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Abstract

Background: The local environment plays a major role in the spatial distribution of plant populations. Natural plant
populations have an extremely poor displacing capacity, so their continued survival in a given environment
depends on how well they adapt to local pedoclimatic conditions. Genomic tools can be used to identify adaptive
traits at a DNA level and to further our understanding of evolutionary processes. Here we report the use of
genotyping-by-sequencing on local groups of the sequenced monocot model species Brachypodium distachyon.
Exploiting population genetics, landscape genomics and genome wide association studies, we evaluate
B. distachyon role as a natural probe for identifying genomic loci involved in environmental adaptation.

Results: Brachypodium distachyon individuals were sampled in nine locations with different ecologies and
characterized with 16,697 SNPs. Variations in sequencing depth showed consistent patterns at 8,072 genomic bins,
which were significantly enriched in transposable elements. We investigated the structuration and diversity of this
collection, and exploited climatic data to identify loci with adaptive significance through i) two different approaches
for genome wide association analyses considering climatic variation, ii) an outlier loci approach, and iii) a canonical
correlation analysis on differentially sequenced bins. A linkage disequilibrium-corrected Bonferroni method was
applied to filter associations. The two association methods jointly identified a set of 15 genes significantly related to
environmental adaptation. The outlier loci approach revealed that 5.7% of the loci analysed were under selection.
The canonical correlation analysis showed that the distribution of some differentially sequenced regions was
associated to environmental variation.

Conclusions: We show that the multi-faceted approach used here targeted different components of B. distachyon
adaptive variation, and may lead to the discovery of genes related to environmental adaptation in natural
populations. Its application to a model species with a fully sequenced genome is a modular strategy that enables
the stratification of biological material and thus improves our knowledge of the functional loci determining
adaptation in near-crop species. When coupled with population genetics and measures of genomic structuration,
methods coming from genome wide association studies may lead to the exploitation of model species as natural
probes to identify loci related to environmental adaptation.
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Background
One of the most ambitious objectives of natural vari-
ation studies is to provide a description of functional
variability in natural populations [1]. The ability of a
living organism to endure environmental challenges
depends on the portion of genetic variation with adap-
tive implications [2] that sustains the formation of
ecotypes through ecological evolution [3]. In plant sciences,
being able to identify the genetic determinants of complex
traits may help enhance crops [4]. The discovery of the
genetic bases of complex traits with adaptive significance in
model species [5] and in crops [6,7] is often the first
step towards molecular breeding programs [8,9].
Domestication and breeding, however, have caused a

severe reduction of crop diversity, whose extant genetic
variation is much smaller than that of their wild relatives
[10,11]. This limits the diversity in which to search for
adaptation, thus hindering our ability to identify favourable
allelic combinations. Focusing on natural populations of
the wild relatives of crops, with their broader genetic
diversity, could help overcome this limitation and even
allow new ground to be broken. As geographical objects,
natural populations might be used to study the relation
between the genetic and ecologic diversity in search of
adaptive traits. Genomic synteny would then allow the
targeting of homologous candidate adaptive genes in the
crop of interest [12,13]. The environment can be con-
sidered as an unceasing breeder selecting for successful
alleles, providing this approach potential downfalls in
an agronomic perspective.
The relation between genetic and climatic variation in

natural populations has already been explored in humans
[14,15], and genetic determinants for fitness variation in
different environments have been described in Arabidopsis
thaliana [16]. Environmental data was gradually intro-
duced in population genetics practises, being addressed by
some landscape genetics and landscape genomics [17,18],
thereby being able to describe adaptive variability by
means of the differential distribution of alleles on an
ecological basis [19]. This can be done either through
i) outlier detection or ii) association methods [20]. Outlier
detection relies on Wright’s fixation index Fst [21] to iden-
tify loci under selection through their differentiation from
the basal and neutral genomic variation [22]. Although
widely used in animal species [23,24] and less frequently
in plant species [25], outlier detection can be biased by
genetic structure and limited sensitivity [26]. In addition,
it does not explicitly address environmental variation. On
the other hand, association methods are based on marker -
trait regressions and they directly target quantitative
measures of the environment. The statistical framework of
association methods is largely similar to that of genome-
wide association studies (GWAS), which were originally de-
veloped in humans [27] to map complex trait determinants.
GWAS are increasingly applied to plants [28,29], where
generally higher minor allele frequencies, multi-trait direc-
tional selection, and extensive linkage disequilibrium
simplify their application [30].
When considering organisms with limited displacing

abilities such as plants, association methods might accom-
modate quantitative environmental data as a response
variable rather than phenotypes, and map genomic associ-
ations with climate [31-33]. Whilst outlier loci methods
perform better with the strongest signatures of selection,
association methods are appropriate to ascertain weak
selection [26], and may lead to the identification of soft
sweep signatures of low intensity selection [34,35]. Outlier
detection and association methods were merged in an
investigation into Populus [36] and Teosinte [37], thus
leading to the identification of loci with clear adaptive
significance towards climate. A study in Medicago joined
the association approach with an ex situ phenotypic evalu-
ation, confirming the reliability of these methods [38]. In
all cases, great focus is needed on to the interrelation of
genetic variation and spatial displacement, as false statis-
tical signals might arise when spatial structuration mirrors
environmental adaptation [39]. The dependency of genetic
diversity upon spatial diversity, though rarely considered
in depth, can heavily influence the outcome of both these
methods.
Merging population genomics and landscape data re-

quires two sources of information. The landscape derives
from geographical information systems (GISs), which can
be used to couple quantitative geographical data with bio-
logical sampling [40,41] and model the spatial relations of
individuals. Global climate models developed for GISs [42]
link climatic information with sampled individuals, provid-
ing both quantitative environmental data for each individ-
ual studied and a means for controlling spatial bias over
genetic diversity. The genomics, in fact, must first consider
the disturbance caused by the many evolutionary forces
other than selection [43], as well as disturbance due to
unknown demography that might add noise to association
approaches [44]. High-throughput genotyping data are
needed in order to provide the widest possible representa-
tion of the variation at a genome level, and thus efficiently
control the many forces acting at such scale. The lowering
of DNA sequencing costs together with the application of
strategies for the reduction of genome complexity [45]
makes DNA sequencing itself a means for discovering
and analysing molecular markers [46]. Genotyping-by-
sequencing (GBS) [47] is a reductionist strategy, and is
increasingly employed in ecological genomics studies [48].
In this paper, we identify loci linked to environmental

adaptation in Turkish accessions of the grass species
Brachypodium distachyon (L.) P. Beauv. Brachypodium
distachyon is the leading model species for small grain
monocots and temperate grasses [49], with an ancestral



Table 1 Biological material included in the study

Pop Samples Location Longitude Latitude

A 10 Ilgardere-Gelibolu 26.49027 40.27444

B 11 18 Mart Üniv. Kampus 26.43000 40.12527

C 10 Yenice Balya arası 27.39277 39.80000

C2 10 Balya Yenice arası II 27.41027 39.79111

D 10 Dursunbey- Balıkesir 28.64250 39.61416

E 10 Kütahya Tavşanlı çıkışı 29.63361 39.53944

F 10 Kaymaz Mesire yeri Eskişehir 31.20166 39.53888

G 10 Polatlı- Haymana arası 32.45583 39.50111

H 10 Çanakkale Bursa Yolu Başlangıcı 34.84166 38.74055

List of the natural populations of B. distachyon included in this study. At least
10 samples were chosen for each population. Pop codes A to H were given
following a west–east transect across Turkey. Coordinates are given in WGS84.
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range spanning the Middle and Near East, and currently
including most of the temperate areas of the world [50].
Until recently, B. distachyon was deemed to have three
distinct cytotypes of 2n = 10, 20 and 30 chromosomes: a
recent study identified three different taxonomic entities,
of which B. distachyon has the 2n = 10 chromosome set
[51]. B. distachyon genome (approximately 271 Mbp)
was completely sequenced in the inbred line Bd21 [52].
Natural populations of B. distachyon have already been
extensively collected in Turkey, showing high intra-
population homozygosity and a high level of inter-
population genetic diversity [53]. This was an interesting
condition to test the possibility to search for environ-
mental adaptation whilst accounting for structuration.
We explored the possibility of identifying the relation

between climate and genomic features in a starting panel
of 82 B. distachyon individuals collected in nine loca-
tions scattered across a 1000-km transect in Turkey. By
this, we wanted to exploit both methods developed in
the landscape genomics field and in the GWAS com-
munity. Bringing landscape genomics closer to complex
traits mapping, especially in an agronomical perspective,
might open a significant perspective in the field. We
employed a GBS approach to provide a genome-wide
representation of molecular diversity in these B. distach-
yon individuals. The sampling locations were monitored
on a GIS system to obtain climatic data for each individ-
ual, at the same time controlling for the spatial distribu-
tion of genetic diversity. The data was processed using
the complementary characteristics of outlier and associ-
ation approaches in order to identify signatures of adap-
tation at a molecular level.
We found that the association and outlier methods

mostly targeted soft and hard sweeps of selection, re-
spectively. GWAS and landscape genomics method
jointly identified 15 genes involved in B. distachyon
adaptation. We also found that transposable elements
were differentially distributed across the genomes of
local groups, some with a pattern matching the climatic
diversity of the sampling transect.
Our method could be extended by including more ge-

notypes and by targeting additional environments and
environmental variables. Once the biological material is
characterized, this might aggregate additional data and
thus extend our capacity to understand the molecular
bases of adaptation. B. distachyon could then be used as
a natural probe to report functional variations in a broad
set of environmental situations.

Results
GIS analyses and sampling
Nine Turkish Brachypodium distachyon local groups
(Table 1) were sampled in separate locations in order to
maximize environmental diversity. The map resulting
from the Ecocrop modelling in DIVA-GIS (Figure 1) high-
lights the heterogeneous grid cells chosen for sampling.
Geographical coordinates relative to the sampling loca-
tions were used to derive environmental data such as 19
BioClim variables and altitude. After normalization, envi-
ronmental data was reduced by principal component
analysis (PCA). The first three PCs accounted for 58.8%,
28.1% and 10.0% of the total variance. PC1 was positively
correlated with altitude, temperature ranges, and nega-
tively with rainfall. It represents the environmental gradi-
ent moving from western wet lowlands in Turkey to
eastern dry uplands. PC2 was positively correlated with
temperatures and weakly with altitude. PC3 was mainly
correlated with isothermality, i.e. temperature evenness
across the year (diurnal range over yearly temperature
range) [Additional file 1].

Genotyping by sequencing
The 96 samples were genotyped by sequencing, pro-
ducing a total of 200,401,179 reads. The number of reads
produced was rather uneven among the various indi-
viduals, thereby lowering the amount of usable poly-
morphic loci. The number of SNPs selected for GWAS
(MAF >5%, call rate >80%) was 16,697. The comparison
between the tested Bd21 inbred line and the Bd21 refer-
ence sequence produced only 148 polymorphisms (0.9%)
of which 125 were due to heterozygous calls, thus sup-
porting the correctness of SNP calling. The analysis of
the distribution of reads showed that some genomic bins
were consistently not sequenced in all samples sharing
the same sampling area, whereas reads corresponding to
the same bin were present in samples coming from
other regions. 8,072 of such bins were characterized by
either the presence or the absence of reads (P/A re-
gions). Those regions were grouped into 4,911 continu-
ous P/A regions spanning in length from the lowest
arbitrary interval of 1,000 bp up to 22,000 bp (x =
1,819.2; δ 2 = 1,779.5). 26.48% of the full genome of Bd21



Figure 1 GIS survey of the sampling area. Depiction of the sampling transect as evaluated through DIVA GIS. False colours were generated to
represent the most limiting factors for a typical annual grass species among the 19 BioClim variables through Ecocrop model. Letters A to H
denote sampling locations and identify the 9 local groups analysed. Sampling locations were chosen to introduce the most possible
environmental variation in relation to rainfall and temperature. BioClim variables are reported in legend. For full meaning, see Additional file 1.
From west to east, altitude and aridity increase.
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was masked when scanned with a library of B. distachyon
specific transposable elements (TE). The masking propor-
tion rose to 45.96% in the 8,072 P/A, and dropped to
14.52% when an equal number of non-P/A regions ran-
domly drawn from the genome were considered (Table 2).

Diversity analyses and population genetics
The full set of filtered SNPs was used to produce a phyl-
ogeny by neighbour joining (NJ) clustering of uncorrected
P distances, which highlighted an unexpected convergence
in distant geographical areas (Figure 2). Overall, the
analysed B. distachyon local groups were clustered into a
few strongly supported clades. Individuals from the same
Table 2 Genomic distribution of transposable elements

TE family Whole genome P/A Non-P/A

LTR-RT Ty1-copia 4.86 5.06 1.51

LTR-RT Ty3-gypsy 13.63 29.76 8.19

LTR-RT (tot) 18.49 34.82 9.70

DNA_TE 5.41 5.87 3.30

Other 2.58 5.27 1.52

Tot 26.48 45.96 14.52

Enrichments of specific transposable elements repeats (TE family) in different
collections of sequences; whole genome from Bd21, bins with presence/
absence of reads (P/A), an equally dimensioned random set of bins without
presence/absence patterns (non-P/A). LTR-RTs, the most common transposable
elements family in plants, marks the biggest difference between P/A and
non-P/A regions.
sampling point mostly clustered together, suggesting a co-
incidence with biological populations having low variation.
The local group E, split in two, was the sole exception.
Interestingly, local groups did not cluster according to
their spatial distribution. The westernmost (A, B) and
easternmost (H) locales grouped with high confidence, in
contrast to local groups D, F, G and partially E. Local
groups C and C2, which were only 1.8 km apart, tightly
clustered together but remained distinguishable, unveiling
a low but detectable genetic differentiation at a small
geographical scale.
The 8,072 P/A regions were converted into binary

markers on a local basis and used to calculate distances
between local groups with Jaccard’s similarity index. The
resulting tree (Figure 3) is similar to that built from
SNPs, suggesting that P/A regions are inherited in a
similar way to molecular variation.
Pairwise Fst (Table 3) depicted a general scenario of

scarce allele migrations and strong local fixation. When
related to increasing geographical distances, however,
the conditional genetic distance (cGD) showed almost
no variation (Spearman rho = 0.1517 pval = 0.377). This
does not mean that the panel is not spatially clustered.
In fact, quite the opposite is true: gene flow is low if not
absent (as confirmed by Fst), especially between the two
main clades also reported in the phylogeny. This is made
clear by the incomplete population graph resulting from
a spatial-aware molecular diversity analysis (Figure 4A).



Figure 2 Phylogeny based on the full set of SNPs. Bootstrap network tree based on 1000 permutations with Uncorrected P distances.
A-H correspond to the nine sampling locations listed in Table 1. All compatible splits are represented in a single branch; the more parallel
branches there are, the more alternative splits were present in the bootstrapped dataset. The reference genome (Reference) overlaps with the
Bd21 inbred line genotyped for control sakes (*), and clusters with the inbred lines (I). Local groups do not separate following a strict geographical
criterion, yet within-group relationships are maintained. Circles encompass grouping of local groups A, B and H, local groups C and C2, and local
groups D, F and G. Location E is intermediate, also geographically. The main split occurs between central Turkey groups and eastern and western
sampling points.
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A spatial PCA also reported higher global than local
genetic structure, and accounted most of the variance in
the dataset to a single eigenvalue (Figure 4B). Again, this
highlights the separation of sampling locations A, B and
H from the rest.
A structure analysis conducted with Bayesian methods

pointed to the existence of five distinct genetic clusters,
thus extending the geographical pattern that had already
emerged from the previous analyses. Samples from sam-
pling locations A, B, C2, and H were all assigned to the lar-
gest cluster. D, F, G mostly accounted for the second
largest cluster. All samples from region E but one clustered
in a third cluster. Samples from region C shown some
ancestry with those from C2 but acted as a separate clus-
ter. The fifth cluster was contributed in small amounts by
individuals from sampling location F. Overall, the spatial
genetic diversity displays strong structuration, but little
correlation with spatial distance.

Genomic loci with adaptive significance
The genomics of adaptation were explored at three levels.
The main approach was derived from association studies,
using the first three PCs accounting for environmental
data as a fixed variable. Latent factor mixed models
(LFMM) were used to evaluate signals of environmental
adaptation, controlling for false positives by considering the
five cryptic genetic clusters identified by Structure. In paral-
lel, a compressed mixed linear model (CMLM) considering
kinship (K) and structure (Q) usually employed in GWAS
analyses was also used to identify loci associated with cli-
matic data. Kinship analysis confirmed the existence of two
main genetic clusters already suggested by the previous
analyses (Figure 5). When the cluster assignment pro-
vided by Bayesian clustering analysis was introduced as
a covariate in the model, it over-corrected for structur-
ation (data not shown). The PC method generally pro-
tects against structuration from genetic data [54-56]
and was thus used together with kinship to correct the
association analysis. The first five PCs calculated from
molecular data were then used as Q by visually evaluat-
ing the normal fit of the quantile-quantile plots gener-
ated by the model [Additional file 2].
The outcome of both the association analyses was fil-

tered with a corrected Bonferroni criteria accounting for
the dependency of statistical tests within linkage blocks
identified by a linkage disequilibrium (LD) analysis. The



Figure 3 Phylogeny based on P/A regions as group-wise markers. A bootstrap network tree based on Jaccard’s distances of binary markers
based on regions with consistent within-group presence/absence of reads. The tree topology, though more unstable, entirely overlaps with that
produced by the SNPs in Figure 2. This suggests that distances deriving from P/A regions are primarily based on elements with segregation
patterns similar to those of genetic variation, probably transposable elements and regions of DNA methylation.
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set of 82 B. distachyon samples chosen for association
analysis showed a genome organized into 654 LD blocks
containing between 2 and 492 SNPs. Eighty SNPs were
not associated with any LD block. After using Bonferroni
correction over 734 independent tests, every SNP that
yielded a p-value lower than 1.37 × 10−4 (single test p-
value < 0.1) with environmental PC variables was
deemed to be an environment-associated SNP (EAS).
The manhattan plot in Figure 6 merges the LFMM and
CMLM output. Significant peaks have the expected
skewed bell shape caused by linkage dragging markers
nearby the most significant loci. Brachypodium.org was
used to gather the corresponding protein domains from
the Interpro database (http://www.ebi.ac.uk/interpro/),
when available.
The LFMM approach identified alone 1035 genes,

pointed by 901 genic EASs and 439 EASs in the 5 kb
upstream predicted genes [Additional file 3] (note that a
5 kb upstream EAS may point to more than one gene).
The CMLM was more conservative, reporting 18 genic
EASs and 10 EASs 5 kb upstream predicted genes,
identifying 30 predicted genes [Additional file 4]. When
the two analyses were merged, this revealed 14 EASs
pointing at 15 unique genes independently identified by
both approaches (Table 4; [Additional file 3]).
The aim of our second approach was to identify

genomic loci under selection by applying a Bayesian out-
lier detection method. This analysis identified 953 outlier
loci at an FDR of 0.05 (5.7% of the loci analysed). A total
of 708 unique loci were either 5kbp upstream (247) and/
or inside (461) 490 unique genes [Additional file 5]. Loci
identified as outliers did not overlap with significant
associations identified by CMLM. The other association
approach, the least conservative LFMM, identified 75
SNP also being outlier loci, targeting 52 unique pre-
dicted genes highlighted in [Additional file 3]. The three
methods showed an enrichment towards gene-related
SNPs (Table 5).

http://www.ebi.ac.uk/interpro/


Table 3 Distance and diversity among populations

Pop A B C C2 D E F G H

A 17.4 93.3 95.1 197.7 280.7 410.6 516.7 737.0

B 0.088 89.8 91.5 197.2 281.5 413.1 519.8 739.2

C 0.250 0.253 1.8 108.8 194.2 327.6 435.2 652.5

C2 0.465 0.458 0.565 107.2 192.6 326.1 433.7 650.9

D 0.674 0.680 0.744 0.845 85.7 220.0 327.7 543.8

E 0.213 0.212 0.280 0.434 0.573 134.6 242.4 458.3

F 0.598 0.603 0.664 0.767 0.360 0.484 107.8 326.6

G 0.708 0.713 0.788 0.901 0.614 0.609 0.418 222.7

H 0.098 0.068 0.258 0.448 0.671 0.222 0.599 0.700

A to H, sampled populations from west to east. WGS84 coordinates in Table 2.
Population genetic parameters show that geographic distance does not
influence population diversity. The lower matrix reports the estimated
multilocus Fst among populations. The upper-right matrix indicates population
pairwise distances in km.
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The third approach focused on the relation between
P/A regions differentially distributed among B. distach-
yon locales and environmental PCs. A canonical correl-
ation analysis (CCA) was used to quantify whether the
environment could explain the differential distribution
of P/A regions. The triplot in Figure 7 shows some of
the P/A regions linearly related with environmental PC:
this analysis can be read as a classical CCA in which
sites are sampled groups (A to H), objects are P/A
regions, and environmental vectors are represented by
PCs. Constrained axes accounted together for 62.6% of
the inertia. Sites/objects appeared linearly related to each
of the three sites/variables at a p < 2.2×10−16 after 999
permutations.

Putative genes involved in adaptation
We assayed the functional role of EASs detected by both
association methods, as representatives of the strongest
signal for adaptation (Table 4). Environmental PC1
Figure 4 Analysis of spatial structuration of molecular diversity. The m
that local groups are artificially set in a circle, so edge lengths are not prop
genetic diversity within sampling group. This graph confirms the detachme
depiction of the spatial PCA. Positive PCs represent global structure, negati
This global structure overlaps with the main split emerging from other ana
targets most of the genic EASs. Bradi1g03700, a 60s
ribosomal protein L36-3-like, is probably involved in ex-
pression control. In maize, the 60s subunit is involved in
flooding responses [57] and might be related to environ-
mental stress responses. The same EAS targets on the re-
verse strand Bradi1g02575, bearing an oxidoreductase
activity domain. PC1 also targets a MYB transcription
factor (Bradi2g38560) a class of proteins involved in plant
responses processes, including those to abiotic stresses.
MYB are a strategic targets for crop improvement [58].
Notably, we detected three outlier loci less than 100 Kb
downstream this association [Additional file 3]. The
phosphoprotein phosphatase Bradi1g71690, is likely
involved in cellular signalling. Signalling is also contri-
buted by Bradi3g28560 (transferase activity). This pre-
dicted gene encodes for a 3-ketoacyl-CoA synthase, whose
elective biological processes include wax synthesis [59]
and response to cold and light stimulus (www.uniprot.
org). The energetic balance of the cell is possibly
contributed by Bradi1g73170, a sucrose transmembrane
transporter targeted by PC1, and Bradi4g04710, targeted
by PC2 and involved in the mitochondrial respiration
chain. Within 500 Kb of this locus, two outlier loci are
found [Additional file 3]. The EAS at 44,083,155 bp on
chromosome 3, identified by both PC1 and PC3 is in the
vicinity of a set of protein coding genes of unknown
function.

Discussion
The twofold gain of genotyping by sequencing
Although genome re-sequencing offers the most inclu-
sive possible overview of the genomic variability of small
genome species [60,61], methods based on the reduction
of genome complexity such as GBS represent a cheaper
and versatile alternative to genotype any species of inter-
est in multiplex. However, due to the technical variations
easure of conditional genetic distance is shown in panel A. Note
ortional to conditional genetic distance. Node size is proportional to
nt of sampling groups A, B, H from all of the others. In panel B, visual
ve PCs local structure. Note the value of the first PC (out of scale).
lyses.

http://www.uniprot.org
http://www.uniprot.org


Figure 5 Kinship analysis. Kinship relationships among samples according to VanRaden method. Two main groups can be seen, the largest
comprising mostly A, B, C, C2 and H individuals. The bimodal distribution of the kinship values confirm the results from diversity analyses, and
probably would have biased the association analyses.
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inherent in the protocol, a GBS run can yield an un-
balanced representation of samples [62]. Here we showed
that such an unbalanced distribution might mask
biological reasons that are actually worth investigating.
In our case, the persistence of phylogenetic relationships

among samples when using P/A regions as genetic markers
(Figures 2 and 3) suggest that there is an inheritable pattern
that is consistent with the differential distribution of
transposable elements (TE) [63]. In this case P/A regions
may either result from the loss of the cut site because of TE
movement, or from the impairing of the methyl-sensitive
ApeKI cleavage as a consequence of the presence of
methylated DNA regions.
In both cases, the coverage of sequencing reads will

show a gap as a result of the failure of the enzymatic cut.
P/A regions are clearly enriched in TE, as demonstrated



Figure 6 Manhattan plots of the association tests. Manhattan plots depicting association across the five B. distachyon chromosomes with
environmental PCs 1 to 3, according to LFMM method. On the y axis, the significance of each association test; on the x axis, the SNP locations
across the chromosome. The dashed line reports the significance for the LD-corrected Bonferroni method (p-value < 1.37 × 10−4). Black dots
represent significant associations also detected with CMLM. The two methods identify clear peaks. Association peaks mostly have the skewed
appearance given by linkage disequilibrium between cis elements nearby the strongest associations.
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Table 4 Genes emerging from association analysis with
climatic variables

Chromosome Position ID PC Position

1 2493094 Bradi1g02575 1 genic

Bradi1g03700 1 genic

1 69649973 Bradi1g71690 1 genic

1 69649974 Bradi1g71690 1 genic

1 70771534 Bradi1g73170 1 genic

2 38837316 Bradi2g38560 1 genic

3 29941038 Bradi3g28560 1 genic

3 44083155 Bradi3g42530 1,3 5 kb upstream

Bradi3g42540 1,3 5 kb upstream

Bradi3g42550 1,3 5 kb upstream

Bradi3g42560 1,3 5 kb upstream

3 56650876 Bradi3g56950 1 genic

4 3872705 Bradi4g04690 2 5 kb upstream

Bradi4g04710 2 5 kb upstream

5 1006046 Bradi5g01110 1 5 kb upstream

Bradi5g01120 1 5 kb upstream

EASs confidently detected (p-value < 1.37 × 10−4) by both the association
methods. The chromosome, EAS position in bp, gene ID and environmental
variable involved (PC 1 to 3) are given. Each gene was identified by either an
internal EAS (genic) or an EAS 5 kb upstream (5 kb upstream). Genes from
B. distachyon annotation V1.2.

Figure 7 Triplot from CCA. The CCA analysis uses sites (sampling
groups; letters) as fixed points to evaluate the relationship of
individuals (P/A regions; dots), and environmental variation (PC1-3;
vectors). Though many of the P/A regions are located near the centre
of the graph, some appear highly related to PC1 and especially to PC2.
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by the fact that the average TE content in those regions is
significantly higher than that of the entire genome (45.96%
versus 26.48%). The enrichment is even more dramatic
when the TE content of regions not classified as P/A re-
gions is taken into account (14.52%, more than three times
less). This evidence strongly suggests that TE displace-
ment has a role in the P/A polymorphism.
Two simple scenarios could be envisaged to explain

the data: i) TEs inserted into the Bd21 reference genome
after it separated from the other populations (or TEs
inserted before Bd21 separated, but were then removed
from some of the populations) thus giving rise to P/A
polymorphism; ii) TEs are present in orthologous re-
gions of both Bd21 and resequenced samples, but they
are methylated only in some of the resequenced regions.
As far as we are aware this structural variation, as re-

vealed by GBS, has never been reported before. We believe
that it is of great importance as it may introduce a signifi-
cant bias in genomic imputation. Our findings might
Table 5 Positional enrichment of SNPs identified by associati

Method > 5 kbp upstream < 5 kbp upstream

LFMM 276 (17%) 439 (27%)

GAPIT 7 (20%) 10 (28.6%)

Bayescan 245 (25.7%) 247 (25.9%)

Distribution of SNPs deemed significant in relation to predicted genes. Loci were gr
genes, or within predicted genes.
stimulate further studies on the adaptive role of the differ-
ential distribution of transposable elements in B. distach-
yon natural populations. Our CCA analysis identified some
of the P/A as being strongly related to environment, espe-
cially to PC1 and PC2 (Figure 7). Modifications in methy-
lation patterns associated with transposable elements have
already been reported to influence a set of genes in 20
maize lines [64].

Approaching environmental associations
Brachypodium distachyon proved to be an effective model
for the application of landscape genomics. The high Fst
value between local groups (Table 3) is in accordance with
the expectancy for self-fertilizing plants [65]. The deple-
tion of intra-population variation in presence autogamy is
exacerbated by selective sweeps, background selection,
and possibly recurrent extinctions and recolonizations
[66], as likely in our case. Our results might appear to be
in contrast with those from B. distachyon populations
from the Iberian peninsula, where SSR and ISSR markers
showed an unexpectedly high intra-population variation
[67]. We believe this might derive from the markers used,
as SSR and ISSR sites change at a higher pace than coding
on and outlier methods

Genic Total SNPs Predicted genes involved

901 (56%) 1616 1035

18 (51.4%) 35 30

461(48.4%) 953 490

ouped as outside predicted gene regions, within 5 kbp upstream of predicted
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regions targeted by GBS. In addition, as the authors
suggest [67], the high variation in the Iberian populations
might be linked to the proximity to the distribution limit
of B. distachyon. On a broader scale, our SNP-based
survey showed that the genetic diversity did not linearly
correlate with spatial distances. As expected local groups
are highly differentiated, yet share similarities with individ-
uals far away (Figures 2, and 4). This is why the correlation
between cGD and physical distance is not significant, but
spatial structuration is both evident from the population
graph and sPCA analyses (Figure 4).
Are we thus looking at isolation by distance (IBD)? IBD

is the direct consequence of the limited dispersal of alleles,
causing populations that are spatially near to share more
similarities with each other than populations far away
[68]. This phenomenon affects the exploitability of the
molecular data derived from sampling natural populations
[39]. The samples under study, though, do not show IBD
in these terms. This is largely due to the split between
locales A, B and H and all the others. While gene flow
between local groups is low, there is no clear spatial pat-
tern in the distribution of the genetic diversity.
Given the erratic nature of the sampling, we cannot rule

out that patterns of gene flow between populations apply,
at a finer scale, to IBD, as it is outside the scope of this
work. However, the use of these results is a key feature for
our association mapping approach. IBD, as in general
spatial structuration, can mirror environmental association,
leading to high rates of false positives. This was demon-
strated in [39], where association methods without correc-
tion for population structure (such as SAM [69] and outlier
loci discovery methods) found more significant associations
than justified from the data if run in conditions of IBD.
This happens in association methods because both climate
and genetic variability have strong spatial dependencies
which might lead to bias when overlapped. Hierarchical
structure tests are also known to be possibly biased by
IBD [39,70]. Our analyses showed extensive non-linear
spatial structuration, as expected since the autogamous
reproduction of B. distachyon. This finding is in line with
a previous survey performed with 43 SSR markers on 56
Turkish populations [53], where B. distachyon accessions
split into two distinct phylogenetic clades differing in
terms of vernalization habits and morphological features
without belonging clearly to a specific geographical area.
However, the absence of a diversity gradient did not

rule out structuration. We thus performed our asso-
ciation approach by considering structuration in order
to avoid overrepresentation of false positives. This was
done both with a hierarchical structure and a PCA with
LFMM and CMLM, respectively, and we showed that
the two different approaches yield similar results though
differing in magnitude in terms of the statistical associ-
ation found.
Our results are an empirical confirmation of what
emerged in a simulation study testing the performance
of five outlier-based and three correlation methods under
explicit models for selection, demography and spatial rela-
tions [71]. In that study, the outlier detection implemented
in Bayescan outperformed the other methods under any
migration model, while all correlation-based methods
proved powerful yet prone to bias due to structuration
within and among populations. Nevertheless, if coupled
with methods accounting for cryptic genomic structure,
such methods could reduce type I and type II errors,
especially in autogamous species. The portion of differen-
tiated loci was in line with other studies [72], confirming
that the use of a conservative FDR threshold (5%) and
SNP filtering lowered the noise resulting from the use of a
high number of polymorphisms.
In-gene polymorphisms are not the sole ones involved

in environmental adaptation [38]. In fact, SNPs in genes
and 5 kb window upstream of the genes (i.e. potentially
involved in the regulation of gene expression) show an
almost equal contribution to significant associations [73].
This also emerges from our association and outlier loci
analyses, which revealed the EASs and outlier loci were
enriched for genic and gene-related regions (Table 5).
Lack of congruence between methods
An interesting point concerns the differences that emerged
between outlier and association methods, which here
report little loci in common. This result does not seem to
fit the early tendency of seeing outlier loci as a confirm-
ation for EAS validity and vice versa [69,74]. Instead it
highlights that association and outlier analyses estimate
complementary aspects of functional adaptation, as recently
suggested in similar studies [37].
The association approach is not dependent upon

population genetic parameters, instead it targets a limited
set of quantitative environmental characteristics. Complex
traits targeted by means of correlative approaches, and
especially those regarding climatic adaptation, are ex-
pected to reveal small changes in allele frequencies that
push populations to a new optimum [35]. In this sense,
polygenic selection [75] would seem to favour the simul-
taneous presence of multiple alleles rather than a
complete fixation at the loci involved [34], resulting in the
co-occurrence of different haplotypes at any given
genomic location [76]. This contributes to the lack of
congruence between the two methods, as a fainter signa-
ture of selection is less likely to be detected by outlier
detection methods [77]. Unsurprisingly, a low intensity se-
lection causes Bayescan to fail the most [26]. In addition,
the LD-correction for false discovery rate possibly has an
excessive number of type II errors [78]. However, these
kinds of studies benefit from a more conservative
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threshold than from a permissive approach. A few loci are
in fact expected to have high enough effects to be confi-
dently detected.
Conversely, outlier methods do not depend, at least

not directly, on environmental data. Loci identified by
Bayescan but not by association methods might repre-
sent a set of loci under selection from factors not con-
sidered in the association analysis, such as fire regimes,
soil composition, anthropic disturbance, grazing pres-
sure, pathogens, and so on. Outlier methods are also
affected by the assumptions about the null distribution
used to compare loci, making the demographic history
and structure of populations able to bias the outcome of
the analysis [79,80]. We argue that, at the net of false
positives and negatives that might be effectively but not
completely controlled by both methods, loci identified
by both methods represent alternative portions of
adaptive variation. Outliers represent the pool of loci
under the strongest selection, whereas EASs represent
the sum of the present and historical multilocus varia-
tions related to the environmental features considered.
A closer evaluation of the genes related to EASs identi-

fied by both the association methods provided a varied set
of putative functions (Table 4). The annotation of Brachy-
podium distachyon is currently based mostly on in silico
models, and therefore needs a careful evaluation of the
functional relevance of EASs, which was outside the
scopes of our experiments. Yet, we identified a set of
genes, including a MYB transcription factor pointed by
association and outlier loci, which already suggests the
potential downstream applicability of these methods.
Owing to the nature of LD, however, a less-than complete
coverage sequencing cannot achieve the single-gene defin-
ition in association: our analyses revealed that the genome
of our B. distachyon collection could be split into 734 LD
blocks. To achieve a higher definition, more recombin-
ation events should be sampled, i.e. more individuals are
needed. This is one of the strengths of this approach: since
it is modular it allows the stratification of environmental
and biological data in an integrated framework to map for
adaptation in B. distachyon.
Conclusions
We strongly support the application of next generation se-
quencing approaches to landscape genomics as a fast and
modular tool for the discovery of adaptive traits, particu-
larly in sequenced species. The application of landscape
genomics to plants akin to crops can directly address
adaptive variation that would be of great interest from an
applied perspective. We noted that, when structuration is
accounted for, the methodological effort to discover loci
responsible for environmental adaptation might trace back
to GWAS. This means that advances and statistics built by
the complex trait mapping community could be exploited
to gather information in the field.
Our results derive from a modular method that can be

extended in order to deal with any relevant environmental
questions. Although our initial set of genotypes and
environmental variables is limited, we believe that this and
similar collections will soon be enlarged to provide a better
capacity to map environmental adaptation. B. distachyon -
like other model species - is thus not only an effective
laboratory tool, but also a natural probe. By exploiting their
geographical distribution, these model species could be
used to identify functional variation, and ultimately
genomic loci, whose evolution was shaped for survival well
before artificial selection took place. We envisage this
approach being directly applied to crops, focusing either on
their wild relatives or landraces, to cleverly incorporate in
agronomy the results of natural selection efforts.

Methods
GIS analysis and sampling
The plant material studied comes from B. distachyon
seeds collected in Turkey [53]. We focused on B. distach-
yon populations spanning from the western Dardanelles
strait to the eastern region beyond lake Tuz in order to
cover a continuous and comprehensive environmental
gradient. This region was analysed by coupling DIVA GIS
and BioClim data derived from Worldclim 2.5 minutes
data (years ~1950-2000, ~5 Km) [81]. The function of the
most limiting factor in Ecocrop model in DIVA GIS was
used to identify a subset of locations maximizing climatic
differences, reporting for each grid (5 × 5 Km) the
BioClim variable with the lowest score with regard to
general biological features for grasses.
A subset of nine local groups was chosen accordingly

(Figure 1; Table 1). The sampling point C2 was chosen
nearby C for control purposes. In each location, a mini-
mum of 10 individuals were sampled as individual spikes
bearing mature seeds. To ensure that the sampled indi-
viduals were reproducing (i.e. had non-zero fitness), we
collected seeds rather than green tissues. Collection points
were associated with GPS coordinates (±6 m), hence
WGS84 coordinates were used to extract local altitude
values and BioClim data from the Worldclim 2.5 database.
BioClim is made up of 19 variables, the result of process-
ing raw measures of rainfall and temperature. Using the
full set of BioClim variables in correlation analyses might
result in augmented noise without any real information
gain [82], thus a PCA was conducted in R [83] over the 20
normalized environmental variables to extract the first
three PCs.

Genotyping
At least five seeds from each spike were pooled, and all
sample pools underwent the same germination routine.
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Seeds representing each original individual were sown in
separate Petri dishes with moist turf and underwent six
weeks of vernalization in the dark. Seeds were then
transferred to 1:1 turf and pebbly soil, and germinated in
separated pots in a growth chamber (16 h 25°C light/
8 h 21°C dark). Green tissues were collected in equal
proportions from the resulting seedlings, so as to recon-
stitute the full allelic set of each original natural acces-
sion. Genomic DNA was extracted using the GeneElute
Plant Genomic DNA Miniprep extraction kit (Sigma-
Aldrich, St Louis, MO) following the suggested protocol.
Four inbred lines developed by Dr. John Vogel in Albany,
CA, USA, and the Bd21 inbred lines were added to the
sample pool as reference. A total of 96 samples were
selected for the following analyses.
The Genotyping-by-Sequencing (GBS) protocol is

based on genome complexity reduction and multiplexed
DNA sequencing for SNP discovery [47]. The protocol
required a new adapter titration before being applied to
B. distachyon. Total genomic DNA was digested with
ApeKI restriction enzyme (120’ at 75°C; New England
Biolabs, Ipswich, MA). Adapters were titrated by ligating
Bd21 genomic fragments to increasing concentrations of
adapters in separate reactions, then piping them through
GBS library construction. After the library quality had been
evaluated on a Bioanalyzer 2100 (Agilent Technologies,
Palo Alto, CA), 6 ng of adapters per 100 ng of genomic
DNA were deemed appropriate for all samples.
After adapter ligation with T4 ligase (New England

Biolabs, Ipswich, MA) for 60’ at 22°C, then 30’ at 64°C,
samples were pooled in two 48-plex cohorts and sub-
jected to PCR amplification with high-fidelity Phusion
DNA polymerase (New England Biolabs, Ipswich, MA)
using adapter-specific primers. The two 48-plex libraries
were treated following the Illumina pair-end sequencing
protocol, and then sequenced in separate lanes on a
Genome Analyzer II (Illumina, Inc., San Diego, CA) at
IGA Services, Udine, Italy.

Bioinformatics
An ad hoc script, available upon request, was used to
carry out the following process on GBS Illumina reads:
i) reads were sorted according to their barcode, ii) bar-
codes were removed from reads, iii) reads were trimmed
according to their overall quality using the rNA program
[84]. Trimmed reads were mapped onto the B. distach-
yon reference genome [52] using BWA software [85] run
with the following settings: −n 3 -o 1 -e 1 -l 28, i.e.
allowing three mismatches, disallowing long gaps, and
using a seed length of 28 nucleotides. The results were
analysed using the GATK pipeline [86]. GATK was used
as it is the gold standard of SNP calls [87,88]. At the
time of the analyses Tassel software [89] was not capable
of analysing paired-end sequencing data, and thus would
have caused the loss of much information. The recom-
mended identification and realignment of questionable
aligned regions was carried out, and the actual SNP calls
were made using the following settings: −stand_call_conf
50.0 -stand_emit_conf 10.0 -dcov 500 -out_mode EMI-
T_ALL_CONFIDENT_SITES. Alignments were edited
and reformatted using SAM tools [90] and Picard tools
(http://picard.sourceforge.net). Samples below the 9th

percentile of the distribution of read counts were
discarded, thus reducing the number of individuals from
96 to 87, of which 82 were from field collection. Reads
were mapped on the reference Bd21 genome sequence,
and polymorphic positions were extracted.
The vcf files produced by GATK were parsed using a

Perl script (available upon request): the analysis was lim-
ited to SNPs deemed as having PASSED by GATK
(Phred-like quality score 50, i.e.α < 0.001%). All poly-
morphic positions missing in over 20% of the samples
were discarded, and loci were filtered for minor allele
frequency (MAF) of 5%.
The reference genome was split into arbitrary 1,000 bp

bins, and the amount of reads mapped per bin per sample
was counted to assess the consistency of the distribution
of the reads. We labeled as Presence/Absence (P/A) re-
gions those bins that were present in the reference gen-
ome but did not produce any read in any of the samples
from one to eight of the groups (A-H) tested. In “absence”
bins, no samples sharing the same geographical origin
mapped any read, whilst one or more of the other groups
did (with at least 1,000 sequenced reads per sample map-
ping on average). The content of transposable elements
(TE) was assessed separately for P/A and non P/A regions
using RepeatMasker [91] and a collection of B. distachyon
TE as a repeat library (ftp://ftpmips.helmholtz-muenchen.
de/plants/brachypodium).

Diversity analyses
A phylogeny comprising both natural accessions and
inbred lines was derived from shared SNPs. SplitsTree4
[92] was used to build a NJ phylogeny based on
uncorrected P distances, and bootstrapping was used in
1000 replicates to build a bootstrap network based on all
the alternative splits that had occurred [93]. The degree
of kinship among individuals was estimated from mo-
lecular data in R/GAPIT [94] using VanRaden's [95]
method. P/A regions were used to derive binary markers
(1/0) to mark the presence or absence of sequences in
each genomic bin in each local group, and a distance
matrix was calculated on the basis of Jaccard distances,
hence considering shared states only. This method does
not require any assumption on the biological nature of
P/A regions.
Gene flow dynamics underlying the geographical sam-

pling can affect the results of the analyses, and need to

http://picard.sourceforge.net/
ftp://ftpmips.helmholtz-muenchen.de/plants/brachypodium
ftp://ftpmips.helmholtz-muenchen.de/plants/brachypodium
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be considered in landscape genomics practises [39,71].
Genepop 4.1.4 [85] was used to estimate Wright’s fix-
ation index (Fst) [31]. The genetic distance among local
groups was measured as the conditional genetic distance
(cGD) [96], a measure derived from population graphs
[97], which by accounting for spatial variance out-
performed classical measures of genetic distance [96,98].
In a population graph each population or group of indi-
viduals is identified by a node on a graph, and nodes are
connected by edges whose length (cGD) is inversely re-
lated to the genetic covariance between populations. Null
length, i.e. unconnected nodes, represent populations
lacking allelelic exchange. cGD values were regressed over
spatial distances.
The spatial pattern of genetic diversity was explored at

a finer scale with a spatial PCA [99] in R/adegenet [100].
This method summarizes both the spatial structure and
the genetic diversity among individuals, thus enabling
global and local spatial structures to be differentiated.
Structure [101] was used in admixture model to survey
the number of cryptic genetic clusters (K) present in the
dataset. The most likely K was identified by structure
harvester [102].

Landscape genomics
Association analysis was performed with two different
methods on the full set of SNPs filtered for MAF > 0.05
against the three PCs accounting for environmental vari-
ation. LFMM software [103] was used to exploit latent
factor mixed models over the full set of SNPs. This
method is aimed at controlling population history and
IBD to control type I errors in gene-environment associ-
ations. This is done by considering genetic structures
(K) as unobserved variables. We ran the analysis iterat-
ing K from 1 to 10, three replicates each, for each of the
environmental PC axes. After observing the outputs of
the model, we chose K according to the number of clus-
ters detected by Structure. LFMM was run with 1,000
burning sweeps and 10,000 effective sweeps. The other
method to association mapping uses R/GAPIT [94]. This
represents a proper GWAS association approach, built
onto multiple F-tests between a full model against a
reduced model at each marker. R/GAPIT enables a
compressed mixed linear model (CMLM) [104] to deal
with any data potentially perturbed by population struc-
ture and kinship. This approach reduces type I (while
possibly increasing type II) errors [105] and can be described
as in [94]:

Y ¼ Xβþ Zuþ e

Where Y is the vector of phenotypic/climate values, and
X and Z are the known design matrix. The fixed effects
(genetic marker, intercept and population structure (Q))
are represented by the unknown vector β; random additive
genetic effects are represented by the unknown vector u,
while e represents the non-observed residuals. Kinship is
included in the computation of u and e variance. The most
significant PCs computed over molecular markers and the
Structure clustering were evaluated as Q by assessing the
normal fit of the model on quantile-quantile plots.
To control for false positives we applied an LD-

corrected Bonferroni. The Bonferroni method is conser-
vative in that it divides the target threshold (e.g. 0.05) by
the number of tests performed. However GWAS is not
necessarily a collection of completely independent tests
[78,106]. This is because the genetic and functional link-
age among markers, expressed by LD, causes SNPs to be
inherited in linkage blocks rather than independently.
This is especially true in natural populations of auto-
gamous plants with extensive LD [107]. R/trio [108] was
used to compute pairwise LD in 500 marker windows (8
Mbp on average). The normalized D’ LD measure was
used to identify LD blocks where strong LD was defined
by an upper confidence bound of D’ > 0.98 and a lower
confidence bound of D’ > 0.7. Strong evidence of recom-
bination was provided wherever the upper bound of D’
was lower than 0.9, according to Gabriel's method [109].
We established a threshold corresponding to one false
association out of ten (0.1) and divided it by the number
of linkage blocks in order to have LD-corrected Bonfer-
roni FDR.
The same dataset was tested to detect outlier loci (i.e.

loci under selection) using Bayescan 2.1 [110]. This
method entails decomposing Fst values in a locus-
specific component (α; shared by all populations), and a
population-specific component (β; shared by all loci).
The departure of α from the equilibrium suggests selec-
tion operating on a given locus. The 5% FDR threshold
provided by Bayescan was used as a significance threshold.
Brachypodium distachyon genome V1.2 annotation (ftp://
ftpmips.helmholtz-muenchen.de/plants/brachypodium/v1.2)
was used to locate EASs and outliers either more than
5 kb upstream, within 5 kb upstream, and within predicted
genes with R/GenomicRanges [111]. The limit of 5 kbp
was chosen as being representative of possible cis regula-
tory regions [73]. To avoid redundancy, SNPs falling at the
same time into a predicted genic region and 5 kb up-
stream of another predicted genic region, were considered
once and genic only. The list of outliers was compared
with that of the EASs significant for either of the two asso-
ciation methods. SNPs identified by at least two methods
were further discussed as strong adaptation candidates.
P/A regions as binary markers were used in a canonical

correspondence analysis (CCA) [112] with R/vegan [113].
A CCA is used in ecological studies to evaluate the
amount of variability of a matrix of observations X is
explained by a matrix of descriptive variables Y referring

ftp://ftpmips.helmholtz-muenchen.de/plants/brachypodium/v1.2
ftp://ftpmips.helmholtz-muenchen.de/plants/brachypodium/v1.2
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to the same sites where observations are made. Typically,
CCA is used to assess the unconstrained relation between
environmental factors and species distribution, but can
also be used to associate climate gradients with molecular
data [114]. We used CCA to evaluate the linear relation
existing between P/A regions and environmental PC with
999 permutations.

Supporting data
All sequencing reads from this study have been submitted
to the European Nucleotide Archive (http://www.ebi.ac.
uk/ena/) under accession no. PRJEB7130. Biological mate-
rials are available upon request. Climate data is publicly
available at www.worldclim.org.
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