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ABSTRACT

Rapid and environmentally friendly methods for the prediction of chemical compositions have been an
interest in the wine industry. The objective of the study was to show the potentials of combined use of
visible and mid-infrared (MIR) spectroscopies to improve the prediction of various chemical compounds
of wine as opposed to using mid-infrared range only. Wine samples of twelve grape varieties from two
harvest years were analyzed. The chemical composition of wine samples was related to MIR and visible
spectra using orthogonal partial least square (OPLS) regression technique. The prediction abilities were
tested with crossvalidation and independent validation sets. The coefficient of determination of vali-
dation (RZ,)) for anthocyanin compounds of red wines were between 0.76 and 0.90, and that for total
phenol content was 0.90. Range of RZ,, for glycerol, glycerol/ethanol ratio, malic acid, o-coumaric acid and
°Brix were between 0.77 and 0.96. The spectral ranges that played significant roles in the predictions
were also determined. The validations with independent data sets showed that the combination of
visible and MIR ranges with multivariate methods improved the prediction of anthocyanin compounds
and total phenols; produced comparable results for the rest of the parameters as MIR. This is the first
study in the literature that shows the practical use of visible spectra along MIR. The combined use of
these spectral ranges with multivariate models can be applied for the rapid, on-line determination of

quality parameters and chemical profiles of wines.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Polyphenol content of grapes and wines are basically grouped
as flavonoids (flavonols, flavan-3-ols, anthocyanins) and non-fla-
vonoids (hydroxybenzoic acids, hydroxycinnamic acids, stilbenes).
Wine quality highly depends on phenolic compositions as they
improve wine taste and color and also have positive health effects
[1]. The color of red wine is a major concern of wine industry since
it strongly affects the consumer demands. Anthocyanin content is
the main reason for the color of red wine and depends on the
grape variety, degree of grape ripeness, soil and climatic condi-
tions, and it undergoes a progressive change from production to
consumption of any wine due to polymerization, copigmentation
and oxidation reactions [2,3]. In terms of white wine, flavonols are
the color pigments giving the yellow color of white wines [4].
Chromatographic methods are commonly used to determine the
phenolic and anthocyanin profiles of wines. However, due to their
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laborious and expensive work, spectroscopic methods have been
offered as the rapid and reliable alternatives including near and
mid-infrared spectroscopies.

The wine production sector requires rapid, reliable and si-
multaneous determination of analytes from the beginning of the
grape ripening to the end of fermentation for monitoring and
screening purposes. Online determination of wine composition
enables the control of production process and ensures optimal
product quality. The use of vibrational spectroscopy in wine sector
started with the near infrared reflectance (NIR) spectroscopy. Re-
cent studies have also focused on Fourier transform infrared
spectroscopy (FTIR) technology due to advantages in the analysis
of some of the wine constituents [5,6]. This technique has been
employed in monitoring of grape ripening, fermentation and
quantification of some chemical parameters such as organic acids,
sugars or ethanol [7,8]. UV-Visible spectroscopy (UV-Vis) is an-
other cost- and time-saving technique that is used in routine
analysis such as determination of total phenols and color of wines.
There are reports that showed the combined use of visible and NIR
spectroscopies in classification of wines and in prediction of cer-
tain phenolic compounds [9]. UV-Vis range along with NIR region
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was shown as a good predictor of certain phenolic compounds in
red wines [10]. Borras, Ferre, Boque, Mestres, Acena and Busto [11]
reviewed the fusion of data from different instruments for food
authentication. In recent studies, UV-Vis and NIR spectroscopies
were used to predict the quality parameters of grapes and real
time total sugar content, alcohol content and pH values of rice
wines [12,13].

Implementation of spectroscopic techniques in process mon-
itoring and authentication has always been of interest, as
they allow the collection of wide range spectra of large number of
samples. Therefore, application of chemometric tools becomes
necessary to extract the valuable information in the spectral
data. The outcomes of the multivariate analysis can be used in
classification of samples and determination of chemical and
biological variables. Here, the aim of the study was to highlight the
potentials of visible and mid-infrared spectra, and multivariate
analysis using orthogonal partial least squares regression (OPLS),
for the rapid quantification of some chemical compounds
in red and white wines. So far, there are no examples of combined
use of visible and MIR spectroscopies to predict quality parameters
such as individual anthocyanins, phenolic compounds and gly-
cerol. The spectral regions that played important role in the
quantification of chemical compounds of red and white wines
were also identified.

2. Materials and methods
2.1. Chemicals

In the chromatographic determination of phenolic profiles,
HPLC grade standards and solvents were used: malvidin-3-O-
glucoside, (+)-catechin hydrate, quercetin, quercetin-3-rutino-
side, quercetin-3-glucoside, quercetin-3-galactoside, acetonitrile
and methanol (Sigma-Aldrich, Steinheim, Germany), (-)-epica-
techin, caffeic acid, ferulic acid, gallic acid, kaempferol, myricetin,
o-coumaric acid, p-coumaric acid, vanillic acid (Fluka, Steinheim,
Germany), trans-resveratrol and procyanidin B; (Extrasynthese,
Genay, France). Other analytical reagents used in HPLC analysis
were NH4H,PO,4, H3PO4 (Merck, Darmstadt, Germany), ethanol and
glycerol (Sigma-Aldrich, Steinheim, Germany). Deionized water
was obtained with Sartorius Arium 611 VF system (Sartorius AG,
Gottingen, Germany).

2.2. Wine samples

The samples cover a wide range of wine producing regions,
cultivars, and vintages representing varietal and year to year var-
iations. A total number of 45 red and 27 white wine samples be-
longing to 2006 and 2007 vintages were collected. Monovarietal
wine samples were two-year old commercial wines and were
produced from twelve different grape varieties. Among these
grape varieties, seven were characteristic to Turkey (Bogazkere,
Okiizgozii, Papazkaras:, Kalecik Karas1 as red grapes and Emir,
Narince, Sultaniye as white grapes). Other five (Merlot, Cabernet
Sauvignon, Syrah, Chardonnay and Muscat) were commercially
valuable grapes. The grape varieties were grown in different re-
gions of the eastern, western and central Anatolia. The wine bot-
tles were stored at 4°C and were immediately analyzed after
purchasing.

2.3. Mid-infrared analysis
The MIR spectra were collected in the mid-infrared

region of 4000-650cm~! using a Perkin Elmer Spectrum
100 FTIR instrument (Perkin Elmer Inc., Wellesley, MA, USA)

equipped with a horizontal attenuated total reflectance
accessory (HATR) with ZnSe crystal and deuterated tri-glycine
sulfate detector (DTGS). The transmittance spectra were recorded
at 4cm~! spectral resolution and 0.50cms~! scan speed.
A blank of air was acquired prior to samples. Each spectrum was
averaged from 64 scans. The measurements were performed in
triplicates.

2.4. Visible analysis

Transmittance scans in the visible range (400-700 nm) were
recorded in 2 nm sampling intervals with a quartz cuvette of 1 mm
path length for red and 10 mm path length for white wines.
Spectrometric scans were acquired by using UV2450 model in-
strument (Shimadzu Inc., Kyoto, Japan). The measurements were
repeated in triplicates. In the text, the results of visible and mid-
infrared ranges will be given in terms of wavelength (nm), and
wavenumber (cm ™), respectively.

2.5. HPLC analysis

Agilent 1200 series HPLC (Agilent Technologies, CA, USA) sys-
tem containing a G1322A degasser, G1311 quat pump, G1329 auto-
sampler, G1316B column oven (set at 20 °C), and G1315D diode
array detector was used in chromatographic analyses with a C18
column for separation (250 x 4.6 mm, 5 pm, ACE, Aberdeen, Scot-
land). After filtering through a 0.45 um pore size syringe filter
(Minisart RC, Sartorius AG, Gottingen, Germany), wine samples
(20 uL) were injected into the HPLC system and phenolic com-
pounds were quantified at 280, 320, 360 and 520 nm. The oven
was set at 20 °C. The solvent flow rate was adjusted as 1 mL/min. A
gradient mobile phase consisting of solvent A (NH4H,PO4, 50 mM),
solvent B (20% mobile phase A and 80% acetonitrile), and solvent C
(H3PO4, 200 mM) was employed as described in Sen and Tokatli
[14].

Phenolic compounds were identified by the retention times of
pure standards and were quantified by the use of external stan-
dard method. The stock solutions were prepared by dissolving the
pure standards in HPLC grade methanol. Peonidin-3-0-glucoside,
petunidin-3-0-glucoside, delphinidin-3-0-glucoside and their de-
rivatives, vitisin A and pinotin A were quantified in terms of
malvidin-3-0-glucoside calibration curve; myricetin-3-O-gluco-
side and quercetin-3-0O-glucuronide were quantified by using the
quercetin-3-O-glucoside calibration curve. Identification of these
phenolic compounds was performed according to the chromato-
grams of wine samples studied by Gémez-Alonso, Garcia-Romero
and Hermosin-Gutiérrez [15]. Data acquisition and peak proces-
sing were performed with Chemstation Rev. B.03.02 (Agilent
Technologies, CA, USA). The repeatability of the HPLC method was
evaluated by calculating the relative standard deviation of re-
plicate measurements (RSD < 15%). The detection limits (LOD)
were calculated as three times the standard deviation of signal of
blank sample, prepared ten times according to the OIV method
[16]. Recoveries were calculated based on the difference of spiked
and un-spiked sample and by taking the ratio of this difference to
the assigned value.

For the quantification of glycerol and ethanol, an HPLC
method based on Castellari, Versari, Spinabelli, Galassi and
Amati [17] was employed with HPX-87H column (300 x 7.8 mm,
9 um, Bio-Rad Laboratories, Hercules, CA, USA). The mobile
phase of 0.045 N H,SO, with 6% acetonitrile (isocratic elution)
was applied at a flow rate of 0.5 mL/min. The column oven
was set at 45°C and detection was performed with refractive
index detector. All the measurements were performed in
duplicates.
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2.6. Total polyphenol analysis and soluble solid contents by re-
fractive index (°Brix)

Total polyphenol content was determined according to the
Folin Ciocalteu method modified by Arnous, Makris and Kefalas
[18] as a micro scale protocol. All measurements were performed
in triplicates and results were expressed as gallic acid equivalent
(mg GAE L~1). Soluble solid contents were measured by a re-
fractometer (Mettler Toledo GmbH, Schwerzenbach, Switzerland).

2.7. Spectral data preprocessing and multivariate statistical analysis

In this study, phenolic compositions of the wine samples were
related to the visible and mid-infrared spectra using orthogonal
partial least-squares (OPLS) regression, which is used for the
prediction of dependent variables Y with multivariate data set X.
The technique differs from partial least squares (PLS) in the way of
handling the variability in X-matrix. OPLS may lead better inter-
pretation and predictions: PLS divides the variance of X-matrix as
systematic and residual, whereas OPLS divides the systematic
variance into two parts, the part that is correlated to Y (predicted)
and the part that is uncorrelated to Y (orthogonal) [19]. The
number of components in OPLS regression for a single variable y is
given as pp+ P, Where p, and p, are the number of components
expressing information of X predictive to Y, and information of X
orthogonal to Y, respectively. The multivariate analyses were car-
ried out by using Simca-P 13 (Umetrics Inc., Umea, Sweden).

Prior to multivariate modeling, the mid-infrared and visible
spectra were standardized by subtracting the averages and divid-
ing them by the standard deviations. Standardization was followed
by the second order derivative data pre-processing. This technique
was applied with quadratic polynomial order. The aim of pre-
processing was to remove the undesired systematic variations in X
data, and eventually improve the predictive ability of the model.
Such variations in the spectra can be due to baseline drift or wa-
velength regions of low information. The observations, i.e. the
wine samples, were divided into two parts: calibration set to build
the model and validation set to test the predictive ability of cali-
bration model. For this purpose, approximately two thirds of data
were randomly chosen and used for calibration. The rest of the
samples were used in the external validation. The validation sets
were chosen within the calibration ranges for all compounds.
Regression results of validation models were given as regression
coefficient RZ,,. So, 32 of the red wine samples and 19 of the white
wine samples were employed in the calibration models. The OPLS
models were also evaluated by RZ, as the regression coefficient of
calibration model, the coefficient of leave-one-out cross-validation
(R%,), the root mean square error of calibration (RMSEC) and va-
lidation (RMSEP). In the regression analysis, whole spectra were
used first and then certain ranges of spectra were selected. The
selection of the significant variables in the spectra was performed
according to the variable importance in the projection (VIP) as a
feature of Simca-P software [20]. The variables with VIP greater
than 1.0 were selected and then the models were rebuilt with
them.

3. Results and discussion

The polyphenol composition, glycerol, ethanol, and soluble
solid contents by refractive index (°Brix) values of red and white
wine samples are reported in Table 1. The validation parameters of
HPLC methods are given as Supplementary material. The most
abundant anthocyanin in red wines was malvidin-3-0-glucoside
and its derivatives which were followed by petunidin-3-0-gluco-
side and delphinidin-3-O-glucoside. In relation to the other

Table 1
Chemical compositions (mgL~') and soluble solid content values of red and white
wines.

Red wines White wines
Parameters Min Max Median Min Max Median
Malvidin-3-0-glucoside 0.54 66.7 21.6 - - -
Peonidin-3-0-glucoside 0.04 447 1.10 - - -
Petunidin-3-0-glucoside 0.08 7.63 1.86 - - -

Delphinidin-3-0-glucoside 0.06 5.20 1.37 - - -
Delphinidin-3-0-(6-acetyl)- 0.00 1.68 0.28 - - -

glucoside
Petunidin-3-0-(6-acetyl)- 0.00 191 0.47 - - -
glucoside
Peonidin-3-0-(6-acetyl)- 0.00 258 070 - - -
glucoside
Malvidin-3-0-(6-acetyl)- 0.00 20.7 5.00 - - -
glucoside
Delphinidin-3-0-(6-p-cou- 0.00 1.27 0.25 - - -

maroyl)-glucoside
Malvidin-3-0-(6-p-coumar- 0.06 114 245 - - -
oyl)-glucoside

Rutin 082 6.03 272 0.03 0.27 0.10
Quercetin 048 157 393 0.02 8.07 0.69
Myricetin 0.04 6.81 2.53 0.02 121 0.02
Kaempferol 0.03 129 0.64 0.03 0.03 0.03
Quercetin-3-0-glucoside 0.21 470 103 0.02 3.21 0.02

Quercetin-3-0-galactoside 043 125 492 0.06 2.79 0.06
Quercetin-3-0-glucuronide 0.65 264 9.88 0.00 797 0.28

Myricetin-3-0-glucoside 0.01 404 12.4 0.00 030 0.08
Caffeic acid 461 363 15.5 037 224 252
p-coumaric acid 164 111 5.35 0.08 13.6 122
Ferulic acid 0.64 3.02 119 0.06 143 0.69
Trans-resveratrol 019 152 0.48 0.00 0.78 0.10
Gallic acid 13.7 1039 39.0 6.58 172 10.8
(+)-Catechin 124 1536 38.38 1.61 201 432
Vanillic acid 4.08 11.0 6.74 0.06 159 0.72
(—)-Epicatechin 538 819 18.6 055 4.51 2.05
o-coumaric acid 0.57 3.09 134 011 2.88 044
Procyanidin B; 499 992 391 1.88 9.08 2.99
Glycerol 1777 14,199 8650 2185 8134 5583
Ethanol (%) 11 14 13 10 14 13
Total polyphenol content 1269 3579 1984 178 417 275
°Brix 6.7 92 7.8 59 93 66
Malic acid 121 400 256 315 2503 1322

phenolic compounds, gallic acid, procyanidin B; and (+ )-catechin
were the most abundant in both red and white wine samples.

The mid-infrared and visible spectra of wine samples are
shown in Fig. 1. The FTIR spectrum of wine was dominated by the
water and ethanol absorption peaks. The O-H stretching vibrations
can be observed in the ranges of 3600-3200 cm~' and 1700-
1565 cm ™! absorption bands. The peaks at 1636 cm~' and 3040-
2800 cm ™! were associated with C-O-C and C-H stretching vi-
bration bonds. The vibrations of C-O, C-C, CH,, CHs, C-OH, C-H
and C=N bonds can be observed around 1565-965 cm~!. The
peaks between 900 and 670 cm~! were attributed to the C-H out-
of-plane bending vibrations [21]. In this study, the elimination of
particular ranges was based on the values determined according to
the VIP feature of Simca-P software. In case of mid-infrared
spectra, the regions between 4000 and 3900 cm~! were not in-
cluded in the models since no contribution was seen in the
models.

For the pre-processing of the data, several filtering algorithms
such as wavelet compression spectra, orthogonal signal correction
and the first and second order derivative were tried. The best R?
values were established with the second order derivative techni-
que. Elsewhere, it was also reported that the second order deri-
vative of MIR data revealed sharper characteristic absorption
bands than the first order derivative [21].

The results of the regression models for the chemical
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FTIR spectra of red and white wine
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Fig. 1. FTIR and UV-Vis spectra of wine samples and the second derivative of spectra.

compounds with RZ,, less than 0.5 were not given. In building the
regression models of some chemical compounds such as glycerol
and °Brix, the use of all observations (red and white wines) pro-
vided satisfactory models. The regression models, on the other
hand, failed to predict lower amounts of total phenolics in white
wines. Therefore, only red wines were used in regression models
for total polyphenol content. The o-coumaric acid content was
modeled for white wines only. It should be noted that the multi-
variate regression models were developed individually for each
parameter, not by using the collinear Y matrix.

OPLS models of red wines were established for individual an-
thocyanin compounds like malvidin-3-O-glucoside, peonidin-3-0-
glucoside, petunidin-3-0-glucoside, delphinidin-3-O-glucoside,
delphinidin-3-0-(6-acetyl)-glucoside, petunidin-3-0-(6-acetyl)-
glucoside, peonidin-3-0-(6-acetyl)-glucoside, malvidin-3-0-(6-
acetyl)-glucoside, malvidin-3-0-(6-p-coumaroyl)-glucoside and
delphinidin-3-0-(6-p-coumaroyl)-glucoside. The RMSEC and
RMSEP values were all lower than 0.73 except for the compounds
with higher concentrations such as total phenol content, malvidin-
3-0-glucoside and its acetate derivative (Table 3). The RZ,; values

were greater than 0.87. All the proposed models indicated a good
predictive ability (R, > 0.5) [22]. In general, the slopes and in-
tercept of calibration models are in the vicinity of one and zero,
respectively. In the OPLS analysis of anthocyanin compounds of
red wines, the visible spectral ranges had higher VIP values than
those from mid-infrared region, indicating that visible ranges
were more significant than mid-infrared data in model building
(Table 2). In the mid-infrared spectra, on the other hand, the most
significant variable was 2260 cm~! for the prediction of acetylated
malvidin derivatives and malvidin-3-O-glucoside. Meanwhile,
1425 cm~! was the most important variable with the highest
VIP value for the prediction of delphinidin-3-0O-(6-p-coumaroyl)-
glucoside and peonidin-3-O-glucoside. In the models of
delphinidin-3-0-glucoside, petunidin-3-0-(6-p-coumaroyl)-glu-
coside, and malvidin-3-0-(6-p-coumaroyl)-glucoside, 1283 cm !
and 1286 cm~! had the most impact, respectively. In the study of
Fernandez and Agosin [21], it was reported that the peak around
1285 cm ™! indicated a characteristic of flavonoid-based tannins.
The results of regression analysis for the calibration and validation
sets are presented in Fig. 2 and Fig. 3.
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Table 2
Visible and mid-infrared spectral ranges employed in OPLS models.

Compound Visible spectra (nm)

Mid-infrared spectra (cm~!)

Refractive index (red+white wines)
Glycerol (red+white wines)
Glycerol/ethanol (Red +white wines)
Malic acid (red+ white wines)
Anthocyanin compounds (red wines)

414-422, 440-468, 504-686
414-426, 440-468, 502-686

414-426, 438-470, 488-490, 502-686
434-472, 500-688

414-434, 470-688

Total phenol content (red wines)
626-686

o-coumaric acid (white wines) 438-450, 526-538, 612-620, 638-646

414-426, 440-474, 494-500, 564-584, 600-602,

850-1223, 1268-1539, 1600-1788, 1804-1813, 1853-3024, 3794-3800
662-664, 858-1142, 1181-1546, 1597-3022, 3799

859-2270, 2423-2498, 2566-2631, 2704-3021, 3345-3714

896-3716

799-1198, 1245-1704, 1881-2131, 2256-2309, 2406-2572, 2700-3052, 3277-
3309, 3575-3726

750-2052, 2205-2309, 2379-2608, 2663-3451, 3535-3897

872-1162, 1219-1289, 1343-1732, 1765-1839, 1877-2319, 2397-3480, 3516-
3578, 3638-3881
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Fig. 2. Regression plots of calibration and validation sets for the OPLS models of red wines. mal3g: malvidin-3-O-glucoside, peo3g: peonidin-3-O-glucoside, pet3g: petu-

nidin-3-0-glucoside, del3g: delphinidin-3-0-glucoside.

For the case of white wines, a powerful model could be es-
tablished for o-coumaric acid value through visible and mid-in-
frared spectra. The most significant variable in the o-coumaric acid
model was from the mid-infrared spectra (2542 cm~'). OPLS
models were also constructed using only mid-infrared data to
compare the prediction performance of two spectrometric sets
(mid-infrared data and combined visible and mid-infrared data).
The results of the models are given in terms of correlation coef-
ficients of calibration and validation data sets and leave-one-out
cross-validation coefficients (Table 3). It was observed that the use
of visible spectra together with mid-infrared spectra improved the
prediction of anthocyanin compounds and total polyphenol con-
tent (higher RZ, values). On the other hand, °Brix, glycerol, gly-
cerol/ethanol ratio and o-coumaric acid models revealed similar
prediction performances for the two data sets. Anthocyanin
compounds are absorbed in the visible range, whereas some of the
phenolic compounds give the highest absorbance in the UV range
[23]. This explains higher prediction capability of the method for

anthocyanins; however, not for other compounds like flavan-3-ols
(catechin, epicatechin), flavonols (quercetin, myricetin and
kaempferol), and most of phenolic acids (gallic acid, ferulic acid).
The models with combined spectra and mid-infrared spectra re-
sulted in similar results for glycerol, glycerol/ethanol, malic acid,
and °Brix, since their absorbance values in the visible region had
very low contribution.

Total phenol content of red wines was predicted with lower
number of significant variables in the visible range than the mal-
vidin compounds. Among the significant variables, 1307 cm ' had
the most significant impact on the model with the highest VIP
value. The spectral range of 2000-750 cm~! was included in the
prediction of total phenols and anthocyanins. Similarly, it was
reported that absorption band between 1800-900 cm~! was
useful in the prediction of total phenolic content, flavonoid con-
tent and antioxidant capacity of Moscatel dessert wines [24].

The OPLS technique was shown to predict the °Brix, malic acid,
glycerol and glycerol/ethanol ratio and malic acid parameters of all
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Fig. 3. Regression plots of calibration and validation sets for the OPLS models of red wines. del3ga: delphinidin-3-0-(6-acetyl)-glucoside, pet3ga: petunidin-3-0-(6-acetyl)-
glucoside, peo3ga: peonidin-3-0-(6-acetyl)-glucoside, mal3ga: malvidin-3-0-(6-acetyl)-glucoside, del3gc: delphinidin-3-0-(6-p-coumaroyl)-glucoside, mal3gc: malvidin-3-

0-(6-p-coumaroyl)-glucoside.

Table 3

Results of calibration and validation models of visible and mid-infrared and only mid-infrared data.

Vis+MIR data MIR data
Parameter PC? RZ, R%, RZ. Calibration equation RMSEC RMSEP RZ, R%y RZ,
°Brix (red+white wines) 1+1 0.96 0.95 0.96 y=100x-0 0.17 0.16 0.96 0.95 0.96
Glycerol (red+white wines) 1+3 0.95 0.89 0.83 y=1.00x-0 545.8 740.7 0.94 0.89 0.84
Glycerol/ethanol (red +white wines) 1+6 0.99 0.82 0.89 y=1.00x-0 8.92 49.4 0.99 0.84 0.89
Malic acid (red +white wines) 1+3 0.88 0.76 0.86 y=0.88x+80.00 250.4 240.5 0.90 0.76 0.84
Total polyphenol content (red wines) 1+3 0.98 0.83 0.90 y=0.99x+15.00 72.6 249.1 0.98 0.75 0.87
Malvidin-3-0-glucoside 1+2 0.94 0.73 0.90 y=1.00x-0 3.94 6.87 0.93 0.53 0.71
Peonidin-3-0-glucoside 1+2 0.89 0.68 0.89 y=0.98x+0.04 0.35 0.38 0.99 0.56 0.73
Petunidin-3-0-glucoside 1+3 0.98 0.80 0.80 y=100x-0 0.32 1.10 0.99 0.67 0.64
Delphinidin-3-0-glucoside 1+4 0.99 0.78 0.79 y=1.00x-0 0.07 0.73 0.99 0.71 0.38
Delphinidin-3-0-(6-acetyl)-glucoside 1+7 0.99 0.67 0.78 y=1.00x+0 0.00 0.15 033 0.27 0.78
Petunidin-3-0-(6-acetyl)-glucoside 1+2 0.87 0.63 0.80 y=0.97x+0.02 0.18 0.24 0.90 0.29 0.59
Peonidin-3-0-(6-acetyl)-glucoside 1+5 0.99 0.66 0.90 y=1.02x-0.01 0.04 0.22 0.47 0.31 0.48
Malvidin-3-0-(6-acetyl)-glucoside 1+2 0.96 0.63 0.86 y=1.00x+0 111 2.59 0.48 041 0.64
Delphinidin-3-0-(6-p-coumaroyl)-glucoside 1+2 0.93 0.62 0.87 y=0.94x+0.02 0.08 0.12 0.89 045 0.81
Malvidin-3-0-(6-p-coumaroyl)-glucoside 1+2 0.98 0.70 0.76 y=1.02x-0.03 0.35 0.65 0.99 0.69 0.67
o-coumaric acid (white wines) 1+2 0.99 0.63 0.77 y=1.07x-0.03 0.10 0.33 0.99 0.63 0.72

2 PC: Number of principle components in OPLS models (pp+ po).
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Fig. 4. Regression plots of calibration and validation sets for the OPLS models of white and red wines. Regression plots of RI (soluble solid contents by refractive index, °Brix);
glycerol (mg L~'); glycerol/ethanol; malic acid (mg L~') for red and white wines; o-coumaric acid (mg L~") for white wines, TP (total polyphenol content) for red wines.

wine samples (red and white) well. In the prediction of °Brix,
2803 cm~! had the highest VIP value, whereas 1195cm™!,
996 cm ! and 926 cm~! were the most significant variables for
malic acid, glycerol and glycerol/ethanol ratio. The correlation
between reference amounts determined with HPLC and predicted
values for the calibration and validation sets are presented in
Fig. 4.

In literature, the use of FTIR for total polyphenol and total fla-
vonol contents were reported with similar leave-one-out cross-
validation or validation R? values to this study, however, with ra-
ther narrower range of wine samples (wines of limited varieties
/red wine only) or vintages [24]. Prediction of individual phenolics
by UV-Vis and NIR were studied, and only the results of calibration
sets were reported [10]. Their results indicated that trans-resver-
atrol and malvidin 3-0-glucoside (oenin) could be predicted suc-
cessfully. The crossvalidation results for individual anthocyanins
are higher in the present study. In another work, malvidin com-
pounds were used to predict anthocyanin content of red wines

with FTIR [25] and their validation results (0.84-0.88) are similar
to R? values presented in Table 3. The wine samples used here
covered a wide range of factors such as different geographic re-
gions, grape varieties and harvest years. Successful OPLS models
could be established for anthocyanin compounds and total poly-
phenol content in red wines, for o-coumaric acid in white wines
and glycerol, glycerol/ethanol ratio, malic acid and °Brix in general,
with mid-infrared region or combined spectra. It should be noted
that the use of whole spectrum between 200 and 700 nm instead
of only visible range can provide better predictions of other phe-
nolic substances and chemical parameters in wine.

4. Conclusion
Quantification of phenolic compounds and some quality vari-

ables in monovarietal red and white wines using combined visible
and mid-infrared spectra was investigated for the first time in
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literature and shown to be a promising method. The OPLS tech-
nique was used in the regression models. Sampling included wines
of different grape varieties, geographic regions and vintages to
cover wide ranges of predicted variables. The regression coeffi-
cient of determination of both crossvalidation and external vali-
dation showed that the analysis of wine samples with these
methods could improve the predictions of individual compounds
such as total polyphenol, anthocyanin compounds, o-coumaric
acid, glycerol, and glycerol/ethanol ratio. The combination of
visible and mid-infrared spectra especially provided better pre-
dictions of anthocyanin compounds compared to using only mid-
infrared data. To increase the accuracy and robustness of these
prediction models and to employ them in commercial applica-
tions, larger sample sets can be used in future studies. Inclusion of
UV spectra in data analysis can increase the predictability of all
phenolic compounds as well. Determination of wine phenolic
compounds with such practical and reliable techniques makes it
possible to monitor the changes of these compounds at various
stages of production process and particularly aging.

Acknowledgments

The authors thank Biotechnology and Bioengineering Research
and Application Centre at Izmir Institute of Technology for their
help in the HPLC analyses.

Funding: This research was supported by the Scientific Re-
search Project of Izmir Institute of Technology (2010IYTEQ7).

Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.talanta.2016.08.
057.

References

[1] R. Rodriguez-Montealegre, R. Romero Peces, ].L. Chac6n Vozmediano,

J. Martinez Gascueiia, E. Garcia Romero, Phenolic compounds in skins and
seeds of ten grape Vitis vinifera varieties grown in a warm climate, J. Food
Compos. Anal. 19 (6-7) (2006) 687-693.

L. Laghi, A. Versari, G.P. Parpinello, D.Y. Nakaji, R.B. Boulton, FTIR spectroscopy
and direct orthogonal signal correction preprocessing applied to selected
phenolic compounds in red wines, Food Anal. Method 4 (4) (2011) 619-625.
A. Soriano, P.M. Pérez-Juan, A. Vicario, ].M. Gonzalez, M.S. Pérez-Coello, De-
termination of anthocyanins in red wine using a newly developed method
based on Fourier transform infrared spectroscopy, Food Chem. 104 (3) (2007)
1295-1303.

N. Castillo-Munoz, S. Gomez-Alonso, E. Garcia-Romero, I. Hermosin-Gutierrez,
Flavonol profiles of Vitis vinifera white grape cultivars, J. Food Compos. Anal.

2

i3

[4

23 (7) (2010) 699-705.

[5] A. de Villiers, P. Alberts, A.G. Tredoux, H.H. Nieuwoudt, Analytical techniques
for wine analysis: an African perspective; a review, Anal. Chim. Acta 730
(2012) 2-23.

[6] M. Friedel, C.D. Patz, H. Dietrich, Comparison of different measurement tech-
niques and variable selection methods for FT-MIR in wine analysis, Food
Chem. 141 (4) (2013) 4200-4207.

[7] S. Fragoso, L. Acena, J. Guasch, O. Busto, M. Mestres, Application of FT-MIR
spectroscopy for fast control of red grape phenolic ripening, ]. Agr. Food Chem.
59 (6) (2011) 2175-2183.

[8] C.D. Patz, A. Blieke, R. Ristow, H. Dietrich, Application of FT-MIR spectrometry
in wine analysis, Anal. Chim. Acta 513 (1) (2004) 81-89.

[9] D. Cozzolino, H.E. Smyth, M. Gishen, Feasibility study on the use of visible and
near-infrared spectroscopy together with chemometrics to discriminate be-
tween commercial white wines of different varietal origins, J. Agr. Food Chem.
51 (2003) 7703-7708.

[10] MJ. Martelo-Vidal, M. Vazquez, Determination of polyphenolic compounds of
red wines by UV-VIS-NIR spectroscopy and chemometrics tools, Food Chem.
158 (2014) 28-34.

[11] E. Borras, J. Ferre, R. Boque, M. Mestres, L. Acena, O. Busto, Data fusion
methodologies for food and beverage authentication and quality assessment -
a review, Anal. Chim. Acta 891 (2015) 1-14.

[12] Q. Ouyang, ]. Zhao, W. Pan, Q. Chen, Real-time monitoring of process para-
meters in rice wine fermentation by a portable spectral analytical system
combined with multivariate analysis, Food Chem. 190 (2016) 135-141.

[13] J.U. Porep, A. Mattes, M.S. Pour Nikfardjam, D.R. Kammerer, R. Carle, Im-
plementation of an on-line near infrared/visible (NIR/VIS) spectrometer for
rapid quality assessment of grapes upon receival at wineries,, Aust. J. Grape
Wine Res. 21 (1) (2015) 69-79.

[14] 1. Sen, F. Tokatli, Authenticity of wines made with economically important
grape varieties grown in Anatolia by their phenolic profiles, Food Control 46
(2014) 446-454.

[15] S. Gémez-Alonso, E. Garcia-Romero, I. Hermosin-Gutiérrez, HPLC analysis of
diverse grape and wine phenolics using direct injection and multidetection by
DAD and fluorescence, J. Food Compos. Anal. 20 (7) (2007) 618-626.

[16] OIV, Compendium of International Methods of Wine and Must Analysis Vo-
lume 1, International Organisation of Vine and Wine, 2013.

[17] M. Castellari, A. Versari, U. Spinabelli, S. Galassi, A. Amati, An Improved Hplc
Method for the Analysis of Organic Acids, Carbohydrates, and Alcohols in
Grape Musts and Wines, J. Liq. Chromatogr. Relat. Technol. 23 (13) (2000)
2047-2056.

[18] A. Arnous, D.P. Makris, P. Kefalas, Effect of principal polyphenolic components
in relation to antioxidant characteristics of aged red wines, J. Agr. Food Chem.
49 (2001) 5736-5742.

[19] R.C. Pinto, ]. Trygg, ]. Gottfries, Advantages of orthogonal inspection in che-
mometrics, J. Chemom. 26 (6) (2012) 231-235.

[20] L. Eriksson, E. Johansson, N. Kettaneh-Wold, S. Wold, Multi- and Megavariate
Data Analysis:Principals and Applications, Umetrics, Sweden, 2001.

[21] K. Fernandez, E. Agosin, Quantitative analysis of red wine tannins using
fourier-transform mid-infrared spectrometry, J. Agr. Food Chem. 55 (2007)
7294-7300.

[22] W. Saeys, A.M. Mouazen, H. Ramon, Potential for onsite and online analysis of
pig manure using visible and near infrared reflectance spectroscopy, Biosyst.
Eng. 91 (4) (2005) 393-402.

[23] E.H. Anouar, J. Gierschner, J.-L. Duroux, P. Trouillas, UV/visible spectra of
natural polyphenols: a time-dependent density functional theory study, Food
Chem. 131 (1) (2012) 79-89.

[24] S.D. Silva, R.P. Feliciano, L.V. Boas, M.R. Bronze, Application of FTIR-ATR to
Moscatel dessert wines for prediction of total phenolic and flavonoid contents
and antioxidant capacity, Food Chem. 150 (2014) 489-493.

[25] M. Romera-Fernandez, L.A. Berrueta, S. Garmon-Lobato, B. Gallo, F. Vicente, J.
M. Moreda, Feasibility study of FT-MIR spectroscopy and PLS-R for the fast
determination of anthocyanins in wine, Talanta 88 (2012) 303-310.


http://dx.doi.org/10.1016/j.talanta.2016.08.057
http://dx.doi.org/10.1016/j.talanta.2016.08.057
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref1
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref1
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref1
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref1
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref1
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref2
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref2
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref2
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref2
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref3
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref3
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref3
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref3
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref3
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref4
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref4
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref4
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref4
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref5
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref5
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref5
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref5
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref6
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref6
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref6
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref6
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref7
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref7
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref7
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref7
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref8
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref8
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref8
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref9
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref9
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref9
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref9
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref9
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref10
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref10
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref10
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref10
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref11
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref11
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref11
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref11
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref12
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref12
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref12
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref12
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref13
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref13
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref13
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref13
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref13
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref14
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref14
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref14
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref14
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref15
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref15
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref15
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref15
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref16
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref16
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref16
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref16
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref16
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref17
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref17
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref17
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref17
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref18
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref18
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref18
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref19
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref19
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref20
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref20
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref20
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref20
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref21
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref21
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref21
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref21
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref22
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref22
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref22
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref22
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref23
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref23
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref23
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref23
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref24
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref24
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref24
http://refhub.elsevier.com/S0039-9140(16)30631-2/sbref24

	Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines
	Introduction
	Materials and methods
	Chemicals
	Wine samples
	Mid-infrared analysis
	Visible analysis
	HPLC analysis
	Total polyphenol analysis and soluble solid contents by refractive index (degBrix)
	Spectral data preprocessing and multivariate statistical analysis

	Results and discussion
	Conclusion
	Acknowledgments
	Supplementary material
	References




