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With the provoked environmental constraints under extreme climatic events, a better
understanding of plant responses to these environmental stresses helps in obtaining
sustainable productivity. Wheat is a significant cereal crop for the burgeoning population;
its yield is significantly limited by too little water in the rhizosphere. The ramifications of
water deficiency on the wheat crop can be reduced by the application of vermicompost.
With the objective to cope with drought stress, a wire-house experiment was established
where seedlings of two cultivars, viz., Faisalabad-08 and Galaxy-13 (drought-tolerant and
-sensitive cultivar, respectively) were grown in pots and exposed to mild drought (D1, 45%
field capacity) and severe drought stress (D2, 30% field capacity). A control with well-
watered condition (70% field capacity) was kept for comparison. Various application rates
of wheat straw vermicompost (control (VT0), 4 t ha−1 (VT1), 6 t ha−1 (VT2), and 8 t ha−1

(VT3)), were used in soil-filled pots under drought and control treatments. Our data
depicted that compared with control, drought treatments recorded a significant
reduction in morpho-physiological and biochemical attributes with maximum reduction
under severe drought conditions. Nonetheless, it was observed that soil application of
vermicompost, particularly at a high rate, ameliorated the negative effects of drought.
Under severe drought conditions, a significant and positive influence onmorphological and
physiological traits was recorded for VT3 treatment, which increased root and shoot length
by 27.55 and 27.85%, root and shoot fresh weight by 26.98 and 28.20%, root and shoot
dry weight by 40 and 50.05%, and photosynthesis and transpiration rate by 27.65 and
49.25%, respectively, on average of two cultivars. Similarly, VT3 also significantly
ameliorated the adverse effect of drought by enhancing the antioxidant enzyme
activities as it increased superoxide dismutase activity by 14.28%, peroxidase by
27.28%, and catalase by 50% compared to the control treatment. Among cultivars,

Edited by:
Balasubramani Ravindran,

Kyonggi University, South Korea

Reviewed by:
Mursleen Yasin,

Western Sydney University, Australia
Rajesh Singhal,

Indian Grassland and Fodder
Research Institute (ICAR), India

*Correspondence:
Zubair Aslam

Zauaf@hotmail.com
Talha Javed

talhajaved54321@gmail.com
Sadam Hussain

ch.sadam423@gmail.com

Specialty section:
This article was submitted to
Toxicology, Pollution and the

Environment,
a section of the journal

Frontiers in Environmental Science

Received: 11 March 2022
Accepted: 23 March 2022
Published: 26 April 2022

Citation:
Ahmad A, Aslam Z, Hussain S,
Javed T, Hussain S, Bashir S,

Hussain I, Belliturk K, Adamski R,
Siuta D, Dessoky ES and Hessini K

(2022) Soil Application of Wheat Straw
Vermicompost Enhances Morpho-

Physiological Attributes and
Antioxidant Defense in Wheat Under

Drought Stress.
Front. Environ. Sci. 10:894517.

doi: 10.3389/fenvs.2022.894517

Frontiers in Environmental Science | www.frontiersin.org April 2022 | Volume 10 | Article 8945171

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fenvs.2022.894517

http://crossmark.crossref.org/dialog/?doi=10.3389/fenvs.2022.894517&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fenvs.2022.894517/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.894517/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.894517/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.894517/full
https://www.frontiersin.org/articles/10.3389/fenvs.2022.894517/full
http://creativecommons.org/licenses/by/4.0/
mailto:Zauaf@hotmail.com
mailto:talhajaved54321@gmail.com
mailto:ch.sadam423@gmail.com
https://doi.org/10.3389/fenvs.2022.894517
https://www.frontiersin.org/journals/environmental-science
www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org/journals/environmental-science#editorial-board
https://doi.org/10.3389/fenvs.2022.894517


Faisalabad-2008 showed comparatively more resistance against drought stress. The
findings of this work revealed that drought drastically reduced the growth and productivity
of wheat; however, soil-applied vermicompost positively influenced the performance of
wheat cultivars.

Keywords: antioxidant, cultivars, drought, straw, vermicompost, wheat

INTRODUCTION

Wheat (Triticum aestivum L.) is a significant crop that is
cultivated throughout the world. The crop is cultivated on an
area of 214.79 million hectares with a total production of 735.17
million tons on the globe (FAO, 2019). It is a dominant cereal
crop that provides a food source for over 1.2 billion people and
is of significant importance as a commercial product (Iqbal
et al., 2018). Wheat is a C3 crop and is particularly vulnerable to
harsh environments, including drought stress (Wang et al.,
2014), which affects the growth and developmental processes,
particularly when it occurs at early developmental stages.
Drought stress also disrupts the physiological events in crop
plants as it reduces chlorophyll content (Ahmad et al., 2022),
photosynthetic assimilation of CO2 (Golldack et al., 2011; Wei
et al., 2015), inhibits cell division and elongation (Avramova
et al., 2015), and decreases photosynthesis-related parameters
and relative water contents (Hussain et al., 2019; Ahmad et al.,
2021a). Inevitably, prolonged drought also results in oxidative
damage owing to increasing the production of reactive oxygen
species (ROS) that markedly affected cell membranes and
caused tissue injuries (Reddy et al., 2004; Liu et al., 2015;
Farooq et al., 2020). Nonetheless, different enzymatic and
non-enzymatic antioxidants, also called scavenging enzymes
(including ascorbic acid, superoxide dismutase, peroxidase, and
catalase), are activated in plants as a defense response to
detoxify the ROS (Abid et al., 2016; Hussain et al., 2018).
Prolonged drought episodes also caused a significant
reduction in grain yield which accounted for a 20–40%
reduction in wheat yield globally (Daryanto et al., 2016). In
recent years, various approaches are being used to minimize the
negative effects of drought; these include the application of
osmoprotectants, cultivation of drought-tolerant cultivars, and
the conservation of agricultural practices using conservation
tillage, natural and synthetic mulches, and vermicompost
application.

In today’s agriculture scenario, the main concern of
researchers and farmers is to enhance crop productivity in a
sustainable way to maintain soil fertility and protect the
environment. Hence, vermicompost application has great
potential to promote plant growth and grain yield while
protecting the soil environment (Varghese and Prabha, 2014).
Its application enhances the physiochemical and organic
properties of the soil. Vermicompost, degraded solid organic
residues formed under aerobic conditions, contains a bulk
quantity of earthworms and other microfauna that enhance
the availability of growth regulators/hormones, degrading
enzymes (including chitinase, cellulase, lipase, amylase, and
proteases), and vitamins. These earthworms also help in the
modification and fragmentation of organic residues by
lowering the C/N ratio and exposed area for microfauna to
react with cellulolytic-degrading microfauna for complete
degradation. Earthworm guts can release bacterial excrements
which are the product called humus (Dominguez and Edwars,
2004). The epigeic earthworms, Eisenia fetida and E. andrei, are
among the most commonly used worm types in vermiculture;
however, some other species including Polipheretima elongate,
Millsonia anomala, and Pontoscolex corethurus are also used in
the preparation of vermicompost (Lattaud et al., 1997a, b;
Urbasek and Pizl 1991; Zhang et al., 1993; Zhang et al., 2000).

Vermicompost application plays a pivotal role in regulating
drought tolerance in crop plants. In this regard, Curtis and
Classsen (2005) demonstrated that applying vermicompost
significantly enhanced the availability of soil water, increased
leaf water content, and enhanced plant biomass production.
Working with maize and soybean crops, Bowden et al. (2010)
confirmed that vermicompost application enhanced drought
tolerance as it promoted the antioxidant enzyme activities and
photosynthesis traits. According to Suthar (2009), the application
of vermicompost improves the drought tolerance of garlic
(Allium sativum L.) grown under pot conditions. The positive
influence of vermicompost was also reported for other field-

TABLE 1 | Analysis of raw material, vermicompost, and cellulolytic microbe–enriched vermicompost.

Treatments Humidity
(%)

pH EC (dS
m−1)

Ash (%) N (%) P (%) K (%) Ca (%)

Wheat straw 7.83 6.26 3.24 29.00 0.18 0.11 0.17 1.06
Wheat straw vermicompost 53.67 7.55 2.26 33.33 0.85 0.45 0.83 2.91

Mg (%) Fe (%) S (%) Cd (mg kg1) Ni (mg kg1) Pb (mg kg1) Hg (mg kg1) Cr (mg kg1)

Wheat straw 0.16 0.15 0.09 0.84 15.00 32.67 1.96 17.50
Wheat straw vermicompost 0.56 0.30 0.23 0.46 7.00 18.00 1.12 7.50

pH, potential of hydrogen; EC, electrical conductivity; N, available nitrogen; P, available phosphorus; K, available potassium; Ca, calcium;Mg,magnesium; Fe, iron; S, sulfur; Cd, cadmium;
Ni, nickel; Pb, lead; Hg, mercury; and Cr, chromium.
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grown crops, such as Triticum aestivum L. (wheat), Capsicum
annum L. (peppers), Brassica oleracea L. (cabbage), and
Lycopersicum esculentom L. (tomatoes) (reviewed by Subler
et al., 1998). Working with chickpea (Cicer arietinum L.) crop,
Jat and Ahlawat (2006) reported that vermicompost improved the
soil nutrient status, thereby promoting crop growth.

The positive influence of vermicompost application
combined with other organic fertilizers on morpho-
physiological and yield traits under drought stress has been
well-discussed in previous studies (Aboelsoud and Ahmed,
2020; Hafez et al., 2020). The vermicompost fertilizer and
humic acid application have been reported to induce the
activities of scavenging enzymes, including antioxidant
enzyme catalase, superoxide dismutase, and peroxidase, to
detoxify the ROS (Garcia et al., 2012; Kiran, 2019). A similar
phenomenon has also been reported in chickpea (Gholipoor
et al., 2011; Hosseinzadeh et al., 2018), tomato (Solanum
lycopersicon L.) (Ahanger et al., 2021), mungbean
(Mahmoudi et al., 2016), lentil (Ahmadpour and
Hosseinzadeh, 2017), and the oilseed crop: canola (Rashtbari
et al., 2012). Considering the aforementioned scenario, the
present investigation was focused on studying the effect of
wheat straw vermicompost application on wheat morphology
and physiology under water stress and investigating the
damaging effects of drought stress on wheat growth. In the
current study, we hypothesized that wheat straw vermicompost
will improve wheat growth and drought tolerance by
modulating the physiological and biochemical characteristics
of our crop.

MATERIALS AND METHODS

Experimental Station and Plant Material
The concurrent study was executed as a pot experiment in the
wirehouse at the Student Research Farm, Department of
Agronomy, Faculty of Agriculture, University of Agriculture,

Faisalabad (UAF) (latitude 31°-04′ N, longitude 73°-06′ E, and
an elevation of 184.4 m above sea level) during the winter season
of 2020–21. Clay loam soil with pH 8.31, Ec 1.46 dSm−1, available
N 0.056%, accessible phosphorus 36.5 ppm, exchangeable
potassium 325 ppm, and organic matter 1.08% was used in
this experiment to fill the pots. The seeds of two contradicting
wheat cultivars, drought-tolerant (cv. Faisalabad-2008) and
drought-sensitive (cv. Galaxy-2013), were obtained from the
Directorate of Farms, Department of Agronomy, UAF and
Seed Department, Ayub Agricultural Research Institute,
Faisalabad (AARI).

Analysis of Raw Materials and
Vermicompost
The raw material used for the preparation of vermicompost was
wheat straw obtained from the Department of Agronomy, UAF.
The potential of hydrogen (pH), electrical conductivity (EC),
ash content, available nitrogen (N) content, available
phosphorus (P), available potassium (K), calcium (Ca),
magnesium (Mg), iron (Fe), sulfur (S), and heavy metals

TABLE 2 | Mean sum of squares regarding the effect of soil-applied wheat straw vermicompost on the growth and physio-biochemical attributes of wheat cultivars under
drought stress.

Drought (DS) Vermicompost (VT) Cultivars (C) DS×VT DS×C CT×C (ns) DS×VT×C (ns)

Root length 1,240.29** 153.37** 122.72** 7.27** 106.35** 0.09 0.22
Shoot length 2,171.54** 168.50** 133.39** 7.65** 116.51** 0.94 0.29
Root fresh weight 35.01** 2.88** 2.75** 0.37** 1.81** 0.02 0.02
Shoot fresh weight 157.31** 9.31** 21.04** 2.91* 2.82* 0.68 0.66
Root dry weight 0.83** 0.07** 0.07** 0.01** 0.00* 0.00 0.00
Shoot dry weight 1.50** 0.09** 0.08** 0.01** 0.07** 0.00 0.00
Leaf water potential (Ψw) 0.53** 0.54** 0.02** 0.00ns 0.01** 0.00 0.00
Leaf osmotic potential (Ψs) 0.19** 0.02** 0.00ns 0.00ns 0.00ns 0.00 0.00
Leaf turgor potential (Ψp) 0.08** 0.00** 0.01** 0.00ns 0.00** 0.00 0.00
Canopy temperature 98.43** 17.83** 6.72** 0.54ns 6.51** 0.20 0.10
Photosynthetic rate 67.92** 5.71** 3.76** 0.47** 4.45** 0.02 0.01
Transpiration rate 35.77** 1.98** 2.50** 0.28** 1.08** 0.01 0.01
Stomatal conductance 36.87** 0.98** 2.36** 0.20ns 2.07** 0.01 0.05
SOD 44,240.40** 282.80** 2,415.10** 55.60* 570.80** 2.30 1.00
POD 1,040.55** 28.05** 87.78** 4.20** 30.45** 0.28 0.42
CAT 17.12** 1.06** 10.83** 0.23** 4.21** 0.31 0.16

SOD, superoxide dismutase; POD, peroxidase; and CAT, catalase

FIGURE 1 |Meteorological data, mean monthly maximum andminimum
temperatures (Tmax and Tmin, respectively), relative humidity (RH), and rainfall
during the crop growing season.
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such as, cadmium (Cd), nickel (Ni), lead (Pb), mercury (Hg),
chromium (Cr), and stannum (Sn) of raw material and
vermicompost were measured according to standard
protocols and are shown in Tables 1, 2.

Meteorological Observation
Weather data were gaged throughout the growing period of the
wheat crop from the meteorological observatory at Agronomy
Department, UAF, and are manifested in Figure 1.

FIGURE 2 | Effect of soil-applied wheat straw vermicompost (VT) on root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry
weight of twowheat cultivars under different drought levels [70% field capacity (FC), 45%FC, and 30% FC]. Bars with different alphabetical letters differ significantly at 5%
probability, according to Tukey’s HSD test. VT0, control; VT1, 4 t ha−1; VT2, 6 t ha−1; and VT3 8 t ha−1.
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Experimental Design and Treatments
This wirehouse experiment consisted of three factors, viz., (a) two
contrasting wheat cultivars (Faisalabad-08 and Galaxy-13 as
drought-tolerant and drought-sensitive, respectively), (b) three
drought levels (control, 70% of field capacity (D0); mild
drought, 45% of field capacity (D1); and severe drought, 30% of
field capacity (D2)), and (c) different application rates of
vermicompost [control (VT0), 4 t ha−1 (VT1), 6 t ha−1 (VT2)
and 8 t ha−1 (VT3)]. The experimental pots were intended
under a complete randomized design with factorial
arrangements where each pot gets three replicates. Initially,
vermicompost was applied before sowing and wheat seeds were
sown in uniform soil moisture conditions. After that, water stress
treatments were started after first irrigation until harvesting. In
each replicate pot, water losses were compensated by applying a
measured amount of water to prevail the required field capacity.
For each treatment, soil moisture contents were measured on a
daily basis by using a soilmoisturemeter (TZS-W). After 35 days of
stress imposition, plant samples, from each replicate pot, were
harvested to analyze the morpho-physio-biochemical traits.

Crop Husbandry
The seeds of wheat cultivars were sown in pots (with a
measurement of 20 cm × 20 cm), filled with sieved soil 5 kg
each, in the rabi season (sown on 06 October 2020). Urea and
diammonium phosphate (60 and 57 mg kg−1 soil, respectively)
were mixed and applied to each pot at the time of sowing.
Initially, fifteen seeds were sown at identical distances; later,
ten seedlings were maintained in each replicate pot. Except for
treatments, all other practices, including chemical application,
were kept uniform for all pots.

Data Recorded
Growth-Related Traits
A rodmeter scale was used to calculate the seedling lengths (cm). In
order to calculate the seedling weights, first, shoots and roots were
separated, and an electrical balance was used to record the fresh
weights, which were expressed in g. Then, seedling parts were
transferred to an oven at 70 ± 02°C for 72 h and the aforementioned
weighing balance was used to calculate the dry weights in g.

Physiological Attributes
Water Potential (Ψw)
At 60 days after sowing, a water potential apparatus (Chas W.
Cook and Sons., Birmingham-B, Industrial manufacturer,
England) was used to measure the Ψw, where a fully emerged
flag leaf was used (Scholander et al., 1964). First, pressure-filled
gas was exerted into the leaves until the xylem components are
visible on the cut section. To ensure no evaporative loss, the
samples were taken between 6.00 p.m. and 8.00 a.m., and plant
leaves were placed as early as possible in the pressure chamber.
From each replicate pot, three samples were taken from each
plant, and the average value was measured.

Leaf Osmotic Potential and Turgor Pressure (Ψs & Ψp)
For Ψs, leaves were frozen for seven successive days at −20°C and
later, the extracted secretion was used to assess the osmotic

potential/solute potential using a vapor pressure osmometer,
Wescor-5500. Then, the difference in water and osmotic
potential was measured as turgor pressure.

(ψP) � (ψw) − (ψs).

Canopy Temperature (°C), Photosynthetic Rate (An), and
Transpiration Rate (E)
An infrared temperature sensor (IRIS) was used to measure the
canopy temperature. The infrared gas analyzer (IRGA) was used
to measure An and E values where five plant leaves in each
replicate pot were used, and the average was measured according
to the protocol of Singh et al. (2018) and Rosolem et al. (2019).

Stomatal Conductance (gs)
An open system LCA-4 ADC-portable infrared gas analyzer
(developed by Analytical Development Company, Hoddeson-
England) with the following accommodations: ambient CO2

concentration-Cref and leaf surface area of 371 μmol mol−1

and 6.25 cm2, respectively; the temperature of leaf chamber-
Tch varying from 25–28°C; leaf chamber molar gas flow rate-
U and leaf chamber volume gas flow rate-v of 400 μmol s−1 and
296 ml min−1, respectively; ambient pressure-P, 97.95 kPa; PAR-
Qleaf at the leaf surface, up to 770 μmol m−2 s−1 was used to
measure gs, and the values were recorded from the 3rd leaf from
the top.

Enzymatic Antioxidants
Enzyme Extraction
First, fresh leaves of 0.5 g were extracted in 50 mM of phosphate
buffer solution (with pH 7.8); after that, the extract was then
centrifuged through filtration at 16,000 × g for 20 min at 4 ±
0.5°C. Later, the filtrate supernatant was utilized for enzyme assay.

Catalase
AUV–Visible spectrophotometer was used to determine the CAT
content, through decomposition and change in absorption by
adding hydrogen peroxide at every 30 s interval for 5 min, at a
wavelength of 240 nm. The reaction mixture for the estimation of
CAT was 900 μl hydrogen peroxide (H2O2) solution (5.9 mM)
and 2 ml phosphate buffer solution (50 mM). For measuring the
enzyme activity, the reaction was initiated by adding an extract of
100 μl of the enzyme to the reaction mixture, and the CAT
activity was manifested as μmol of H2O2 min−1 mg protein−1,
according to the procedure of Chance and Maehly (1955).

Superoxide Dismutase
A method described by Giannopolitis and Ries (1977) based on
the use of nitroblue tetrazolium (NBT) was used to determine the
SOD activity spectrophotometrically (by using UV–Visible
spectrophotometer, IRMECO U2020) at 560 nm wavelength.
First, 50 μl of the enzyme extract was added to the working
solution containing 50 μM of ethanol-containing NBT solution,
1.3 μM solution of riboflavin, 13 mM of methionine, 75 nM
EDTA solution, and 50 Mm phosphate buffer solution (pH
7.8). Then, the solutions were transferred in a chamber under
30-W fluorescent lamp illumination for 5 min, and then the
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values were measured spectrophotometrically at 560 nm
wavelength. The working solution without leaf extract was
kept as the control. One unit of SOD was specified as the
enzyme amount needed to diminish the rate of reduction of
NBT at 560 nm by 50% compared to the reaction solution
without plant extract.

Peroxidase
The estimation of POD content was performed by oxidation of
guaiacol and specified as a change in absorbance min−1 mg−1

protein. At first, a 100-μl filtrate enzyme extract solution was
supplemented with a reaction mixture containing 400 μl of
guaiacol solution (20 mM), 500 μL of hydrogen peroxide
(H2O2) (40 mM), and 2 ml of phosphate (50 mM). Later, the
change in absorbance was observed spectrometrically at 470 nm,
according to Chance and Maehly (1955).

Statistical Analysis
All accumulated data on wheat growth and morpho-physio-
biochemical attributes were computed using Microsoft Excel
2016 and subjected to the analysis of variance technique (an
ANOVA). Tukey’s honest significance test (HSD) was used to test
the comparative significance of treatments with help of Statistics
version 8.1 (Analytical Software ©, 1985–2005) according to the
protocol of Steel et al. (1997). The software SigmaPlot 10.0 was
used for graphical presentation.

RESULTS

Morphological Growth
The analyzed data regarding the morphological traits of wheat
crop (including seedling length and fresh and dry weights)
showed that drought treatments, 45 and 30% FC, significantly
(p ≤ 0.05) affected these parameters of both cultivars as compared
to well-watered conditions (70% FC) (Table 2; Figure 2). The
extent of reduction for these traits was higher in Galaxy-13 than
that in Faisalabad-08. Nonetheless, the application of
vermicompost significantly promoted the morphological traits
of both cultivars under control and drought stress conditions.
Significantly higher values of these traits were recorded in plants
treated with a high rate of vermicompost (VT3) than those of the
lower ones (VT0, VT1, and VT2). Under severe drought, VT3

increased root length by 27.57 and 37.19%, shoot length by 16.09
and 31.34%, root fresh weight by 14.74 and 22.90%, shoot fresh
weight by 20.69 and 24.39%, root dry weight by 19.44 and 30.76%,
and shoot dry weight by 28.57 and 27.26% in Faisalabad-08 and
Galaxy-13, respectively. For studied cultivars, under well-watered
conditions, Galaxy-13 depicted more biomass than Faisalabad-
08; however, both tested cultivars showed a similar trend under
drought treatments.

Physiological Attributes
The physiological attributes (i.e., leaf water potential, osmotic
potential, turgor potential, photosynthetic rate, transpiration rate,
and stomatal conductance) were significantly reduced under
drought stress treatments (45% FC and 30% FC) compared to

well-watered condition (70% FC) in both cultivars. Severe drought
(30% FC) caused more reduction in plant physiological attributes
than moderate drought (45% FC). Among cultivars, the magnitude
of reduction for these traits was greater in Galaxy-13 than in
Faisalabad-08. However, the vermicompost application
significantly affected these traits under control and drought
stress in both cultivars where VT3 recorded significantly higher
values followed by other treatments that were ordered as
VT2>VT1>control (Figure 3). Under severe drought stress, VT3

treatment increased water potential by 9.43 and 12.17%, osmotic
potential by 4.59 and 4.52%, turgor potential by 6.06 and 10.16%,
photosynthetic rate by 15.20 and 23.44%, transpiration rate by
14.05 and 26.10%, and stomatal conductance by 14.15 and 13.10%
in Faisalabad-08 and Galaxy-13, respectively, than control
treatment without vermicompost application. For cultivars
under well-watered conditions, the Galaxy-13 recorded
significantly higher values than Faisalabad-08. However, under
drought treatments, Faisalabad-08 depicted higher values than
Galaxy-13, except for canopy temperature. We also noted that
drought treatments increased the canopy temperature; however,
vermicompost application decreased its values under normal and
drought conditions in both cultivars.

Enzymatic Antioxidants
Drought stress and vermicompost application significantly (p ≤
0.05) affected the activities of antioxidant enzymes including
catalase, superoxide dismutase, and peroxidase in both cultivars
(Figure 4). Under drought and well-watered conditions,
antioxidant enzyme activities were increased by the application
of vermicompost where VT3 recorded the highest increase than
other rates in both cultivars. Under severe drought, VT3 increased
superoxide dismutase activity by 8.53 and 11.96%, peroxidase
activity by 20.01 and 18.66%, and catalase activity by 27.50 and
6.32% in Faisalabad-08 and Galaxy-13, respectively, than control
treatment without vermicompost application. Between tested
cultivars, Galaxy-13 depicted statistically similar values
compared to those of Faisalabad-08, under sufficient water
conditions; however, under drought stress, the Faisalabad-08
cultivar showed better performance than Galaxy-13.

DISCUSSION

The current study evaluated the effectiveness of wheat straw
vermicompost application in improving plant performance
under drought stress conditions. When compared to control,
drought stress significantly affected the performance of wheat
crop mainly through the production of reactive oxygen species
(ROS), which redirected the leaf water potential, caused protein
denaturation, and ultimately influenced crop productivity.
Prolonged drought also retards plant growth and crop
productivity due to severe loss in cell turgidity and
dehydration of protoplasm. According to Chen et al. (2011),
protoplasm dehydration is directly related to a decrease in cell
division. Our results showed that vermicompost application
significantly stimulated wheat morphological, physiological,
and enzymatic antioxidant activities under drought stress.
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FIGURE 3 | Effect of soil-applied wheat straw vermicompost (VT) on leaf water potential, leaf osmotic potential, leaf turgor potential, canopy temperature,
photosynthetic rate, transpiration rate, and stomatal conductance of two wheat cultivars under different drought levels [70% field capacity (FC), 45% FC, and 30% FC].
Bars with different alphabetical letters differ significantly at 5% probability, according to Tukey’s HSD test. VT0, control; VT1, 4 t ha−1; VT2, 6 t ha−1; and VT3, 8 t ha−1.
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It is well-reported that selecting suitable crop cultivars that have
standard emergence; morphological, physiological, and antioxidant
attributes; and the application of vermicompost are helpful in
enhancing crop performance, in terms of better growth and yield
under drought stress (Amiri et al., 2017; Ahmad et al., 2021). Similar
to these reports, our results indicated that vermicompost application
positively influenced the morpho-physiological traits and enzymatic
antioxidant activities of both cultivars under drought stress, and the
Faisalabad-08 was more productive and proved to be a drought-
tolerant cultivar. Drought treatments caused significant reduction in
seedling growth of studied wheat cultivars, and the reduction was
more prominent in drought-susceptible wheat cultivars (Rahbarian
et al., 2011). In this work, wheat straw vermicompost application
significantly lowered the detrimental effects of drought. Similar
findings were reported in a previous study where the authors
have reported that vermicompost, when applied at a high rate,
renderedmore positive effects under control and drought conditions
(Rahbarian et al., 2011; Kiran, 2019). Under drought stress, higher
dehydration, denaturation of proteins, and excessive production of
ROS caused significant reduction in seedling growth (Boyer and

Westgate, 2004). Severe drought caused more reduction in seedling
lengths and higher rates of vermicompost were more effective in
reducing the negative effects of stress (Garcia et al., 2012). Similar
findings were reported in our results.

Leaf water potential, osmotic and turgor potential,
photosynthetic and transpiration rates, and stomatal
conductance are the important indicators to determine the
stress effects (Garcia et al., 2012; Kiran, 2019). In this study,
moderate and severe drought resulted in significant decrease in
the abovementioned physiological traits of both cultivars when
compared to control, where drought-sensitive cultivars recorded
a greater decrease than other studied varieties. Similar findings
were reported in previous studies in which authors have reported
that drought-resistant varieties had higher leaf water, osmotic and
turgor potentials, photosynthetic and transpiration rates, and
stomatal conductance (Gunes et al., 2007). In our work, the
drought-resistant variety Faisalabad-08 exhibited better
physiological traits under drought stress for all vermicompost
treatments than the sensitive one Galaxy-13. Plants with higher
water potential, turgor potential, stomatal conductance, and

FIGURE 4 | Effect of soil-applied wheat straw vermicompost on superoxide dismutase, peroxidase, and catalase activities of two wheat cultivars under different
drought levels [70% field capacity (FC), 45% FC, and 30% FC]. Bars with different alphabetical letters differ significantly at 5% probability, according to Tukey’s HSD test.
VT0, control; VT1, 4 t ha−1; VT2, 6 t ha−1; and VT3 8 t ha−1.
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photosynthetic rates can store more assimilates for better growth
and productivity. In stressed plants, reduced water losses help in
stomatal closure for better tolerance to drought (Li-Ping et al.,
2006; Sakuma et al., 2006).

In this work, drought significantly lowered water and osmotic
potentials. Similar findings were reported in a previous study by
Xue and Loveridge (2004) who found that drought had decreased
osmotic potential owing to decreased water availability than the
untreated control. In addition, we found that vermicompost
application increased the osmotic potential owing to re-
established turgor pressure. Similarly, Kashem et al. (2015)
reported that maintaining turgor pressures is crucial for
proper cell growth, expansion, and stomatal conductivity.

The application of vermicompost significantly alleviated
drought stress by increasing the concentrations of scavenging
enzymes including SOD, POD, and CAT. Similar findings were
reported by Hussain et al. (2010), where the authors have reported
that higher antioxidant activities positively reduced oxidative
damage caused by overproduction of activated oxygen species.
In this work, a high rate of vermicompost significantly increased
the plant tolerance to drought-induced oxidative stress by
increasing the concentrations of antioxidant enzymes in both
cultivars. The findings are consistent with those of Nazarideljou
and Heidari (2014), who demonstrated that vermicompost
application increased SOD, POD, and CAT activity.

CONCLUSION

Soil-applied vermicompost is an effective approach to alleviate
drought damage in wheat. In response to drought stress,
vermicompost application, particularly at a high rate, considerably
promoted the growth and physiological attributes in Faisalabad-08
and Galaxy-13. Wheat genotypes, thereby, lead to better growth
performance under drought stress. The upregulation of antioxidant
enzymes such as catalase, peroxidase, and superoxide dismutase
activities may also have contributed to better drought tolerance in
wheat. Wheat straw vermicompost–induced improvement in
physiological traits played a key role in improving maize growth

under drought stress. This study advocates the possibility of soil-
applied wheat straw vermicompost to improve drought tolerance by
promoting the growth, physiology, and antioxidant defense system.
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