vesn
[ 1Bl =P ) ~ S 1 1og L e
B 1—z|?
1, if ¢ < 0.

By Lemma ZTT] when o > —n, the kernel R, (z,y) is dominated by
1/[x,y]*T"™. The next lemma estimates the weighted integrals of these domi-

nating terms. For a proof see, for example, [I8, Proposition 2.2] or [26, Lemma
4.4].

Lemma 2.14. Let § > —1 and s € R. Then

1
—_—, if s>0;
(1 _ |y|2)ﬂ (1 - |x|2)51
Ammﬂﬂmwwl“%iﬂpim=&
1, if s <O.

3. (A a)-Bergman-Carleson Measures

Characterizations of (A, «)-Bergman-Carleson measures for weighted har-
monic Bergman spaces b, (o > —1) in terms of i, 5 and fin ¢ are established
by various authors in more general settings. In this subsection we will recall
these results.
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For 0 < § < 1 the averaging function jis is defined by
~ Es(z
o) 5@
v(Es(r))
More generally, for a € R we define
n(Es(x))
— x € B).
) B
By Z2), fas(®) ~ u(Es(x))/(1 — |z[?)**". The following lemma shows

that weighted LP behaviour of [i, s is independent of §. For a proof see [3]
Proposition 3.6] when a = 0. The proof also works for all a € R.

(x € B).

Ha,s(z) ==

Lemma 3.1. Let 0 <p < o0, o, € R and 0 < 6,e < 1. Then fin,s € L} if
and only if fia,c € L.

For ® > —1 and « € R, the (P, «, 2)-Berezin transform of a positive
measure g on B is

_ [ |Ba(wy)P?
s Rz )2

When ® = o > —1 and ¢ > 1, the («a,t)-Berezin transform of p is
defined by

fio,02(2) (1= [y]*)*~* du(y).

[ IRa(my)l
a(®) = | TR e T, )

Since (a 4+ n)t — (a+n) > 0, by Lemma ZT3

floi () ~ (1= |gf?)lotmi=letm) /}B |Ra(z,y)|" duly). (3.1)
Applying also Lemma [Z.11] we obtain the following estimate
N _ dp(y)
< (1 — |g]2)etn)t—(atn) [ HY)
fios(@) S (1= laf?) | (3.2)

Using the dominating term on the right-hand side, for a > —1 and s > 0, we
define (a, s)-Berezin-type transform fiq s by

ﬂa,s(x) = (1 - |x|2)s A [l,?j]iy%

The following proposition shows L?, behaviour of fiq ¢, fia,s and fia,s are
same when p > 1. For a proof see [9, Proposition 3.2].
Proposition 3.2. Let1 < p < oo and a > —1. The following are equivalent:

(a) Ha,s € L2 for some (every) 0 < § < 1.
(b) fia,s € LP for some (every) s > 0.
(¢) fra,t € LP for some (every) t > 1.

The next proposition is about a similar result concerning pointwise
bounds. For a proof see [9, Proposition 3.3].

Proposition 3.3. Suppose v > 0 and a > —1. The following are equivalent:
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(a) Tas(m) S (1—|x|?)7 for some (every) 0 < 4§ < 1.
(D) fia,s(x) S (1 —|z|?)7 for some (every) s > 7.
(¢) fat(z) S (1 —|2|?)Y for some (every) t > (a+n+7)/(a+n).

The characterizations of (), «)-Bergman-Carleson measures divided into
two cases depending on whether ¢ < p or ¢ > p. In the case ¢ < p note that
the conjugate exponent of 1/A=p/qis 1/(1 —A) =p/(p — q).

Theorem 3.4. Let 0 < ¢ < p < 0o, a > —1 and p > 0. The following are
equivalent:
(a) wpis a (A, @)-Bergman-Carleson measure.
(b) fae € Lr/ =9 for some (every) 0 < e < 1.
. € LE/#P=9 for some (every) t > 1.
ﬂa e Lp/®=9 for some (every) s > 0.
{ﬁa(s (ar)(1 — |ag|?)(nt)U=a/P)} ¢ p/(0=9) for some (every) 0 < § <
1.

)
(©)
(d)
()

Proof. That (a) and (b) are equivalent is proved in [20] and [2I] for the
unweighted holomorphic Bergman space on the unit disc ID. Note also that
the equivalence of the discrete form (e) to (a) and (b) is actually proved
therein; see, for example, the proof of [2I| Theorem 1]. As is mentioned in
the remarks of [20] the method works also for weighted harmonic Bergman
spaces on the unit ball of R™. The equivalence of (a), (b), (¢) and (e) for « =0
is proved in [6 Theorem 3.4] not just for the ball but for bounded smooth
domains. The proof works equally well for other « too. The equivalence of
(b), (c) and (d) follows from Proposition 3.2l O

As a consequence of Theorem B4 for 0 < A < 1, a positive Borel
measure p on B is a (A, a)-Bergman-Carleson measure if and only if

(Es(2))(1 — [af*) 7" € Lo/~
or

{M(Ea(ak))(l — |ak|2)_("+0‘)/\} c g1/(-%)

for some (every) 0 < ¢ < 1.
We now consider the case ¢ > p.

Theorem 3.5. Let 0 < p < q < o0, a > —1 and p > 0. The following are
equivalent:

(a) wis a (A, @)-Bergman-Carleson measure.

(1) flas < (1 — |z]?)@tm@/P=1) for some (every) 0 < § < 1.

(©) ot S (1 — |z)?) @t @/P=1) for some (every) t > q/p.

(A) Jia,s S (1= |z?)@tm@/P=1) for some (every) s > (a4 n)(q/p —1).

Note that (b) is equivalent to
w(Es(z)) < (1= |z|?)@+™a/P  for some (every) 0 < < 1
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and (d) is equivalent to

d
(1- |x|2)0/ M](O’Z% <1 for some (every) ¢ > 0.
B

Proof. Equivalence of (a), (b) and (c) for a = 0 is proved in [6l Theorem 3.1]
for bounded smooth domains. The proof works equally well for other « too.
That (b), (¢) and (d) are equivalent follows from Proposition [3.3] O

By Theorems [34] and B3] the notion of (A, @)-Bergman-Carleson mea-
sures depend only on « and the ratio A = ¢/p. We also need the following
proposition.

Proposition 3.6. Let u be a positive Borel measure onB. Let 0 < p1,p2 < 00
and —1 < a1, as < 00 and let

1 1 1
P11 P2 0 \p1  po
If v is a (0, 0)-Bergman-Carleson measure, then
/}Blf(x)Hg(x)ldM(w) Sz llgllyme - (f € 23,9 € O8).

Proof. Let f € b8, g € b%2. Since Opy > 1,0py > 1 and 1/0py + 1/0ps = 1,
we can apply Holder S mequahty to obtain

19l s

- (- [r@s@rea |x|2>@du<w>)0
s([irma- |x|2>a1du<x>) " ([ 1t eyt "

< 111l g lloza - (3.3)

Thus, fg € L1/9 Let 0 < 0 < 1. Because Es/3(x) is an Euclidean ball with
center ¢ = (1 —(§/2)%)z/(1 — (6/2)%|z|?) and the radius behaves like 1 — |z|?
when 6/2 is fixed, it follows from [8] Lemma 3.3] that

6
1 1 2\p
|f(c)g(c)| < A= aperan </Ea/2(m) IF () g0 (1 — |y|?) du(y)>

for all 2 € B. Since §/2 is fixed, the distance from x to the centre of Es/o(x)
is at most (4/2)|x| times the radius of Ej/5(z). By [8, Lemma 3.3] again, we
get

1

0
|f(z)g(z)| < A= p)ror </E§/2(m) F(w)a ()| (1 - |y|2)9dz/(y)>
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for all z € B. For a € B and x € Es/3(a), we note that Ejs/o(x) C Es(a). Let
Ej;5(ay) be the associated sets to the sequence {a} = {ax(6/2)} in Lemma
Thus we have

|f(z)g(2)|

[%
1 X )
S T fepyen (/Em(m) g1 =~ Iy du(y>>

0
5W< L, )If(y)g(y)l”e(l—Iylz)QdV(y)> . € Bypa(ar)

for k=1,2,.... Then by Lemma 25 and Lemma 2.3, we have

/|f o)) da(z)

<y /E o @)

kozol ,
191 — ly|?)edv
kZ:l ( /E @ ) <y>>
()
. /Es/z (aw) 1 - |x|2)(n+9)9>

M

6
w(Es9(ag)) 1 0
e ( L s ) du(w) Y

k:l

First, assume that 0 > 1. Since u is a (6, 9)-Bergman-Carleson measure, by
Theorem we have

w(Esya(ar)) S (1= fag )" +e?,
Then it follows from this together with (34)) and Lemma 23] that

6
/If )| dp(x Z(/E( ) g(y)|1/0(1—|y|2)@du(y)>

k=1
0
( Fgw)e (1 - IyIQ)"dV(y)>
Ea(flk)
||f9||L1/9 S gl e, (3.5)

where L is the number provided by [2I, Lemma 3|. Next assume that 0 <
6 < 1. Then by using Holder’s inequality in ([3.4]), Lemma and Lemma
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= 0
s EZ: % (/Eé(ak) IFw)gw)M? (1 — |y|2)gdy(y)>

= (1 — |ax|
—0
< { - { (Esa(ax)) ]1/(10)}(1 )
~ _ 2\(n [
= (1 - |ag[?) o

(l)o 0
X <kz_1 /Eg(ak) (W) (1~ |y|2)gdy(y)> |

Since p is a (0, 0)-Bergman-Carleson measure, by Theorem [34] we obtain
(B3) again. Combining 3] and (B3] concludes the proof. O

3.1. Vanishing (), «)-Bergman-Carleson Measures

In this subsection we will characterize vanishing (), «)-Bergman-Carleson
measures. The next proposition is about a result concerning pointwise bounds.

Proposition 3.7. Suppose v > 0 and o > —1. The following are equivalent:

(a) limpy_1- (1 — [2]*) 77 fia,s(x) = 0 for some (every) 0 <4 < 1.

(b) limg1- (1 = [2[?) ™7 fia,s(x) = 0 for some (every) s > ~.

(¢) limjg1- (1=[2[*) 7 fiat(x) = 0 for some (every) t > (a+n+v)/(a+n).
Proof. The proof is similar to the proof of [9, Proposition 3.3]. To see that
(a) implies (b) suppose that (a) holds for some 0 < 6 < 1. By [9], Eq. (3.3)]

(1= ) fias()
[.13, y]a+n,+s

dVa+’Y (y)

(1= o) fis(o) ~ (1= o) [
Since (1—|y|*) ™ "fia,s (y) is continuous on B and limj, - (1 —[2]*) ™7 fia,s(x)
= 0, by [10, Remark 3.3] part (b) holds for every s > ~. That (b) implies
(c) is immediate from (32). To see that (c) implies (a), pick dp as in Lemma
[9, Eq. (3.4)] shows that (a) holds with 6 = dp. That it holds for every
0 < § < 11is a consequence of Lemma 3.2 of [5] and Lemma O

Characterizations of vanishing (A, «)-Bergman-Carleson measures are
also divided into two cases as whether A > 1 or 0 < A < 1. We first consider
the case A > 1.

Theorem 3.8. Let 0 < p < g < 00, A = ¢q/p, « > —1 and pu > 0. The
following are equivalent:
(a) w is a vanishing (A, «)-Bergman-Carleson measure.
(b) limyg1-(1 - |z[2)(etmA=2 G (z) = 0 for some (every) 0 < e < 1.
() limg oo (1 — |ag]?) P+ O=NG, s(ax) = 0 for some (every) 0 <& < 1.
(d) limyg—-(1 - |2[2)(r+e)A=N5 L (2) = 0 for some (every) t > \.
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(e) limg;-(1 — |z[2)(r+e)A=N g (x) = 0 for some (every) s > (a +

n)(A—1).
Note that (e) is equivalent to
d
|m}i—>ni—(1 — |x|2)c/B [x,y](li% =0 for some (every) ¢ > 0.

Proof. Equivalence of (a), (b) and (c¢) and (d) for o = 0 is proved in [6]
Theorem 3.5] for bounded smooth domains. The proof works equally well for
other a too. That (b), (d) and (e) are equivalent follows from Proposition

B O
We now consider the case 0 < A < 1.

Theorem 3.9. Let 0 < ¢ < p < 00, A = ¢q/p, « > —1 and pu > 0. The
following are equivalent:

(a) p is a (A, o)-Bergman-Carleson measure.
(b) w is a vanishing (X, a)-Bergman-Carleson measure.

For a proof of the above theorem see [24] and [6 Theorem 3.6] for
bounded smooth domains.

4. Proof of Theorem

In this section we will prove Theorem Before that we present a very
useful intertwining relation for transforming certain problems for Toeplitz
operators between harmonic Bergman-Besov spaces to similar problems for
classical Toeplitz operators between weighted harmonic Bergman spaces. The
holomorphic version is in [IJ.

Theorem 4.1. We have D (5:T,,) = (s+¢1,) D%, where

T @) = 52 [ Ruvaley) fw)in(y)
s JB
is classical Toeplitz operator from by, , to b5 .. Consequently,

(s,tTu) = Ds_-ift(ertTf-c)Dia (s+tTf-c) = Di(s,tTu)Ds_lt-
Proof. By differentiation under the integral sign and (Z3)), we have
Vo
DU )@ = T2 [ Russla) DEF ()
(st T)(DLf) () (f €b2Y).

For the second and third assertions, we note that (D%)~! = D_{, by @1). O

By Theorem ET], ;7). is bounded from b2} to b52 if and only if ;T
is bounded from bg! ,, , to b52 ., ;. With all the preparation done in earlier
sections, now we are ready to prove the main result.
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4.1. (i) Implies (ii).
We divide this part into two cases: ( > 1 and 0 < ( < 1.

Case 1: ( > 1. Notice that this condition is equivalent to 0 < p; < p2 <
oo. Fix € B and consider Rq1¢(z,.). Then under the condition p; (n+s+t) >
n + a3 + p1t provided by (L), it is easy to check using Lemma that

R5+t( ) S bgll"l‘plt with

1Rse (@, )14 e S (1= ||?) (o) mpaints),

Take 6 = §p where § is the number provided by Lemma 212l By Lemma 23]
and Lemma 212, we have

Va n—+s a S —«
H(Es(@) S S0 = PPt [ R P ) daty)
S E{s(w)
Va n—+s a S —x
S =P [ R )= ) duty)

= (1 — |x|2)2n+s+t+a1 s+tTK,[Rs+t(x7 )](.13),
and therefore

PPN e 1 ey 211 C)
’ v, (Es(@))

< (1= [22) 2t 0=00) TR, )] (),

On the other hand, by Lemma [2.6] together with the boundedness of the
Toeplitz operator ;4.7 and an inequality above, we get

st T Rsyt (2, )](2) = |sa Tl Rsye (2, )] ()]

S A= 1aP) " Tl Rose Ml
S (=o)Ll | Roya(, M,
S (= foft) TR O T
where ||s4¢Tx|| denote the operator norm of . T} : b\ ., , — bo> ;. Com-

bining these estimates we have

~ n+(y1 n+a 27
Ryo(x) S (1= [2]2) T o0 = 7 T
_ 1 1 _
= (1 — |z 68 | Tl = (1 — |22 ED|| T,

By Theorem [3.5] this means that « is a (¢, v)-Bergman-Carleson measure.

Case 2: 0 < ¢ < 1. Notice that this condition is equivalent to 0 < ps <
p1 < 00. Let r,(7) be a sequence of Rademacher functions and {ax} be any
sequence satisfying the conditions of the Lemma Since

1 1
n+s+1>nmax(1,—>+ —|—a1,
P P1
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we know from [I4, Theorem 10.1] when 1 < p < oo and [8, Theorem 1.4]
when 0 < p < 1 that, for any sequence of real numbers {\,,} € ¢, the
function

= D Merk(n) (1~ [arf?) OO R (0, )

is in b} 4, With ||f7—||bi11+p1t | < | Akllers for almost every 7 € (0,1). Let

filw) = (1 —fag]?) PR (2, ay).

Since 5447} is bounded from bm+p1t to b2

€(0,1)
||s+tTnfT||§f>z+ /BZ/\W s+t T fr(®)|  dVas4pyt(®)
a2Tp2 =1

S londTullP U S Tl el

aotpots We get that for almost every

P2

Integrating both sides with respect to 7 from 0 to 1, to obtain
p2

1 00
/ / S N (D)ot i T fo(@)| vy st (@)dr S loseTall? - el
0 B k=1

Applying Fubini’s theorem shows
P2

1| o
/B / SN (e T ()| Ay 1pps(@) S ose Tl - IMel22
0 k=1

To use Khinchine’s inequality we first check that {A\g(s4++T%)fx(z)} is in
£2. Replacing A\, with A\yri(7) and using ¢, ;7 is bounded from ba1+p1t to

ba22+p2t, we get that for almost every 7 € (0,1)

(Z |Am<7>s+tTﬁfk<x>|2> S el - 1l

a1+pit
k=1

S st Tl - 1Akl o -

We now apply Khinchine’s inequality and deduce

P2

/ma <Z|)\k|2|s+tTnfk($)|2> AW tpot (T) S st Tl - [[Allr - (41)
=1

Let Es(ay) be the associated sets to the sequence {aj} in Lemma 25 Then
we have

Z N [ o @ )

Es(ax)

= /B (ZI/\kI’” |s¢ T fio () XE5<ak>(w)> Aoy 4yt (T)-
k=1
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If po > 2, then p% < 1, and from the fact that ¢2/P2 injects continuously into
2! we have

SN [ e T ()
k=1

s(ak)

e} p2/2
< /IB <Z|)‘k|2 |s+tTnfk(x)|2XEa(ak,)(x)> dVOz2+P2t($)

k=1

[e%¢) p2/2
< ~/]B (ZP‘I@'Q |S+tT/{fk(x)|2> dl/a2+p2t(x).
k=1

If 0 < p2 < 2, then p% > 1. Thus by Hoélder’s inequality we get

oo

> Pl / |5t T fr (@) 7 AVt pot ()

k=1 Es (ak)

[e%} P2/2

</ <Z|Ak|2|s+tmk<x>|2>

B \k=1

%) 171)2/2
X (Z XES(CLk)(x)> dVOé2+P2t(x)

k=1

00 p2/2
SNl_m/Q/ <Z|)\k|2|s+tTnfk($)|2> Aoy 1yt (T)
B \k=1

since any point z belongs to at most N of the sets E5(ay) by Lemma 23 (iii).
Combining the last two inequalities and applying (#1]), we obtain

Z N [ e @ )

Es(ax)

e} p2/2

< max{1, N'"72/) / (Zwmﬂmk(x)ﬁ) o st ()
k=1

S st TllP - [ Xk 152, -

Since by subharmonicity (24]) we have

1
lst T fre(ar)|P? < (1 — ag|?)roatrst /E () s+t Do fo (@) [P Vs 4 pot (2),
slag

which yields

ZIMI” 1= lag?)" 0222y T fro(ar) P2 S s Tel™ - INNG2 - (4.2)
k=1

Now, notice that

sttTefrlar) = (1 —Jar)" "

/ |Ruse(ys ai) (1 — [y2) " dpu(y).
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Therefore, proceeding as in the case ( > 1, we obtain

K(Es(x))

(1 _ |Cl | )n+8+2t+

ntay ~~ 8+tT fk(ak)

Putting this into [@2) above, we get

 (_REs() \" .
Zm ()™ S Tl Il

with
n—+ o n—+«
n=n+s+t+ L 2 = (n+1)C. (4.3)
p1 P2

Since the conjugate exponent of (p1/p2) is (p1/p2) = p1/(p1 —p2), by duality

we know that

with
||{19k}||zm/(1’1—1’2> S ||s+tTf-c||p2
or
rx(Es(x)) - -
— e ¢pip2/(P1—p2) _ p1/(1=0)
tre) = { = e
with

1
HaHlera-o = IHOR I sy S st Tocl

By Theorem [B4] this means that « is a (¢, y)-Bergman-Carleson measure.

4.2. (ii) Implies (i).
Now suppose (i%) holds, that is,  is a ({,y)-Bergman-Carleson measure. We
divide the proof into three cases.
Case 1: Let po > 1. For this case, let p, and o} be two numbers
satisfying
1 1 ay oAb

—+—=1; —+ = =s. (4.4)
P2 Dh P2 Dh
Then
a/:(s_%> . Tl
2 D2 P2 p2—1

since s > (14 az)/p2 — 1. By Theorem [ZI0, we know that the dual of b%?

can be identified with bi 2 under the pairing
2

/ f(@)g(x) dvey(x).

Let f € bb? oy+pit and b € bp 22 By using Fubini’s theorem and the repro-
ducing formula (1.5) of [14], since o, > —1 and ab +1 < p5(s+¢+ 1) by the

az+pat
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ag + pat > —1, we get that

[y st T fl2,, = /h / s+i(@,y) [ (@)dr(@) dvsse(y)
- V7 [ ([ Resstocinyivnss ) T anto)

Va, —_—
- = /B h(@) @) di(z).

The conditions for ¢ and « in the theorem are equivalent to

1 1 1 a1
/\:—+—,, Y= t+—+_
P11 Dy A P11 Ph

Thus, by Proposition [3.6]

[Py s+ T floz | S/Blh(x)IIf(w)Id/f( ) S Moz, s -

a1+pit
(12
Hence 44T} is bounded from b"!

Case 2: pp = 1. Let f € by ipit
theorem and Lemma ] we have

; to bb?

For this case, since s > a9, by Fubini’s

a1+p1 az+pat”

lesiufll, < [ ([ 1Rt L Id0) ) dvossa(c)

=/B|f(y)| (/B IRs+t(w,y)l(1—lez)"z“dl/(x)) dr(y)

< / P~ 2 dr(y). (4.5)
B

Let ¥ be the measure defined by dd(y) = (1 — |y|?)*>~*dr(y). Since x is
a (¢,7)-Bergman-Carleson measure, we have K, . € Ll/(1 Ve for every
0 < & < 1 by Theorem B4 and %, s < (1 — |z|? )(’V"’”)(l/”l_l) for every

~

0 < § < 1 by Theorem B which are equivalent to 1/9\(114_;,1,575 € L(ll/l(j;llt/pl)

for every 0 < & < 1 and Vg, 1prr.s < (1 — |z|2)@atpritm)1/pi=1) for every

0 < 6 < 1, respectively. Then, by TheoremsBAlandBH ¢ is a (1/p1, a1 +p1t)-

Bergman- Carleson measure. Thus, for any f € b}', ., we have

[ 1wl aw) < 11l

Thus, by ([@3) it follows that ||s+:T%f || B < ||f||bp1+ . and so 4T is
@gTt @1 TP

bounded from by} ., , to b3% ., ;.
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Case 3: 0 < pa < 1. Let {ai} be a sequence satisfying the conditions
of Lemma Then by Lemma [Z2] and [2Z11] we have

et T f ()] < Z / Ry, 9)| | )l (y)

Es(ar)

§Z/E( )WU(Q)W“(Q)
k=1 Felak) 1

oo
<
~
k=1

W/E( )|f(y)|df-€(y)

Now, by the subharmonicity in (24)), for y € Es(ax), we have

1
p p
|f(y)| ! S (1 _ |ak|2)"+0ﬂl+Plt ,/Eé(ak) |f(21)| 1dl/a1+P1t(Z).

From this we get

/ () ldi(y)
Es(ak)

1/p1
k(Es(ar)) )
/S (1 _ |ak|2)(n+a1+p1t)/p1 /Ea(ak) |f(z)|l7 dVa1+p1t(Z) .

Since 0 < po < 1, this implies

R(Es(ax))"
)P2 <
|ste T f () |2 Z Z‘ ak (n+9+f)p2 (1-— |ak| )(n+al+p1t)p2/p1

p2/p1
X (/ |f(Z)|p1dVa1+p1t(Z)> -
E(;(ak)

Therefore, since (n + s)p2 > n + ag, we can apply Lemma [ZT14] to obtain
l[s+¢T% f||bv2

pat

S p2/p1
(Fion)” )
z:l (1 — |ag2)(rortpitpe/on | Jp [f () dvay4pie(2)
|$| Oé2+P2f
/]B [z, ag](vtstOpz dv()

p2/P1
K(Es(ar))P? »
k 1 — |(Lk| n+0t1+p1t)102/:01 Es(ar) |f(Z)| 1dya1+p1t(z)
1

X (1 — |ag|?)ntHaz—(nts)pz, (4.6)

X

Mg

First, assume that ¢ > 1. Since & is a (¢, 7)-Bergman-Carleson measure,
by Theorem [3.5 we get

k(Es(ar)) S (1 — |ag]?)m+0e,
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Bearing in mind (£3)), this, together with ([@6) and the fact that ps > py
(due to the assumption ¢ > 1), yields

00 P2/p1
s Tf I sZ( /E ( )|f<z>|mdua1+plt<z>>
slag

ag+ =1

oo

p2/p1
Z/ |f(z)|pldya1+p1t(z)> S ||f||bpl
Es(ak)

k=1

A

2
Hence, s4¢T} is bounded from ba1+p1t to baﬁp275

Next assume that 0 < ¢ < 1. Then p; > p2, and using Holder’s inequal-
ity in (£H), we get
[s+¢ T fIlpp2
ag+pot

3 E a ) p2/p1
5 k
S Z 1 - |ak| n+7)<p2 <~/Es(ak~) |f(Z)|p1dVa1+:D1t(z)>
S E(S ak)) p1/(p1—p2) 1—p2/p1
kZ (1 — lax]?) (”Jrv)sz}

p2/p1
| 1dV011+101f( )) .

Bergman-Carleson measure, by Theorem [3.4] we get that

5(ak)

Since & is a (

00 _ (1=¢)p2
RESTTRNIE ) Y. c: TN R
s+t bpz gt ™ (1 . |ak|2)(n+7)c

k=1

<Z [E o )) p2/p1

p2/p1
<Z/E ldyal-i-plt( )) < Hf' bm

Hence, ¢4+T} is bounded from b-* o +pit O bP? The proof is complete.

az+pat”

5. Proof of Theorem [1.4

In this section we will prove Theorem [[4l Note again that by Theorem ET]
s,tTy is compact from b8! to b2 if and only if 44T} is compact from b}

D2
to baz +p2t:

ai+pit

5.1. (i) Implies (ii).
We divide this part into two cases as 0 < ( <1 and ¢ > 1.

Case 1: 0 < ¢ < 1. In this case a vanishing ((,~)-Bergman-Carleson
measure is the same as a (¢, y)-Bergman-Carleson measures by Theorem [3.91
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If 41T} is compact, then it is bounded and by Theorem [ .2l we get the desired
result.

Case 2: ( > 1. Since 44T, is compact, then ||S+tTka||bP2+ . 0
aTp2t

for any bounded sequence {fi} in b7}, ; converging to zero uniformly on
compact subsets of B. Let {ax} C B with |agx| — 1~ and consider the functions

fil@) = (1 —|ag?) " FI= PR (2, ay).

Due to the conditions on s and Lemma 213} we have sup, ||f;€||bm+ , <00,
@1 TPl

and it is obvious that fi converges to zero uniformly on compact subsets of
B. Hence ||S+15T,.€fk||bp2+ .0 Therefore, proceeding as in the case ( > 1
Qa2 TP2

of that (i) Implies (ii) in Theorem [[L4] for any § > 0, we get

Fy,5(ak)
(1 — |ak|2)(n+’7)(€—1)

<(1- |ak|2)(nﬂ)(1fC)+2(n+s+t)f(n+8)+(n+a1)/p1S+tTka(ak)

= (1= [ag2)FOH P T, f(a)

SJ ||s+tTf</fkHbi’fﬂp2t —0

Thus, by Theorem[3.§] the measure « be a vanishing (¢, §)-Bergman-Carleson
measure.

5.2. (ii) Implies (i).

Now suppose (i) holds, that is, k is a vanishing ((,~y)-Bergman-Carleson
measure. We divide the proof into two cases.

Case 1: 0 < ¢ < 1. Since (ii) holds, by Theorem [[.2], +:7}; is bounded.
Also since 0 < ¢ < 1, we have 0 < ps < p1 < oo. Due to the space b2 is
isomorphic to ¢¢ by [8, Theorem 1.4] for 0 < p < 1 and [14] Theorem 10.1]
for 1 < p < oo , the result is a consequence of a general result of Banach
space theory: it is known that, for 0 < ps < p; < o0, every bounded operator
from ¢P* to (P2 is compact (see [I7, Theorem 1.2.7, p. 31]).

Case 2: ¢ > 1. To prove that the operator ;4;7T} is compact, we must

show that ||S+tT“kabi22+p2t — 0 for any bounded sequence {fx} in b)),

converging to zero uniformly on compact subsets of B. If po > 1, then just
like in the proof of Theorem [[L4, by duality and Lemma we have (the
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numbers p), and o are the ones defined by (&)

lsreTufellprz S sup |[hy st T frls2 |

«2tp2t ||h|\ , <1

a

sup / (@) i () s ()

||h|\ 4 <1

“2
s”hlsup Il / k(@)L — af?) =8 P ()

(12

S [ 1R@I — o)+ ()
B

Let 9 be the measure defined by di(z) = (1 — |z[2)~("+te2)/P2 (). Since x
is a vanishing (¢, v)-Bergman-Carleson measure, using Theorem B8 we can
easily see that ¢ is a vanishing (1/p1, a1 + p1t)-Bergman-Carleson measure.
Thus, ||S+tTnfk||biz2+p2t —0

If 0 < pa < 1, from the estimates obtained in the proof of that (ii)
implies (i) in Theorem [[4] (see ([@.0)) it follows that, for any sequence {a;}
satisfying the conditions of the Lemma 2.5 we have

||s+tTnfk||:z2)2
ag+pat

| P2 p2/p1
Z(%) (/E( _)|fk($)lpldual+p1t(x)> (5.1)

Jj=1
Let € > 0. Since « is a vanishing ((,~)-Bergman-Carleson measure, due to
Theorem [B.8] there is 0 < §y < 1 such that

sup _ KlBslay)) <e. (5.2)

jay >80 (1= la[?)F7)¢

Split the sum appearing in (51 in two parts: one over the points a; with
laj| < dp and the other over the points with |a;| > d¢. Since {fi} converges
to zero uniformly on compact subsets of B, it is clear that the sum over the
points a; with |a;| < o (a finite sum) goes to zero as k goes to infinity. On
the other hand, by (52)) and since p2 > p; (because ¢ > 1), we have

> p2/p1
K(Bs(a) )" i
S (i) ([, e snio)

Jilaj|[>do

oo

p2/p1
<e? ) | fie(@) [P dvay 4py ¢ (2) < e2| fellys o S €.
Es(aj) boadtpre

J:la;|>6o

Thus, ||S+,5T,.;fk||bm+ .0, finishing the proof.
agTpat
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6. Positive Schatten Class Toeplitz Operators

In this section we will prove Theorem We first briefly review the notion
of Schatten class operators. If T' is a compact operator on a separable Hilbert
space H with inner product [-, -]z, then there exist a non-increasing sequence
{Sm(T)}, called the singular value sequence, and orthonormal vectors {e,,}
and {f} in H such that

m=0

for x € H. For 1 < p < oo, the space of all Schatten p-class operators
Sp(H) is defined to be set of all compact operators T' for which ||T']s, =

>y Sm (T)p)l/p < 00. As is well known, S, (H) is a Banach space with the
norm ||.|[s, and is a two-sided ideal in the space of bounded linear operators

on H.If T € S1(H) and {ey,} is an orthonormal basis for H, then

[e )

tr(T) = > [Tem,emln,

m=0

where the series is convergent and independent of {e,,}. The sum above is
called the trace of T. If T' € S,(H) and T' > 0, we have ||T'||s, = [tr(Tp)]l/p
for 1 < p < oo. If T is a positive compact operator on H, then TP is uniquely
defined, and T € S,(H) if and only if 77 € S1(H). See [29], for example, for
more information and related facts.

In the rest of the paper we consider the case of a Hilbert space H = b2,
for any o € R. Given an «a, we select s so as to satisfy (LH) with p = 2, and
put

u=s—a and P=2s—a=s+u=a+2u>-1 (6.1)

in the remaining part of the paper. Actually it comes from self-adjointness
of the operator

Ay f(@) = (1 — [2]2)! / Repe(a ) )1 — P doly)  (f € 12)

and the adjoint A%, : L2 — L2 is A%, = Aoyt —ats whenever the operator
is bounded. See [I4] Lemma 8.1]. So we use this notation in order to have
Toeplitz operators that are direct extensions of the classical Bergman space
Toeplitz operators and to have exact equalities as much as possible. See [T,
Section 3] for detail explanations in the holomorphic setting.

The norm in Definition [[T] yield explicit equivalent forms for the inner
product of b2 as

i1 glve = LS, IiglL2 Z/Bfif(x)fﬁg(x) dva(z),  (f,gebl) (62)

with ¢ satisfying (L4) with p = 2. Also we use only the inner product [-, |2 =
wlts Jpz - If o > —1, it is standart to use u = 0.
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Given an «, pick an s satisfying ([LH]) with p = 2, recall that & > —1,
let y € B, and put
__Ri(ay)
12 (-, 9) Iz

Since 2(n+s)—(n+a) > 0, by LemmaZI3, o9, () ~ (1—|y|?)"+® /2R (x, ).
Obviously [[agyllyz = 1 for all y € B. Thus g, is essentially a normalized
reproducing kernel; but although the kernel R,(x, %) is that of b2, the normal-
ization is done with respect to the norm of b2, and is considered an element
of b2. It is interesting that

D (agy) (@)

agy(x) ((E S B)

o Rq)(xvy) .

which defines ¢k, (z) € b3. More interesting is the fact that this family of
functions in b2 spaces is the link between the bounded Toeplitz operator
s,u Ty, and the Berezin transforms of p. Under the conditions (6.1I), dx takes
the form

di(y) = (1= [y*)*dp(y) = (1 — [y*)* " du(y),
and we have

LTy f floz = / DUfds (f €12 (6.4)

which can be seen by formally exchanging the order of integrations after
representing .7}, f as an integral, differentiation under the integral sign,
and then applying the reproducing property. By (6.3) and (6.4)), we obtain

louT(ag): )iz = / D% gy 2dr = / ok, 2k = fiows  (65)

for those p for which the integral converges.
We need a few lemmas before we characterize the Toeplitz operators
with positive symbols that are in Schatten classes S, = S, (b2) for 1 < p < o0.

Lemma 6.1. If T : b2 — b2 is in Sy or positive, then

tr(T) = tr(D{TDg") = /[DgTDq:uRq>('ay),Rq>(',y)]bgd%(y)
B
~ /[D?TD;uq;ky, @ky]bi dv_n,
B

:/[Tagyvagy]b?ldl/fn
B

where DYT'D3" is the operator on b%.

Proof. Let {e, : ¢ € N"} be an orthonormal basis for b2 with respect to the
inner product [, -]y2. Put f; = D¢e,. Then {f, : ¢ € N"} is an orthonormal
basis for b2 with respect to the inner product [, ']bi by Lemma [2:9] Then

tr(T) = Z[Teq, eqloz = Z[DgTeq, Dgeq]bﬁ, = Z[(DZ;TD;U)JC(J; fq]b?p7

q q q
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which proves the first equality. The second equality follows by modifying the
proof of Theorem 6.4 and Corollary 6.5 of [29] for the ball and for weighted
harmonic Bergman spaces. The inequality follows from Lemma 213l Finally
the last equality follows from (62 and (63). O

Lemma 6.2. We have
tr(s,uT,u) ~ /,a{),a,QdV—n-
B
Proof. The proof follows from Lemma [6.1] and ([G.3]). O

Lemma 6.3. If 1 <p<oo and ¢ € L”,, then 5, T, € SP.

Proof. Let {e, : ¢ € N"} be any orthonormal basis for b2. By Lemma [6.1] we
have

tr(s,uT¢) = Z[s,uTqbe(p eq]bi = Z[¢T¢fqa fq]bg2 = tr({)T¢)7

q q
where Ty = QaMgyi is a classical Bergman space Toeplitz operator. So
s,uly € SP if and only if T4 € SP. This is proved in exactly same way that
[29, Proposition 7.11] was proved. O

Note that by [I4, Corollary 13.4] with u in place of ¢,

Va

[S,uT¢f7 f]b% = [QSM¢Igf7 f]b V [M¢qua f] (66)

JfPdve  (f €b3).

Lemma 6.4. For any § > 0 there exists a constant Cs with the following
property: If (v is a finite positive Borel measure such that ;.15 ,; is bounded
on b2 then 5T, is bounded on b2 and sTy < Cs suTh, 5

Proof. Let f € b2. We compute using (6.6]), (Z.2)), Fubini theorem, (24, (6.4)
, and obtain

Ve[ uEBs(@)) |
[suTfin,s fs floz = AT lBUa(Eé(x))|Dsf(x)|2dyq,(x)

u 2
~ [ 2O [ oo @dutanta)

(= laP) >

D f ()]
/ /E )

~ - - _ {E2 2u| pu z 2 v (2
ey [ 0 D v iny)
> [ D21 @Pary) = LT Pz

B

which completes the proof of lemma. O
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Proof of Theorem[L3. (i) implies (ii). 5,7, € Sp. Then (5,7),)? is in Sy so
that ¢7((s,,T},)P) is finite. It follows from Lemma [6.1] that

leuTl8, = (T = [ (TP ot asiliz .

It follows from [29] Proposition 1.31] and (6.5)

ool > [ (Tt oy dvms = [ 7 s,
B « B

Thus we have (ii).

(ii) implies (iii). Suppose figa2 € L', . Fix § = §p where dy is the
number provided by Lemma 2121 By Lemma 23] ([Z2)), Lemma T2 and
Lemma 2.13] we have

. 1 /
a,6\Y) ~ T 1ot a du(x
Fa,s(y) TP oy ()

_ |Ro(z,y)|?
~ 1_ y2 D ()// 76#‘ T
=W o TR )l #

Raloo) | 2o _
< (1~ )" () = gz
L. 1o 0l /

Thus we have (iii) for 6 = dp. That it holds for every 0 < § < 1 is a conse-
quence of [B, Lemma 3.2].

(iii) implies (i). Suppose fia,s € L”,. Then 4,T5, , € S? by Lemma
By positivity and [29, Theorem 1.27], Zq[&uTua’&eq,eq]g% < oo for any
orthonormal set {e,} in b2. Then Y [5 . Tpeq, eq]gi < oo too by Lemma [6.41
We are done by applying [29, Theorem 1.27] again.

(iil) implies (iv). Lemma 27 with z = a) and a@ = —n, and Lemma
yield

(fias(ar))’ < / (fias)  dvn.
Es(ar)

Then

by Lemma (iii).
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(iv) implies (iii). Repeated use of Lemmas 23] 23] equation (2.2)), and
that Fj/o(x) C Es(ax) for v € Es/o(ay) yield

) o (Espa ()"
/R(Ma,ap) dv_n < Z/E (1 f|x|62/)2n+p(n+a) dy(a:)

k=1 Es/2(ak)

A

Z (1—lag|? )n+p(n+a) /Ea(ak) w(Es(ax))Pdv(z)

(1 — Jax[)"
1_| n+p(n+a)u
ak|

P(Es(ar))’ o= )
Z o(Bs(ag))? ; (ua’é(ak)) '

M8E

(Es(ax))”

k=
Thus, we have /i 5/2 € L” . Now, by Lemma [B1] we have fio,s € L” ,. The
proof is complete. O
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