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4 Department of Electronics and Communication Engineering, Tekirdağ Namık Kemal University,
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Abstract: This study presents a novel method for predicting the undrained shear strength (cu) using
artificial intelligence technology. The cu value is critical in geotechnical applications and difficult to
directly determine without laboratory tests. The group method of data handling (GMDH)-type neural
network (NN) was utilized for the prediction of cu. The GMDH-type NN models were designed
with various combinations of input parameters. In the prediction, the effective stress (σv’), standard
penetration test result (NSPT), liquid limit (LL), plastic limit (PL), and plasticity index (PI) were used
as input parameters in the design of the prediction models. In addition, the GMDH-type NN models
were compared with the most commonly used method (i.e., linear regression) and other regression
models such as random forest (RF) and support vector regression (SVR) models as comparative
methods. In order to evaluate each model, the correlation coefficient (R2), mean absolute error (MAE),
and root mean square error (RMSE) were calculated for different input parameter combinations. The
most effective model, the GMDH-type NN with input parameters (e.g., σv’, NSPT, LL, PL, PI), had a
higher correlation coefficient (R2 = 0.83) and lower error rates (MAE = 14.64 and RMSE = 22.74) than
other methods used in the prediction of cu value. Furthermore, the impact of input variables on the
model output was investigated using the SHAP (SHApley Additive ExPlanations) technique based
on the extreme gradient boosting (XGBoost) ensemble learning algorithm. The results demonstrated
that using the GMDH-type NN is an efficient method in obtaining a new empirical mathematical
model to provide a reliable prediction of the undrained shear strength of soils.

Keywords: undrained shear strength; standard penetration test; group method of data handling;
random forest; support vector regression; extreme gradient boosting

1. Introduction

Determining the engineering properties of soil layers is critical in geotechnical projects.
Thus, field and laboratory tests are required in the evaluation of soil properties in geotech-
nical engineering. Field and laboratory experiments are the best ways to understand
the complex behavior of soil layers, but those experiments involve several shortcomings.
Among them, time and budget constraints are specially considered major disadvantages of
the experiments. Geotechnical engineers need to determine critical soil properties without
time and budget restrictions. However, many conventional field tests do not allow measur-
ing required soil-design parameters directly; empirical correlations are commonly used to
determine these design parameters [1].

The undrained shear strength (cu) is generally used as a geotechnical design parameter
for clay soil, and it is one of these design parameters that is challenging to directly measure
in the field. The cu value can be determined using unconfined or triaxial compression tests
in a laboratory or using a hand penetrometer in the field. Estimating cu and unconfined
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compressive strength (qu = cu/2) is possible using the findings of the standard penetration
test (SPT) performed in the field. The qu value is determined through unconfined compres-
sion or unconsolidated undrained (UU) tests. Many researchers have proposed various
correlations between NSPT and qu. The correlation recommended by Terzaghi and Peck [2],
between qu and NSPT in fine-grained soils is given in Table 1.

Table 1. The correlation between qu and NSPT [2].

Consistency NSPT qu (kPa)

Very soft <2 25
Soft 2–4 25–50

Medium 4–8 50–100
Stiff 8–15 100–200

Very stiff 15–30 200–400
Hard >30 >400

In geotechnical engineering, the SPT stands out as one of the most widely used meth-
ods in the field to evaluate the resistance of soil layers. The standard penetration resistance
of soil layers is expressed by the number of blows, SPT N-value (NSPT), recorded for the
last two 150-mm layers [3]. Here, the NSPT value does not directly provide the cu value
that is used as a geotechnical design parameter. This situation has led many researchers
to develop other correlations to predict the cu value using NSPT [4–6]. Table 2 shows the
correlation between NSPT and cu according to soil classification from the literature [7–9].

Table 2. Correlations between NSPT and cu based on soil classification.

Reference Soil Classification cu (kPa)

Stroud [7]
PI < 20 6–7 NSPT

20 < PI < 30 4–5 NSPT
PI > 30 4.2 NSPT

Dècourt [8]
Clay 12.5 NSPT
Clay 15 N60

Sivrikaya ve Toğrol [9]

Low Plastic Clay 3.97 Nfield
Low Plastic Clay 5.82 N60
High Plastic Clay 5.90 Nfield
High Plastic Clay 8.76 N60

Clay 5.13 Nfield
Clay 7.57 N60

Fine-grained soil 4.68 Nfield
Fine-grained soil 6.97 N60

Machine learning techniques have newly acquired great consideration among re-
searchers in multiple disciplines [10]. Researchers have tried to develop the precise pre-
diction and interpretability of models by using various decision-trees machine learning
algorithms such as decision trees [11], random forests [12], classification and regression
trees [13], and support vector regression [14]. Also, numerous research groups around the
world have recognized the extraordinary potential these algorithms can bring to geotech-
nical engineering. Some researchers used a number of machine learning approaches (i.e.,
artificial neural network (ANN), support vector regression (SVR), and random forest (RF))
to predict cone penetration test (CPT) data according to soil classification. The results clearly
indicated that both ANN and RF techniques showed precise predictions [15]. Some other
researchers utilized machine learning techniques to estimate the stability of organic soils
and they demonstrated that the ANN models showed the best precision accuracy [16,17].
Choi et al. [18] showed a few learning algorithms (deep neural networks, RF, and SVR)
to estimate the leakage stress that is employed during drilling in the petroleum industry.
Genetic algorithms were utilized to optimize site surveys for the design of pile founda-
tions [19]. In addition, the group method of data handling (GMDH-type NN) approach
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was used for several geotechnical engineering applications. Mola-Abasi and Eslami [20],
derived the GMDH models to predict shear strength parameters (c and ϕ) from CPTu data.
Choobbasti and Valizadeh [21], used the GMDH-type NN to determine the optimal amount
of clay and Nano-CuO to obtain the maximum undrained cohesion. In particular, Kalantary
et al. [6] developed a mathematical model using an optimized GMDH-NN with a genetic
algorithm and designed a correlation between cu and N60. Also, Mbarak et al. [1] examined
the relationship between parameters obtained by the undrained shear strength (cu) and
SPT test in fine-grained soils with their statistical model based on soil physical properties.

This study presents mathematical models that predict cu values using artificial intelli-
gence technology. Additionally, the objective of this study is to obtain the most effective
model for the prediction of undrained shear strength. The GMDH-type NN was compared
with other models (i.e., SVR and RF) and classical regression (i.e., linear regression); the
performance of the models was determined by using the correlation coefficient (R2), root-
mean-square error (RMSE), and mean absolute error (MAE). In the prediction of the cu
value, various soil parameters were used as input parameters and the models were made
by various soil types. Moreover, the effect of the input variables on the prediction model
was evaluated with the SHAP (SHApley Additive ExPlanations) approach according to
the extreme gradient boosting (XGBoost) ensemble learning algorithm in this study. The
novelty and main contributions of the study are as follows:

• Prediction of undrained shear strength was provided with high accuracy by the
polynomial neural network based on the GMDH-type NN approach;

• SPT-value and soil physical properties input variables were analyzed with the XGBoost
ensemble learning-based SHAP approach;

• It was ensured that the prediction model was obtained only with high-impact inputs;
• As an alternative to traditional methods, it is provided to obtain a self-organized

predictive model for undrained shear strength;
• A predictive model with high performance on a small dataset was designed

and implemented.

2. Methods and Procedures
2.1. Dataset

According to the findings of the literature [22–24], a total of 211 samples from soils clas-
sified as CH, CL, MH, and ML were used to assemble the dataset. This study was conducted
using the results of NSPT, effective stress (σv’), cu, PL, LL, and PI of the 211 samples.

Figure 1 presents the data with frequency histograms to reflect the distribution of
the dataset. In addition, it shows that the statistical assumptions were met with the
provision of multivariate normal distribution of the data, nonuniform distribution of
independent (predictor) variables, non-linearity among independent (predictor) variables,
and covariance. In addition, Table 3 presents the data as the descriptive statistics of
the variables.

Table 3. Descriptive statistics of parameters.

Variable Minimum Maximum Mean Standard Deviation

Effective stress (σv’, kPa) 15 486 108.98 84.77
SPT N-value (NSPT, blows) 2 57 13.96 10.17

Liquid limit (LL, %) 24 118 52.74 17.82
Plastic limit (PL, %) 14 40 24.18 5.61

Plasticity index (PI, %) 2 84 28.63 15.14
Undrained shear strength

(cu, kPa) 4 260 68.19 52.53
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Figure 1. Histogram of the variables used for the model development.

2.2. Pre-Processing

In order to build up a decent and widely applicable prediction model, the independent
variables must be normalized and identified within a certain range. A min–max method is
frequently used in the normalization of variables. The min–max method normalizes the
independent variables of the data to the [0,1] range. The normalization of the min–max
method is expressed as follows:

xnorm =
x−min(x)

max(x)−min(x)
(1)

where x and xnorm represent data value and normalized data, respectively.

2.3. Machine Learning Approaches

ANN models, such as multilayer perception, are extensively used in regression and
classification. A multilayered neural network comprises one input, multiple hidden, and
one output layer. In this network model, each cell in the hidden layer uses all inputs in the
input layer. The use of all inputs in all cells in the network structure may cause overfitting
problems and reduce performance. Difficulties and deficiencies are encountered in setting
bias and weight coefficients, especially when handling small-sized data sets.

Therefore, instead of this network model in which all inputs and cells in all layers
are used, the GMDH-type NN, a self-organizing network model that acts based on the
input data, is preferred [25,26]. The schematic structure of the GMDH-type NN is shown
in Figure 2.

The GMDH-type NN is one of the best model prediction methods for problems
involving complex structures. The GMDH-type NN model is a multilayered structure
using only the cells that can yield the most efficient and accurate results. Each layer
comprises independent cells used in pairs and is integrated with a quadratic polynomial
as the activation function. The cells in all layers run independently from each other, and
only the outputs from the previous layer that minimize the error rate are preferred. Thus,
instead of using cells in all layers, the best network model comprising optimal cells is
created [27]. The GMDH-type NN is used as a model that maps a given input vector
X = (x1, x2, · · · , xn) to the predicted yi output. It is expected that the predicted yi output
is as close as possible to the actual yi output. Thus, M results obtained for data pairs in a
multi-input single-output network model are observed as follows [28]
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yi = f (xi1, xi2, · · · , xin) i = 1, 2, . . . , M (2)
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The output predicted to obtain yi output from input vector X = (xi1, xi2, · · · , xin) is
shown as follows:

yi = f (xi1, xi2, · · · , xin) i = 1, 2, · · · , M (3)

The least-squares method is applied between the actual outputs yi and predicted
outputs yi to determine the GMDH model. The cells in which the errors calculated using
the least-squares method are minimized are selected:

∑M
i=1

(
f (xi1, xi2, · · · , xin)− yi

)2
→ minimum (4)

The GMDH-type NN is identified based on input and output parameters emphasized
in the form of the gradually complicated Kolmogorov–Gabor polynomial function [29].
Expressed as a nonlinear function form, the Kolmogorov–Gabor function is defined as:

y = α0 + ∑n
i=0 αixi + ∑n

i=1 ∑n
j=1 αijxixj + ∑n

i=1 ∑n
j=1 ∑n

k=1 αijkxixjxk + · · · (5)

Here, α shows the polynomial coefficients and (i, j, k) ∈ (1, 2, · · · , n). Typically, the
Kolmogorov–Gabor polynomial, which gives a nonlinear polynomial form, is written in
the form of a quadratic polynomial containing only two variables [27]:

y = G
(
xi, xj

)
= α0 + α1xi + α2xj + α3xixj + α4x2

i + α5x2
j (6)

The GMDH-type NN predicts the output for each set of input parameters xi and xj
and is used to predict αi (1, 2, . . . , 5) coefficients that reduce RMSE between the estimated
and real outputs. With M representing the total number of data, minimizing the RMSE
between the predicted and actual outputs is as follows:

E =
∑M

i=1(yi − yi)
2

M
→ minimum (7)

In the basic form of the GMDH algorithm, all binary probabilities of independent vari-
ables from n inputs in total provide the establishment of the regression structure using the
polynomial form given in Equation (6) to obtain the actual output data (yi, i = 1, 2, · · · , M).
The cell count in the hidden layer in the GMDH network model structure is determined
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by
(

n
2

)
= n(n− 1)/2. In the next step, creating M data triples as

(
yi, xip, xiq

)
(p, q) ∈

(1, 2, · · · , n) from the actual output data is possible. The resulting matrix form can be
expressed as: 

x1p x1q
... y1

x2p x2q
... y2

· · · · · · · · · · · ·

xMp xMq
... yM

 (8)

The essential form of the GMDH algorithm is expressed in matrix form and Equation (5)
can be rewritten as:

Y = Aα (9)

Here Y = {y1, y2, · · · , yM}T represents the actual output vector, and α = {α1, α2, · · · , α5}
presents the unknown coefficient vector of the quadratic polynomial vector. The predicted
A matrix is expressed for different p, q as follows:

A =


1 x1p x1q x1px1q x2

1p x2
1q

1 x2p x2q x2px2q x2
2p x2

2q
· · · · · · · · · · · · · · · · · ·
1 xMp xMq xMpxMq x2

Mp x2
Mq

 (10)

The least-squares method for multi-regression analysis solves the normal equation
as follows:

α =
(

AT A
)−1

ATY (11)

The resultant α coefficients give the best coefficient vector of the quadratic polyno-
mial given in Equation (6) for all M data triangulation. After calculating the descriptive
coefficient vector of the quadratic polynomial, the objective function is used as a selection
criterion to eliminate the cells with high error rates.

OF =
1
n ∑n

i=1

(
ypre − ymea

)2 (12)

Here, ypre and ymea are the predicted and actual outputs, respectively; n indicates the
total number of data.

The SVR method separates the dataset with the help of a hyperplane and minimizes
the errors within the boundary line. A kernel function is used to perform linear separation
in the dataset. The SVR method, which creates an optimal hyperplane between data points,
provides curve fitting with the maximum number of data [30,31]. In the prediction model
obtained by training the data, linear, radial basis, and polynomial kernel functions can
be used. The main benefit of SVR is that computational complexity is independent of
input space size [32]. Additionally, it has a strong capacity for generalization and good
prediction accuracy. The SVR, a method of supervised learning trains with a loss function
that penalizes both high and low erroneous predictions equally.

The RF regression method is a machine learning method that can predict accurately
in predictive analysis when the target output parameter and input variables have a non-
linear relationship [33,34]. The RF technique is a supervised learning algorithm that does
regression using the ensemble learning approach. The ensemble learning method combines
predictions from different machine learning algorithms to produce a more accurate forecast
from a single model. The predictions of all decision trees are combined to provide more
accurate outputs in the RF algorithm, which reduces overfitting in model training. The vari-
ety of trees used increases the robustness of the model obtained as a result of regression [35].
RF regression models generally show strong and accurate performance on parameters with
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nonlinear relationships. The disadvantages can be listed as the lack of interpretability, the
occurrence of over-fitting, and the need to select the number of trees included in the model.

The linear regression method, which is one of the simplest regression methods that
provide the prediction of a parameter, is frequently preferred due to its straightforward
and useful mathematical structure [36]. In the linear regression method, the mathematical
equation of the target parameter to be predicted is obtained using a slope and intercept
value. The target parameter and the input variables are shown by linear regression as:

Y = a0 + a1x1 + a2x2 + · · ·+ anxn (13)

where Y denotes output, x1, x2, · · · , xn and a1, a2, · · · , an represent input variables and the
coefficients of the regression model, respectively.

2.4. Performance Evaluation Metrics

Various metrics can be used to measure and evaluate the performance of prediction
models. In this study, the R2, RMSE, and MAE values of the predicted and actual target
parameters are calculated in the performance evaluation of regression models. The R2,
RMSE, and MAE are expressed mathematically as:

R2 = 1− ∑N
i=1
(
ymea − ypre

)2

∑N
i=1(ymea − ym)

2 (14)

RMSE =

√
∑N

i=1
(
ymea − ypre

)2

N
(15)

MAE =
1
N ∑N

i=1

∣∣ymea − ypre
∣∣ (16)

where ymea, ypre, and ym denote the average of actual output, estimated output, and actual
output, respectively. N represents the total number of data. The degree of fitting increases
with R2 proximity to 1. RMSE and MAE are used to evaluate the model’s prediction ability.
For the RMSE and MAE, the prediction model will be more accurate and its accuracy will
be higher with a smaller value.

2.5. Procedures

The proposed approach for the prediction of cu is given in Figure 3. In order to predict
cu, the dataset is first put into the pre-processing phase. In this phase, the data should
be initially normalized and independent variables should be selected. Then, a prediction
model design phase is started. In this phase, different regression methods are applied and
performance evaluation is calculated for different regression methods.
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Figure 3. Block diagram of the proposed approach for prediction of undrained shear strength.

The GMDH-type NN approach is used to obtain the models and the results are
compared with the most commonly used linear, RF, and SVR methods. Tree numbers
[50,100,200,500] were selected for the RF model and the optimal number of trees was set to
50 by parameter grid search. The radial basis, which provides the best performance, was
used as the core function for the SVR model. In addition, the degree and penalty parameter
C were set to 3 and 1, respectively.
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In the GMDH-type NN algorithm, the maximum number of layers and neurons in
each layer is set to 5 as initial values. Then, the optimal number of layers and neurons was
determined to minimize the error between the target and the predicted output using a grid
search algorithm. Also, the selection pressure value on the layers is set to 0.8. In the design
of the prediction models, 80% of the dataset is used for training and 20% for testing.

In this study, train and test data were randomly selected and the performance evalua-
tion of the produced prediction models was obtained as a result of 10 trials. Figure 4 shows
the flowchart of the proposed GMDH-type NN approach.
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The GMDH-type NN, which is a machine learning-based method, is preferred to
obtain a new and effective mathematical model that can be used to predict undrained
shear strength. The GMDH-type NN structure, wherein input parameters are used as a
binary polynomial, selects the most suitable neurons that minimize errors, and predicts
output shear strength values accurately and effectively. Four different GMDH-type NN
models are designed for various input parameters to obtain mathematical models for the cu
prediction. The R2, MAE, and RMSE values are obtained for all prediction models designed
and compared with the regression models (i.e., linear, RF, and SVR).

3. Results and Discussion

In the first designed GMDH-type NN model, the prediction of cu was performed for
the input variables σv’, NSPT, and LL. The network structure, regression plot, and output
prediction values for this model are shown in Figure 5.
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Figure 5. The proposed prediction model for input variables σv’, NSPT, and LL: (a) two-layers
GMDH-type NN structure; (b) regression plot; (c) target and output predictive values.

In this network structure shown in Figure 5a, the pairs of input variables {σv’ and
NSPT} and {NSPT and LL} were processed in two neurons, and the outputs of these neurons
were formed into a pair and the predicted output was obtained. The results showed that
this two-layer model has R2 of 0.79, MAE of 6.02, and RMSE of 24.94 values.

The GMDH-type NN model designed with NSPT, PL, and PI input variables is shown
in Figure 6a and the results of this model are given in Figure 6b,c. In this designed model,
input variable pairs {NSPT and PL} and {NSPT and PI} were processed in two neurons, and
prediction of output was performed by creating a pair of these neuron outputs. In this
model, where the best results were obtained with two layers; NN, R2 of 0.82, MAE of 14.65,
and RMSE of 23.05 values were achieved. Figure 6c shows the target and predicted output
values for this model.

The GMDH-type NN structure for the model was designed using σv’, NSPT, LL, and
PI input variables, and the results for this model are given in Figure 7. In the first layer of
this network, neuron outputs for {σv’, NSPT}, {NSPT, LL} and {NSPT, PI} input pairs were
calculated and {σv’, NSPT} output from these neurons was disabled because it increased the
error rate. Then, the remaining neuron outputs are paired to generate the predicted output.
The R2, MAE, and RMSE of this designed model are 0.82, 14.91, and 22.88, respectively.
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The GMDH-type NN structure using all input variables and the performance results
of this model are given in Figure 8. In this model, the variable pair {σv’, NSPT} was disabled
because it increased the error rate, and the remaining neuron outputs formed pairs and
were used in the next layer. The results given in Figure 8b,c show that the GMDH-type NN
model achieved R2 of 0.83, MAE of 14.64, and RMSE of 22.74 values.
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In order to evaluate the performance of prediction models, the GMDH-type NN
method was compared with linear regression, RF, and SVR methods. Table 4 summarizes
the performance evaluation of linear, RF, SVR, and GMDH-type NN regression models
with different input parameters in the prediction of cu.

As mentioned above, the four regression methods were used to design the prediction
models of cu. The results of R2 on average for the linear, RF, SVR, and GMDH, which
imply a higher degree of fitting, are 0.5 ± 0.04, 0.55 ± 0.02, 0.61 ± 0.02, and 0.82 ± 0.02,
respectively. In addition, the results of MAE on average for the four prediction models
are 23.68 ± 0.75, 20.95 ± 0.33, 18.38 ± 0.87, and 15.06 ± 0.57, respectively. Also, the RMSE
values are 33 ± 1.28, 31.06 ± 0.83, 28.98 ± 0.58, and 23.4 ± 0.9 corresponding to the linear,
RF, SVR, and GMDH methods. The linear, RF, and SVR have R2 values of about 0.5, while
the GMDH-type NN method had the highest R2 values of 0.8.
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Table 4. Comparative results of the cu prediction models for different input variables.

Input Parameter

Regression Methods

Linear RF SVR GMDH

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

σ
′
v, NSPT, LL 0.56 22.38 30.78 0.52 21.34 32.23 0.63 17.30 28.13 0.79 16.02 24.94

NSPT, PL, PI 0.48 24.06 33.62 0.58 20.92 29.93 0.60 19.22 29.48 0.82 14.65 23.04
σ
′
v, NSPT, LL, PI 0.47 24.17 33.76 0.56 20.45 30.79 0.62 17.76 28.77 0.82 14.91 22.88

σ
′
v, NSPT, LL, PL, PI 0.47 24.09 33.84 0.55 21.10 31.28 0.59 19.24 29.55 0.83 14.64 22.74

The linear, RF, and SVR methods show that the R2 value is independent of the number
of input parameters. In the linear regression and SVR methods, the highest R2 value and
lowest error rates have been achieved when the input parameters were σv’, NSPT and LL. In
addition, when the input parameters were NSPT, PL, and PI, the highest R2 value and lowest
error rates have been obtained in the RF method. However, when increased the number of
input parameters (i.e., σv’, NSPT, LL, PL, and PI), a higher R2 value is achieved in the GMDH-
type NN. The highest prediction performance was obtained with the GMDH-type NN by
using σv’, NSPT, LL, PL, and PI input variables. This proposed model had the highest R2

value and the lowest MAE and RMSE values. As a result of the evaluation, the GMDH-type
NN approach shows more reliability in estimating cu than other regression methods.

The effect of the input variables on the model output was additionally observed with
the SHAP (SHApley Additive ExPlanations) approach. The SHAP is a game-theoretic
method for expressing any machine learning model’s output. The SHAP determines the
ideal parameters by using the conventional Shapley values from game theory and their
related extensions. Extreme gradient boosting (XGBoost) decision tree, which is a high-
speed exact algorithm, was used to obtain SHAP values. Figure 9 shows the average SHAP
values of the input variables on the model output.
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Figure 9a shows the average SHAP value of each input variable. Average SHAP results
clearly indicate that the input variable of NSPT has the most effect on the cu prediction
compared to other input variables. The summation of the SHAP value magnitudes of
the input variables on all samples and the sorting and distribution of the effects of each
variable on the model output is shown in Figure 9b. The results reveal that the NSPT value
significantly affects the prediction of cu compared to other input parameters.

4. Conclusions

This study investigated the performance of machine learning models for the prediction
of cu. The GMDH-type NN approach was used with varying input parameters in order to
design the prediction models. In the cu prediction models, NSPT, σv’, LL, PL, and PI were
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used as input variables. Then, the results of GMDH-type NN were compared with the
most commonly used linear regression, RF, and SVR methods. The performance of those
methods was evaluated with the R2, MAE, and RMSE. Also, the effect of the number of
input parameters for prediction models was studied. In addition, since the four prediction
models for each method have been derived with different input variables, the most effective
input parameter was determined by using a game-theoretic approach.

The results showed that the proposed a three-layer GMDH-type NN model had a
higher regression coefficient (R2) and lower error rates (MAE and RMSE) in all combinations
of input parameters compared to other methods used in the prediction of cu. Moreover, the
results revealed that when we increased the number of input parameters (i.e., σv’, NSPT, LL,
PL, and PI) in the GMDH-type NN model, the model achieved high reliability compared to
the lower number of input parameters.

The effects of the input variables on the prediction model were evaluated with the
SHAP (SHApley Additive ExPlanations) approach based on the extreme gradient boosting
(XGBoost) ensemble learning algorithm. The SHAP results revealed that the NSPT value
was the most influential parameter in the estimation of the cu value compared to other
parameters for all prediction models.

In summary, the results of the GMDH-type NN model showed that it is feasible to
use artificial intelligence technology for the prediction of the undrained shear strength (cu).
By using the GMDH-type NN approach, the problems of experimental restrictions can be
solved, and more accurate values can be achieved in the prediction of cu. Moreover, this
method is expected to be well used to predict other geotechnical design parameters and
further understand the complex behavior of clay soil.
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